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Plan for today

Hippocampus and its role in memory
Neural substrates of memory

Causally manipulating spatial memories
Temporal coding of events

How are space & time integrated?



What is the model in model-based RL?
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What is the model in model-based RL?

Temporal order of events is important for credit assignment — i.e., figuring out which actions and in which
order lead to reward

Also known as model inversion — given you know where the goal is, how can it be reached?

DYNA does this by sampling experiences (accessing memories) and propagating reward information
towards preceding states

Knowing the model (structural and temporal dependencies between states and actions) is necessary for
learning a good policy



Memory taxonomy

Hippocampus

e Declarative (or explicit) memory is

something that can be consciously
recalled based on experience
o Semantic memory refers to
factual knowledge (e.g., one
can eat food with their
favourite utensils)
o Episodic memory relates to
specific events in our lives

e Short-term memory is the ability to
maintain information over a few
seconds. Manipulating items in the
short-term memory is usually
referred to as working memory
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Bird & Burgess (2008)



Hippocampus

How do we know its role in memory?

e Memory deficits following damage to HPC (e.qg., patient HM)

o Mostly episodic memories; those acquired prior to damage remain intact
e Recent studies causally manipulate HPC activity to affect memory

Several theories have been proposed:

e Declarative theory posits that HPC is critical for all forms of declarative
memory but for a limited time; memories are ultimately consolidated
(transferred) to cortex

e Relational (cognitive map) theory. HPC is important for learning predictive
(model-based) associations.



Bird & Burgess (2008)
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HPC receives inputs from major cortical areas

HPC is thus ideally positioned to integrate the sensory ‘what’ with the navigational ‘where’ information



Engrams — memory traces

Creating a False Memory in the Hippocampus Engrams and circuits crucial for systems consolidation
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Communication between HPC-EC and cortical
areas during memory acquisition is necessary
for its maturation and successful retrieval

So it’s not quite true that HPC is solely
responsible for the acquisition of new memories

Activating the engram encoding ‘A’ in ‘B’ paired with
foot shock led to animals subsequently freezing in ‘A’
but not a distinct ‘C’



Hippocampal zoo
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Manipulating spatial memories during behaviour
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Theta precession
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Place cells exhibit phase
precession — their firing rate is
modulated by the phase of the
ongoing theta oscillation

Theta sequences: the timing
between each cell’s firing is
suitable for STDP — memory
encoding?

Phase information is useful for
estimating distance traversed
through each receptive field

Hippocampus binds events across time and space into conjunctive memory representations

Drieu & Zugaro (2019)



How long does it take to acquire a ‘memory’?
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Theta sequences appear immediately after the very first experience of a novel environment

Feng, Silver, Foster (2015)



5-min break?



Are time and space coded independently?

Subiculum

Presubiculum

accumbens, ammillary bodies

medial septum

ant. nuc. of the thalamus

CA3 and CA1 have independent inputs and outputs; it is
therefore possible that there are differences in how the
HPC subfields process / encode spatial and temporal
information

CA3 (but not CA1) lesions impair object-place and
odour-place associations; CA1 (but not CA3) lesions
impair the learning of associations which involve
temporal gaps. CA3, however, might be important for
short interval associations

CAg3 is critical for object-spatial associations and CA1 —
for associations between objects across time? OR do
they both encode (different) temporal information?

Rolls (2013)



Splitter cells

Sup. EC
Spatial firing patterns in CA1 (but not CA3

and mEC) seem to depend on the
animal’s path history —i.e., they

discriminate paths depending on a CA1
trajectory defined by the temporal context.

10
In RL terms, this can also be thought of Deep EC .

as the animal’s subjective belief state
(see belief MDPs)
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Pastalkova et al. (2008)

Time cells

Is time representation a consequence of the sequential / ordered nature of spatial experience?
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Time cells

J odor period ( 1.2 sec)

delay period ( 10 sec)

object period (1.2 sec)

e 2 objects, each paired with a
distinct odour

e Temporal delay renders the
task memory-dependent
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Conjunctive representations in CA1

Neurons

Evidence accumulation
task in virtual reality

Conditional spatial
representation by individual
CA1 neurons looks noisy
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Representational drift — temporal code?

Long-term memory requires stable activity patterns for accurate
memory retrieval; however, variability in the activity can represent

temporal distances between experiences
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reliably dissociate 2 environments

Mankin et al. (2012)
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Internally Generated Sequences

One prominent idea is that the HPC acts as a sequence generator — that is, it plays out sequences onto
which incoming sensory data are mapped to create episodes of experience ordered in time

RESEARCH ARTICLE | BIOLOGICAL SCIENCES fyine &

Distinct preplay of multiple novel spatial TrajectoryEvents aeross hippocampal place cells
) ] require previous experience
experiences in the rat

George Dragoi B and susum Tonegawa B Authors Info & Affiliations

Delia Silva, Ting Feng & David J Foster

One study reported sequential activations Another study reported that their shuffling
prior to experience which was then mapped procedure produced spurious correlations,
onto those ‘preplayed’ sequences and those ‘preplays’ were chance events

Soit’'s unclear...



Temporal Context Model

e |Initially proposed to account for recency and contiguity effects in free recall in humans [Howard &
Kahana (2006)]

e Recent events are more likely to be recalled first (recency); events that are near (in time) to those
previously recalled follow suit

e Assumes a leaky (or exponentially decaying) trace of an event
Temporal order can then be reconstructed by e.g. Laplace transform [Howard et al. 2014]

e Similar models have been developed for spatial coding [Momennejad & Howard 2018], as well as
value representation [Tano & Dayan 2021]



Conclusions

Hippocampus is important for episodic memory formation, although not solely

Those memories are acquired rapidly, after single experience

Recent studies casually probe the role of HPC in memory processing

Spatial and temporal information is processed by overlapping (albeit not

identical) networks, which all converge onto the HPC

e HPC encodes both time and space (and other task variables) conjunctively,
yet there is likely to be a division of labour across the different HPC subfields

e More generally, HPC is thought to learn the predictive associational structure

thus linking space and time in a predictive manner (next session)



Your questions



