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RL in the brain (+ behaviour)

Cognitive Maps Seminar
09th of November 2022



https://hmc-lab.com/Cogmaps.html
Admin Recap - form groups

* [Required] Attendance of at least 80% of sessions

* [30% of grade] Submit 1 engaging discussion question prior to every paper session
* 16. November onwards - next week!

e List: https://docs.google.com/spreadsheets

* [70% of grade] Give one presentation (90-minute session with discussion) on a relevant paper of your
choice

* |In a group of 3-4 students

e List: https://docs.google.com/spreadsheets



https://docs.google.com/spreadsheets/d/133YQizvZh1EDNksmPzXWcInAgxUERyjocSkKeWjWVPA/edit#gid=754601961
https://docs.google.com/spreadsheets/d/1slzFi_iIaJ1BWXf7LCe8X8OxqXBl39f40TltdP17jsc/edit#gid=1338036334

https://hmc-lab.com/Cogmaps.html
Groups - Preferences as of 08 Nov

Your Job
Rules e (Can the unassigned students assign themselves to one of the open groups? (Or we will
e Groups of 4 are full (but you can swap) do so next week)
* Atleast 3 students per group * Group and paper change is possible until next week - self-organised according to the
e 7 papers in total rules on the left

 Email us if there are dates that totally don’t work for you

Brunec, I. K., & Momennejad, |. (2022). Predictive representations in hippocampal and
prefrontal hierarchies. Journal of Neuroscience, 42(2), 299-312.

Pouncy, T., Tsividis, P., & Gershman, S.J. (2021). What is the model in model-based

Xi vi
planning? Cognitive Science, 45, €12928. long, Yirong

Cruse, H., & Wehner, R. (2011). No need for a cognitive map: decentralized memory

L Pai
for insect navigation. PLoS computational biology, 7(3), €1002009. eerssen, ralge

Buzsaki G, Tingley D. Space and Time: The Hippocampus as a Sequence Generator.

™
Trends Cogn Sci. 2018;22(10):853-869 lu, Jiatong

Peer, M., Brunec, |. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge Miiller. David
ith cognitive maps and cognitive graphs. Trends in cognitive sciences, 25(1), 37-54. ’

He, Q., Liu, J. L., Eschapasse, L., Beveridge, E. H., & Brown, T. |. (2022). A comparison of

. . . N Co Wolters, Pet
reinforcement learning models of human spatial navigation. Scientific Reports, 12(1), 1-11. LS, FELE

Eldar, E., Lievre, G., Dayan, P., & Dolan, R. J. (2020). The roles of online and offline

. . . Mehnert, Lena
replay in planning. eLife.

Unassigned: Missori, Janu Asik, Ayberk Kossack, Daniel Hofer, Antonia Garcia Manzano, Laura

Timcenko, Aleksejs

Schach, Katja Verde Puerto, Paula Gekeler, Franziska

Prasad, Shweta Gholamzadeh, Ali

Bailey, Mark John, Dan

Tammaro, Ruben Lin, Yuguang

de Oliveira, Paula Heuschkel, Simon

Barbashova, Nadezhda

Grotzinger, Dennis



Recap: so why do we care about RL?

Do you remember the difference between:

V_(s) O(s, a) P(s’,r|s,a)



RL examples

| earn useful actions:



https://www.youtube.com/watch?v=spfpBrBjntg

RL examples

A few hours (+a bit of evolution) after birth:




RL examples

This process is perhaps not too
different from Al learning to walk:

DEEPMIND Al
LEARNED HOW TO WALK



https://www.youtube.com/watch?v=gn4nRCC9TwQ

What is reinforcement learning (RL)?

 RL is a computational approach to learning from interactions with the environment
* Trial-and-error

* Delayed reward
* Considers whole problem of goal-directed agent interacting with an uncertain environment

 RL agents
 Have explicit goals
* Sense aspects of their environments

e Choose actions to influence their environments

8



Basic setup: how do agents learn to act?

1. Based on a reward signal, agents 2. Action is governed
learn values of actions/states: by a policy:

V (s) =E_[R]|sy=s] m(a,s) = Pla,= als, = s)
Reward 7, Action a,

State s,

3. Agents can learn a model of the
environment to make smarter decisions, e.g.:

P(s,,1=8,r =r|s,=s,a,=a)



1. Value and Value Learning (in the brain)



Based on a reward signal, agents
learn values of actions/states:

Vﬂ(S) = E,[R | So = 51

Reward r, Action a,

State s,

Values approximate long-term future reward

11



Values

Nature of value representation changes - value of states vs. chosen value
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Values at choice and outcome

Key RL variables in different brain regions: choice, outcome, and choice x outcome

 Some of them even represent past trials

matching pennies task

fraction of neurons

time from feedback onset (s)

0 1 0 1 0 1 ? 1
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Lee et al., Annu Rev Neurosci. 2012

dynamic foraging task
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Learning values

* Two learning algorithms you should know about: Delay Conditioning

CS

 Rescorla-Wagner (RW-)Learning
UsS

e | earn stimulus-outcome associations

F_ IS _>‘
Trace Conditioning

 Temporal Difference (TD-)Learning cs |

e Learn stimulus-outcome associations across time US

14



Basics of Learning: Rescorla-Wagner Learning

Prediction error

Y\

Learn associative strength between a CS and US V(s) « V(s)+a - (r— V(s))

Value Light

@ — DDD

) —
\\kh % @ ‘%

Q) < V(Q)+a-(von- V)

||||||||

Link to code here

Introducing a second CS ?q .
can lead to blocking: g

MDD = VD)D) +a- (von - Q)+ D))

15


https://github.com/schwartenbeckph/RL-Course/tree/main/2022_05_10_RescorlaWagner_Code

Temporal Difference Learning

* “If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be
temporal-difference (TD) learning.”

 Update based on other learned estimates, without waiting for final outcome (bootstrap)

* Learn “a guess from a guess” Prediction error

d Ny
V(s,) < V(s)+a - (r+y - V(s,.1) — V(s))

e Operates in ‘real-time’
e flabels time steps within trials

» Think of time between f and ¢ + 1 as a small time interval (e.g. 1ms)

16



Can RL tell us anything about the brain?

* Yes, quite a lot.

V(s,) < V(s)+a - (r+y - V(s,.1) — V(s))

* Particularly, it looks like dopamine (DA) is a key neurotransmitter for (TD) reward learning

@ —> DDD

BUT: after training...
* DA signal reward prediction
o t * But not correctly predicted reward!
O dopamine neurons report an error

in the prediction of reward?

Dopamine neurons signal
immediate reward

Reward predicted | | I ‘ bt A e 10kt
No prediction M&m Reward occurs
Reward occurs o N . L
RN T et Lon S :acr,c r: ;0.' ..o. ..;-".:: ¢ :.s...o :0.'..0. \ t . ..t '.'. . i. . L
T 2 B A-ATL "«1 XY ""}‘- ety
AR T . ' j;.: , .t:ﬂ AMIPIAD. K, o 3 :.{ I
Y b Thd VU ’
(No CS) . .
DDD N DDD

17

AND: it signals the unexpected
omission of a reward!

Reward predicted
No reward occurs

Schultz, Dayan & Montague (Science, 1997)



State

emporal Difference Learning

V(s,) < V(s)+

Do dopamine neurons report an error

No prediction
Reward occurs

in the prediction of reward?

- (r+y - V(s ) — V(s))

Reward predicted
Reward occurs

- . ....' L)
.. ‘.. .. ."5.. LU ‘..*.
. ‘l. ..o o".:.:n'. 2%
'\. o ! R S
™ . B SR NI

R J %o oJ % ) *
....s. e “ :“ .‘. . ..‘
L] ".:.’%. .. “.'... ‘ .
e ‘s 1. eell® . "‘ o *

\ /

s
/ \

We can simulate this (link to code here):

0 5000

TD-error over learning

10
20

10000

15000

Iterations

20000

18

State

0 5000

TD-error over learning

10000

15000

Iterations

20000

0.8

Reward predicted
No reward occurs



https://github.com/schwartenbeckph/RL-Course/tree/main/2022_05_31_TDLearning_Code

More TD-learnin

Do dopamine neurons report an error

No prediction
Reward occurs

Gradual backward shift
of TD error
(temporal shift)

Trial

in the prediction of reward?
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Amo, ..., Watabe-Uchida, Nature Neuroscience 2022
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2. Models of action selection (in the brain)



Basic setup: how to agents learn to act?

\
Reward r,
2} o

Action is governed by
a policy:

n(a,s) = Pla,=als,=s)
| Action a,

State s,



How to find good actions?
4

e How do values translate into actions?
e (Classic testbed: multi-armed bandits
» Several options

* Have to find out which of these are good or bad via trial-and-error

* Key problem: exploitation vs. exploration

22



Value

How to find good actions?

Greedy action selection:

1

P(at=a)={0

Input Value

% chosen

if a; = argmax, V;(a)

otherwise

12

10 A

0.8 1

0.6 1

0.4 1

0.2 4

0.0

Chosen action

Action

23

3
;ﬂ" «

-l
I\E

Action is governed by a policy:

n(a,s) = P(a,=als, =)

Can you see a problem with this
type of behaviour?



How to find good actions?

/9 : ';‘3 ‘)
'S
i

¢

Epsilon-greedy action selection:

1 —¢€ if a; = argmax, V;(a)
P(a; = a) = .
e/N otherwise
Action is governed by a policy:
n(a,s) = Pla,=als, = s)
Input Value Chosen action
= 12 d e-greedy parameter
0.6+ O | Short horizon
10 - g [ ]Long horizon
© 5
08 | : A
c Q
" a - 0.4 e
2 2 06 = s % .
> - © |
* 04 - < f |
m 8 | :
T T T T 00 - f : '
0 1 2 3 0 2 3 0

All  Propranolol Placebo Amisulpride

Dubois, ... & Hauser, eLife, 2021

24



Value

How to find good actions?

Softmax action selection:

P(a; = a) =

Input Value

% chosen

N .
Zi=1 th(az) p

12

10 -

0.8 1

0.6 1

04 -

0.2 -

0.0 -

Chosen action

Action

25

3
;ﬂi «

A1)

Action is governed by a policy:

n(a,s) = Pla,=als, = s)

Strongly related to function of neuromodulators
(dopamine, norepinephrine)..



How to find good actions?

Difference economic choice vs. reinforcement learning (Lee et al., Annu Rev Neurosci 2012):

a. Economic choice b. Reinforcement learning
utilities value functions
4 VN N A N e\
y A / \ / \ / R, ( \ \
\ actlon 1 ‘ act|on 2 actlon 3 ( action 1 | action 2 ) ( action 3 |
/ \\ // 2\ 4 / , ‘\ 3 ,//f
max 1 soft-max
RPE |
| chosen | [ chosen |

\ action / \ action |

— outcome =

P

- Lee et al., Annu Rev Neurosci. 2012



How to find good actions?

Is there a neural basis for making exploratory decisions?

Blanchard & Gershman, Cognitive, Affective & Behavioural
Neuroscience, 2018

Daw, ... & Dolan, Nature, 2006
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3. Model-free vs. model-based RL (in the brain)



Basic setup: how to agents learn to act?

Reward r, | | Action a,

State s,

Agents can learn a model of the
environment to make smarter decisions, e.g.:

P(s,, =81 =r|s,=s,a = a)

29



Model-based RL: devaluation

Outcome devaluation (revaluation): gold-standard test for forward model predicting outcomes of actions

Animal is trained to perform two different One reward is then devalued, for example by satiation.
actions, with a different reward:
Impact of this devaluation is tested in ‘extinction’, without providing outcomes.

————

D

Extinction
1O

Q —=o p
) siiol Y

e 8 )

£ \

£ \\

8.

) \

B

2

Q

@

Adams & Dickinson, Quarterly Journal of Experimental Psychology, 1981
Colwill & Rescorla, Journal of Experimental Psychology, 1985

30 Akam, Costa, & Dayan, PLOS CB 2015



MDPs basis for model-based RL

P(s',r|s,a) =P(s,.  =5,r =r|s,=s,a,=a)

How can we make use of such models of the world?

Learning

« Key idea: store experiences in world model P(s’, r| s, a)

 Sample from this model to generate extra learning data
* This is called DYNA-Q...

31



DYNA-Q

Sample from world model P(s’, r| s, a) to generate extra learning data

Steps per episode

And during breaks (‘offline rest’), they can sample from this experience and learn from these samples:

S « previously observed state

A +« action previously taken in ,§

R, S’ « Model(S, A)

O(S, A) « O(S, A) + a [R + y max, O(S’, A) — O(S, A)]

Episodes

70

32

Steps per episode

3

160

e Q-learning
Dyna-Q
- == Shortcut appears

140 -

¥
=)

—
o
o

8

kL

0 B L] T L] % L L] L] L
50 100 150 200 250 300 350 400
Episodes

Link to code here



https://github.com/schwartenbeckph/RL-Course/tree/main/2022_07_12_DYNAQ

DYNA-Q - Replay as a candidate neural mechanism

DYNA-Q looks a lot like replay.

Replay as a computational mechanism in PFC and hippocamypal formation

e |.e. fast reactivation of external states

« 13F1 |1 TR | |
) - I O O T T I T I
211t I [ R N N R 11} I I
= - [ I nn [
g 9 : rrer 1T IiEi
3 [}
o 5 :I
3 "I
I TEL L0 nmm . | | ! il :
0 250 1,544 1,546 1,548 1,550 1,552 1,654 1,556 1,558 O 250
Time (ms) Time (s) Time (ms)

Diba & Buzsaki (2007) Nature Neuroscience

Implicated in
e Learning from the past (credit assignment, Ambrose et al. (2016) Neuron)

* Planning future trajectories (Pfeiffer & Foster (2013) Nature )

33



MDPs basis for model-based RL

/ _ _ / — — —_—
P(s',r|s,a) = P(s,., =5, 1, =rl|s,=s,a,= a)
How can we make use of such models of the world?

Planning and action selection

"Two-step task’

Key manipulation: common and
rare transitions

Daw, ..., Dolan, Neuron, 2011
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Two-step task: one of the most iconic RL tasks

Trial t Trial t+1

?

Reward Reward
prob. P(B1) prob. P(B2)

prob. P(A1) prob. P(A2)

e
§ o
L

KD!: 0.25 1
0

| l 1 | |
0 50 100 150 200 250 300

Trial number

3
Akam, Costa, Dayan,

PLOS Computational Biology, 2015

Which green option should the agent choose again
at trial t+17
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Two-step task: one of the most iconic RL tasks

Trial t Trial t+1

?

Reward = Rewar d Reward Reward

prob. P(A1) prob. P(A2) prob. P(B1) prob. P(B2)
C

> 1 | | | | |
T =
03) % 0.5 .
o & 0.25 -

0

0 510 1010 15IO 20IO 25IO 300
Trial number

Akam, Costa, Dayan,

PLOS Computational Biology, 2015

Which green option should the agent choose again

at trial t+17
36



Two-step task: one of the most iconic RL tasks

Gl TR0 (| .-

Trial t+1

?

A reinforcement

B common
M rare

stay probability
o
\l
9]

rewarded unrewarded

Model-free RL agent: repeat
what is rewarding

B model-based

il

rewarded unrewarded

Model-based RL agent: repeat
what is rewarding, but be clever

37

C data

rewarded unrewarded

Really data: a mix of
both

Link to code here



https://github.com/schwartenbeckph/RL-Course/tree/main/2022_07_19_ModelFreeModelBased

Two-step task: one of the most iconic RL tasks

Model-free and model-based prediction
errors In ventral striatum

A prediction error B model-based C conjunction a&b




Model-based reasoning: counterfactuals

Some neurons in orbitofrontal cortex encode hypothetical outcomes:
* Fire only if an unchosen option was rewarded

winning target

__top __nght _left
rock-paper-scissors task SLE OW WO
target onset ( \ 801 |
8- 404 4‘
reward 201 - 1 —
e —— == , |
< ® @ X 3 i | W wim;nfing'
s_ % payo
® 0 9 £ £ 40; < : 4
g 2 9 > - 3
feedback onset ® O 1% 80 A AN
D db & g 0 P el B T :
=~ B S A B
1':* m 60 - .
@ = 40
20 1 - - —
. ’ e e e S
0 05 0 05 0 05

time from feedback onset (s)

Lee et al., Annu Rev Neurosci. 2012
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Place cell

Border cell

Grid cell

Head Direction Cell

120° 60°
180° ’ 0°
240° 300°

(Taube et al. 1990)

00000 —

Is this a basis set over world structures?

40

Reward cell

What is the model in model-based RL?

Boundary Vector Cell

reward

v
1
)
um

reward
v

(Gauthier & Tank 2018)

Splitter cell

W

(Leveretal 2009)

Place cell

Whittington et al. (2022). How to build a cognitive
map. Nature Neuroscience

Behrens et al. (2018). What is a cognitive map?
Organizing knowledge for flexible behavior. Neuron



Discussion questions

Is reward enough? Can you think of limits of RL?
How are cognitive maps useful in RL?
Can you think of situations where cognitive maps are useful that are not in a RL context?

If you were a scientist, what experiment on RL (and perhaps cognitive maps) would you
want to run?
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Nir Moneta

PhD student, Max Planck UCL Centre for
Computational Psychiatry and Ageing Research

https://hmc-lab.com/Cogmaps.html
Next week

Evidence for grid cells in a human memory network

Christian F. Doeller"?, Caswell Barry">* & Neil Burgess"*
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Gridness

Fast Slow
Speed

p+240 ¢+300

Viisaligned

High
speed

N\

~—"I 1T 1T \71/

P 60 p+120 +180 +240 +300 |
Running direction (°) speed

YOUR task:

 Read the paper
 Submit a question AND YOUR NAME here
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https://docs.google.com/spreadsheets/d/133YQizvZh1EDNksmPzXWcInAgxUERyjocSkKeWjWVPA/edit#gid=754601961

