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The successor representation (SR):
expected discounted future state occupancy

Recomputing value for changing reward
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Okay, the SR is interesting but how does
the brain encode space?
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Hippocampal encoding of the SR
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Following the defination: the SR

encodes the expected discounted
coa | future occupancy of state s' along a
trajectory initiated in state s. Does
M(s,s') always peak at s' (when s=s'
=s'||sy =s| for a specific s"), like in Figure 2e?




Hippocampal encoding of the SR
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Hippocampal encoding of the SR
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Hippocampal encoding of the SR
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Hippocampal encoding of the SR
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Hippocampal encoding of the SR

| do not understand why the SR predicts that place fields
should be larger at reward locations. From my understanding,

> a place cell for location s* is large, if even locations s that are
| > 3 @_ Goal far away increase jche firing rate. This howevgr should be-tf.\e
- . OS NV 24 § case for all place fields s* that are on the policy path, as it is

very likely that the place cell is visitied in the future (as
opposed to visiting them randomly as is the case for other
place cells). And not just for place cells near the reward. This

A is also reflected in the formulas, as M (which the place cells
| 25 e ‘or @ reflect) is independent of the reward R, and instead
2 3 5720 | ;_+\i 3 ol e dependent on the policy. (Unrelated side note: Could you also
TN Bl H expand a bit on how the grid fields reflect a low-dimensional
h 2 N g % eigendecomposition of the SR?)
Qa1 E ] & ) F T “The transition policy was such that the animal lingered
o , longer near the rewarded location and had a preferred
T s Tnalgnn 13 %2»3 direction of travel.”




Hippocampal encoding of the SR
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Hippocampal encoding of the SR

While SR predicts that place fields should
be larger near the reward locations, that
doesn't match experimental data
observed in Hollup et al. (place fields had
the same size at rewarded and non
rewarded locations). What would be a
possible explanation for this in your
opinion?

“The size of place fields with peaks within | =Fheidsanitywith nolay jacalion

the platform segment was comparable I Noise kernel width
with that of fields in other segments. g O ‘1 S
Place fields in the platform segment g 0.6 | ' -
covered 18.4% (15.3-22.2%) of the visited ;é) - i
area, whereas the fields of the remaining - i

-180 0 180
Degrees from true SR field center (°)

cells covered 18.2% (16.4-20.6%).”




Hippocampal encoding of the SR

2@ In a maze similar to the one used in Figure 3, how would
Yo N an introduction of two rewards at different locations be
.\ 2 represented by place cells? If one reward is preferred over
o s the other, how would this be encoded? By the size of the

place fields around the reward?




Hippocampal encoding of the SR
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Hippocampal encoding of the SR
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Hippocampal encoding of the SR
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Hippocampal encoding of the SR

A couple of questions regarding supplementary figure 3: For
the double reward, half of the room is within the receptive
field of one place cell, although only one of the rewards lies
within this receptive field — why then from a prediction of
successor states would this entire half of the room be
preferred? Secondly, for the punishment context, if only
reward is encoded in the receptive fields of any of the
neurons found, how is predicted punishment represented in
the brain? The punished-room looks exactly like the empty
room — is this just not represented in the HF?




Humans

SR

Space and time
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Non-spatial states

Schapiro et al. (2015)
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Entorhinal grid cells

What do they represent? Why are they periodic?

Could you explain/give
some intuition about how
grid cells being eigenvectors
IS related to their
properties? Are there
interesting behavioural
properties resulting from
this?
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Grid cells as a lower-dimensional
representation of the SR
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Grid cells as a lower-dimensional

representation of the SR i o
A= RN =

Translated . R ———

SR State VeCtOr State Vector Illl u H 5 z m 'llll g

- m W 00 85 = B Il MW B3

B mus&nm=mz

To state . E m ' :2
SR Eigenvector  Scaled eige = o —T

| ,nsmsmr_

From
state

i ?

5 & X |3 - >
28 | = A x|
2 2

To state




Grid cells as a lower-dimensional
representation of the SR

Translated
SR State vector
state vector
S & X -
To state
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. ; ; SR = UAU1
c : : where U is the eigenmatrix (all eigenvectors)
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L »n You can
? ? e Reconstruct the SR with the full set of eigenvectors
* Estimate the SR with a just subset of the eigenvectors!
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Grid cells as a eigenvectors of the SR

Krupic et al. (2015) Effects of enviromental geometries
a Grid cell firing rate histograms
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Grid cells as a eigenvectors of the SR

Animals

SR

Krupic et al. (2015) Effects of enviromental geometries
Grid cell firing rate histograms
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Shift from local grid to global grids

Animals

SR

40 cm

90 cm

Carpenter et al. (2015) Grid fields in multicompartment environment
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Shift from local grid to global grids

Animals

SR

Carpenter et al. (2015) Grid fields in multicompartment environment
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What is an advantage
of the global grid as
compared to local grids
after exploration? How
could the underlying
changes for this
conversion be
encoded? Is this just an
adaptation or is there
more meaning behind?




Shift from local grid to global grids

Animals

SR

40 cm

90 cm

Carpenter et al. (2015) Grid fields in multicompartment environment
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What exactly are
the implications for
memory formation,
if grid cell firing can
really be
approximated by an
SR model? This
process has to be
connected with a lot
more distal
projections into
other brain areas.
How would the
implied connection
of SR and TCM look
on a cellular level?







Conclusions

* There are neurons in the hippocampus that mirror predictions of
where the animal will be rather than where she is

* This predictive representation is useful because it allows for planning
that is easier than model-based but better than model-free (in certain
scenarios)




Other questions

« Last Session, time cells as an analogue to place cells were introduced. | can imagine ‘predictive time cells’
Are there studies that Show that time cells are also predictive in supporting sequential behavior like
nature and that they have backward-skewed receptive fields (as bird song (e.g. ‘We will repeat this
shown in this study for place cells)? What would that even mean sound 3 more times.’). But in general,
exactly if time cells were predictive? it seems paradoxical to predict time (?)

A . ,

* To support spatial information a state value representing a state of " 3% Nir Mone’Fa S
mind may be useful. This may guide thought processes and rewards o G Presentation! In
independent and supplementary to spatial information. In form of = ﬁ' ~x 0  particular,
abstract place cells, what do these cells may encode? Would they § f; Constantinescu et al.
represent a model of "how to think successfully"? 'tk i (2016)

e Additional Programming Question to the audience: Are there RL
algorithms/frameworks using neuron firing rates. This may be
computationally efficient, like spiking neural networks.




Other questions

* |tis mentioned in the paper that the SR could extend the range of replay forward sweeps in the hippocampus.
Could you elaborate on how this should be understood? How do you think the compatibility between the SR

model and the theta/sharp wave-ripple activity would look like?

* They affirm that data have been suggesting that "place field stability and organization depends crucially on input
from grid cells.". What are the evidences for this correlation? What type of experiments and measures can be
made to support this statement?




Thank you for your
attention!




