

RL in the brain (+ behaviour)

Cognitive Maps Seminar 09th of November 2022

https://hmc-lab.com/Cogmaps.html Admin Recap - form groups

- [Required] **Attendance** of at least 80% of sessions
- [30% of grade] Submit 1 engaging discussion question prior to every paper session
 - 16. November onwards **next week**!
 - List: <u>https://docs.google.com/spreadsheets</u>
- choice
 - In a group of 3-4 students
 - List: <u>https://docs.google.com/spreadsheets</u>

• [70% of grade] Give one presentation (90-minute session with discussion) on a relevant paper of your

https://hmc-lab.com/Cogmaps.html **Groups - Preferences as of 08 Nov**

Rules

- Groups of 4 are full (but you can swap)
- At least 3 students per group
- 7 papers in total

Your Job

- Can the unassigned students assign themselves to one of the open groups? (Or we will do so next week)
- Group and paper change is possible until next week self-organised according to the rules on the left
- Email us if there are **dates** that totally don't work for you

Brunec, I. K., & Momennejad, I. (2022). Predictive representations in hippocamp prefrontal hierarchies. Journal of Neuroscience, 42(2), 299-312.

Pouncy, T., Tsividis, P., & Gershman, S.J. (2021). What is the model in model-ba planning? Cognitive Science, 45, e12928.

Cruse, H., & Wehner, R. (2011). No need for a cognitive map: decentralized me for insect navigation. PLoS computational biology, 7(3), e1002009.

Buzsáki G, Tingley D. Space and Time: The Hippocampus as a Sequence Gene Trends Cogn Sci. 2018;22(10):853-869

Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring k with cognitive maps and cognitive graphs. Trends in cognitive sciences, 25(1),

He, Q., Liu, J. L., Eschapasse, L., Beveridge, E. H., & Brown, T. I. (2022). A con reinforcement learning models of human spatial navigation. Scientific Reports,

Eldar, E., Lièvre, G., Dayan, P., & Dolan, R. J. (2020). The roles of online and of replay in planning. eLife.

Unassigned:

Missori, Janù

Asik, Ayberk

Kossack, Daniel

Höfer, Anto

pal and	Timcenko , Aleksejs	Schach , Katja	Verde Puerto, Paula	Gekeler , Fr
ased	Xiong , Yirong	Prasad , Shweta	Gholamzadeh , Ali	Grötzinger
emory	Leerssen, Paige	Bailey , Mark	John , Dan	
erator.	Liu , Jiatong	Tammaro , Ruben	Lin , Yuguang	
knowledge 37-54.	Müller , David	de Oliveira , Paula	Heuschkel, Simon	
knowledge 37-54. nparison of 12(1), 1-11.	Müller, David Wolters, Peter	de Oliveira , Paula	Heuschkel, Simon	
nowledge 37-54. nparison of 12(1), 1-11. ffline	Müller, David Wolters, Peter Mehnert, Lena	de Oliveira , Paula	Heuschkel, Simon	

Recap: so why do we care about RL?

Do you remember the difference between:

 $V_{\pi}(s)$

Q(s,a)

 $P(s', r \mid s, a)$

RL examples

Learn useful actions:

RL examples

A few hours (+a bit of evolution) after birth:

RL examples

This process is perhaps not too different from AI learning to walk:

What is reinforcement learning (RL)?

- RL is a **computational approach** to learning from **interactions** with the **environment**
 - Trial-and-error
 - Delayed reward
- Considers whole problem of goal-directed agent interacting with an uncertain environment
- RL agents
 - Have explicit goals
 - Sense aspects of their environments
 - Choose actions to influence their environments

Basic setup: how do agents learn to act?

1. Based on a reward signal, agents learn values of actions/states:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R \mid s_0 = s]$$

Reward r_{t}

 $P(s_{t+1} = s, r_{t+1})$

2. Action is governed by a **policy**: $\pi(a, s) = P(a_t = a | s_t = s)$

Action a_t

State S_t

3. Agents can learn a model of the environment to make smarter decisions, e.g.:

$$_{+1} = r | s_t = s, a_t = a)$$

1. Value and Value Learning (in the brain)

Based on a reward signal, agents learn values of actions/states:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R \mid s_0 = s]$$

Reward r_t

Values approximate long-term future reward

Values

Action a_t

State s_t

Nature of value representation changes - value of states vs. chosen value

Value represented in a lot of brain regions

 $Q(s, a_{chosen})$

Values

Zorrilla & Koop, 2019

Values at choice and outcome

Key RL variables in different brain regions: choice, outcome, and choice x outcome

Some of them even represent past trials

Lee et al., Annu Rev Neurosci. 2012

Learning values

- Two learning algorithms you should know about:
 - Rescorla-Wagner (RW-)Learning
 - Learn stimulus-outcome associations
 - Temporal Difference (TD-)Learning
 - Learn stimulus-outcome associations across time

Temporal Difference Learning

- temporal-difference (TD) learning."
- Update based on other learned estimates, without waiting for final outcome (**bootstrap**)
 - Learn "a guess from a guess"
- Operates in 'real-time'
 - *t* labels time steps within trials
 - Think of time between t and t + 1 as a small time interval (e.g. 1ms)

• "If one had to identify one idea as **central** and **novel** to reinforcement learning, it would undoubtedly be

$$V(s_t) \leftarrow V(s_t) + \alpha \cdot (r + \gamma \cdot V(s_{t+1}) - V(s_t))$$

Learning rate Discount rate

Can RL tell us anything about the brain?

- Yes, quite a lot.

- DA signal reward prediction

Reward predicted Reward occurs

 $V(s_t) \leftarrow V(s_t) + \alpha \cdot (r + \gamma \cdot V(s_{t+1}) - V(s_t))$

Particularly, it looks like dopamine (DA) is a key neurotransmitter for (TD) reward learning

AND: it signals the unexpected omission of a reward!

Schultz, Dayan & Montague (Science, 1997)

Temporal Difference Learning

 $V(s_t) \leftarrow V(s_t) + \alpha \cdot (r + \gamma \cdot V(s_{t+1}) - V(s_t))$

Do dopamine neurons report an error in the prediction of reward?

No prediction Reward occurs

We can simulate this (link to code here):

More TD-learning

Do dopamine neurons report an error in the prediction of reward?

No prediction Reward occurs

Reward predicted Reward occurs

а

Gradual backward shift of TD error (temporal shift)

b

Amo, ..., Watabe-Uchida, Nature Neuroscience 2022

2. Models of action selection (in the brain)

Basic setup: how to agents learn to act?

Reward r_t

Action is governed by a **policy**: $\pi(a, s) = P(a_t = a | s_t = s)$

Action a_t

State S_t

How to find good actions?

How do values translate into actions?

- Classic testbed: multi-armed bandits
 - Several options
 - Have to find out which of these are good or bad via trial-and-error

Key problem: exploitation vs. exploration

Greedy action selection:

 $P(a_t = a) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ 0 & \text{otherwise} \end{cases}$

How to find good actions?

Action is governed by a **policy**:

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Epsilon-greedy action selection:

$$P(a_t = a) = \begin{cases} 1 - \epsilon & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ \epsilon/N & \text{otherwise} \end{cases}$$

How to find good actions?

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Softmax action selection:

$$P(a_t = a) = \frac{e^{V_t(a) \cdot \beta}}{\sum_{i=1}^N e^{V_t(a_i) \cdot \beta}}$$

How to find good actions?

Action is governed by a **policy**:

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Strongly related to function of neuromodulators (dopamine, norepinephrine)...

How to find good actions?

Difference economic choice vs. reinforcement learning (Lee et al., Annu Rev Neurosci 2012):

b. Reinforcement learning

value functions

Lee et al., Annu Rev Neurosci. 2012

How to find good actions?

Is there a neural basis for making exploratory decisions?

Blanchard & Gershman, Cognitive, Affective & Behavioural Neuroscience, 2018

Daw, ... & Dolan, Nature, 2006

3. Model-free vs. model-based RL (in the brain)

Basic setup: how to agents learn to act?

Agents can learn a **model of the environment** to make smarter decisions, e.g.:

 $P(s_{t+1} = s, r_{t+1} = r | s_t = s, a_t = a)$

Action a_t

State s_t

Model-based RL: devaluation

Outcome devaluation (revaluation): gold-standard test for forward model predicting outcomes of actions

Animal is trained to perform two different actions, with a different reward:

One reward is then devalued, for example by satiation.

Impact of this devaluation is tested in 'extinction', without providing outcomes.

Adams & Dickinson, Quarterly Journal of Experimental Psychology, 1981 Colwill & Rescorla, Journal of Experimental Psychology, 1985 Akam, Costa, & Dayan, PLOS CB 2015

MDPs basis for model-based RL

$P(s', r | s, a) = P(s_{t+1})$

How can we make use of such models of the world?

Learning

- Key idea: store experiences in world model $P(s', r \mid s, a)$
- Sample from this model to generate extra learning data
- This is called **DYNA-Q**...

$$= s', r_{t+1} = r | s_t = s, a_t = a)$$

 $P(s', r \mid s, a)$ earning data

And during breaks ('offline rest'), they can sample from this experience and learn from these samples:

 $S \leftarrow$ previously observed state $A \leftarrow action previously taken in S$ $R, S' \leftarrow Model(S, A)$ $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',A) - Q(S,A) \right]$

DYNA-Q

Sample from world model P(s', r | s, a) to generate extra learning data

Link to code <u>here</u>

DYNA-Q - Replay as a candidate neural mechanism

DYNA-Q looks a lot like replay.

Replay as a computational mechanism in PFC and hippocampal formation

• i.e. fast reactivation of external states

Implicated in

- Learning from the *past* (credit assignment, Ambrose et al. (2016) Neuron)
- Planning *future* trajectories (Pfeiffer & Foster (2013) Nature)

Diba & Buzsaki (2007) Nature Neuroscience

MDPs basis for model-based RL

How can we make use of such models of the world?

Planning and action selection

 $P(s', r | s, a) = P(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$

'Two-step task'

Key manipulation: common and rare transitions

Which green option should the agent choose again at trial t+1?

Which green option should the agent choose again at trial t+1?

A reinforcement

Model-free RL agent: repeat what is rewarding

B model-based

Model-based RL agent: repeat what is rewarding, but be clever

C data

Really data: a mix of both

Link to code here

Model-free and model-based prediction errors in ventral striatum

B model-based

c conjunction a&b

Model-based reasoning: counterfactuals

Some neurons in orbitofrontal cortex encode hypothetical outcomes: • Fire only if an *unchosen* option was rewarded

Lee et al., Annu Rev Neurosci. 2012

What is the model in model-based RL?

Object-vector cell

Is this a **basis set** over world structures?

Whittington et al. (2022). How to build a cognitive map. Nature Neuroscience

Behrens et al. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron

Discussion questions

Is reward enough? Can you think of limits of RL?

• How are cognitive maps useful in RL?

•

want to run?

Can you think of situations where cognitive maps are useful that are not in a RL context?

• If you were a scientist, what experiment on RL (and perhaps cognitive maps) would you

Next week

Evidence for grid cells in a human memory network

Christian F. Doeller^{1,2}, Caswell Barry^{1,3,4} & Neil Burgess^{1,2}

- Read the paper

Nir Moneta

PhD student, Max Planck UCL Centre for **Computational Psychiatry and Ageing Research**

https://hmc-lab.com/Cogmaps.html

YOUR task:

Submit a question AND YOUR NAME <u>here</u>

