
Intro to Reinforcement Learning
Cognitive Maps Seminar

Nov 2nd, 2022

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

2

Location changes

• We will use the ground floor seminar
whenever possible

• It is bigger and has ventilation

• Check the schedule on the course
website for the most up-to-date info

https://hmc-lab.com/Cogmaps.html

The story so far …

3

Thorndike’s (1898) Law of Effect

4

Puzzle Box

Thorndike’s (1898) Law of Effect

4

Cat Puzzle Box

Thorndike’s (1898) Law of Effect

4

Cat Puzzle Box Time to escape

Thorndike’s (1898) Law of Effect

4

Cat Puzzle Box Time to escape

Actions associated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

Classical and Operant Conditioning
Classical Condition (Pavlov, 1927)
Learning as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)
Skinner (1938): Learning as the active
shaping of behavior in response to
rewards or punishments

5

https://www.youtube.com/watch?v=_qLs2K4UXXk

Tolman and Cognitive maps

6

• Learning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

• Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

Cognitive maps in biological brains

7

Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)

“Hippocampal zoo”

8
Behrens et al., (Neuron 2018) 
Whittington et al,. (Nat Neuro 2022)

Cognitive maps support navigation and planning

9

Agenda for today: From Tolman to Reinforcement Learning

• Part 1: Introduce RL framework, origins, and terminology (Niv, 2009)

• Part 2: Model-free vs. model-based RL (Dolan & Dayan, 2013)

10

11

Reinforcement 
Learning

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:

• Iteratively selects actions

• Receives feedback from the
environment in terms of new
states and rewards

• Updates internal representations

The Environment:

• governs the transition between
states

• provides rewards

at

st+1 R(at, st)

st → st+1

R(at, st)

13

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Experiences Rewards

13

• Learns a Policy

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Experiences Rewards

• How good is a given state? V(st)

13

• Learns a Policy

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Experiences Rewards

• How good is a given state? V(st)

• How good is a state-action pair? Q(st, at)

13

• Learns a Policy

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Experiences Rewards

• How good is a given state? V(st)

• How good is a state-action pair? Q(st, at)

• How good is a trajectory ?τ = (s0, a0, s1, a1, …)

13

• Learns a Policy

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Experiences Rewards

• How good is a given state? V(st)

• How good is a state-action pair? Q(st, at)

• How good is a trajectory ?τ = (s0, a0, s1, a1, …)

13

• Learns a Policy

• defines how to act, where is the probability of selecting
action in state
π π(a |s)

a s

• sample actions from the policy at ∼ π

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

The Environment

14

Markov Decision Process (MDP)
• Simplifying assumption that the system is fully defined by only the

previous state (i.e., Markov Principle): P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

14

Markov Decision Process (MDP)
• Simplifying assumption that the system is fully defined by only the

previous state (i.e., Markov Principle): P(st+1 |st, at)
What are the states?
• Discrete locations, pixels on a screen, a set of feature values, etc…

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

14

Markov Decision Process (MDP)
• Simplifying assumption that the system is fully defined by only the

previous state (i.e., Markov Principle): P(st+1 |st, at)
What are the states?
• Discrete locations, pixels on a screen, a set of feature values, etc…

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

14

Markov Decision Process (MDP)
• Simplifying assumption that the system is fully defined by only the

previous state (i.e., Markov Principle): P(st+1 |st, at)
What are the states?
• Discrete locations, pixels on a screen, a set of feature values, etc…

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

14

Partially Observable MDP (POMDP)

Markov Decision Process (MDP)
• Simplifying assumption that the system is fully defined by only the

previous state (i.e., Markov Principle): P(st+1 |st, at)
What are the states?
• Discrete locations, pixels on a screen, a set of feature values, etc…

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

Normative vs. Descriptive

15

RL as a normative framework:

• How should a rational agent
behave when learning from the
environment?

• Which learning mechanisms
and which policies lead to
better outcomes?

RL as a descriptive framework:

• How does an agent update
beliefs and select actions when
learning from the environment?

• Which learning mechanisms
and which policies provide
better descriptions of behavior

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

Implementation

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Implementation

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

Implementation

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

How is the system realized?

Implementation

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

How is the system realized?

Implementation

Flight

Flapping

Feathers

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

How is the system realized?

Implementation

Flight

Flapping

Feathers

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

How is the system realized?

Implementation

Flight

Flapping

Feathers

16

Marr’s Levels of Analysis (1982)

Computational

Algorithmic

What is the goal of the system?

How does it behave?

Which representations

and computations?

How is the system realized?

Implementation

Flight

Flapping

Feathers

Rescorla-Wagner (proto-RL)

CS1 V(CS1) US

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

CS2

Conditioned stimuli Unconditioned stimuli

V(CS2)

Rescorla-Wagner (proto-RL)

CS1 V(CS1) US

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

CS2

Conditioned stimuli Unconditioned stimuli

V(CS2)Predicted
outcome

Observed
outcome

Rescorla-Wagner (proto-RL)

CS1 V(CS1) US

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

CS2

Conditioned stimuli Unconditioned stimuli

V(CS2)learning rate Predicted
outcome

Observed
outcome

Rescorla-Wagner (proto-RL)

CS1 V(CS1) US

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

CS2

Conditioned stimuli Unconditioned stimuli

V(CS2)learning rate Predicted
outcome

Observed
outcome

δ

{
Reward prediction error (RPE)

The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

From Rescorla-Wagner to Q-learning
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Y-maze example

Q-learning 
(Watkins, 1989)

From Rescorla-Wagner to Q-learning
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Y-maze example

Q(st, at) ← Q(st, at) + η [r − Q(st, at)]
Q-learning 
(Watkins, 1989)

From Rescorla-Wagner to Q-learning
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Y-maze example

Q(st, at) ← Q(st, at) + η [r − Q(st, at)]
Q-learning 
(Watkins, 1989)

Predicted
reward

Observed
reward

From Rescorla-Wagner to Q-learning
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Y-maze example

Q(st, at) ← Q(st, at) + η [r − Q(st, at)]
Q-learning 
(Watkins, 1989)

learning rate Predicted
reward

Observed
reward

19

Mnih et al,. (Nature, 2015)

Deep Q-Learning can play atari games with human-level control

Temporal-Difference (TD) learning
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

20

Temporal-Difference (TD) learning
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

20

V(s) ← V(s) + η (r + γV(s′) − V(s))

γ ∈ [0,1]

Temporal-Difference (TD) learning
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

20

V(s) ← V(s) + η (r + γV(s′) − V(s))

γ ∈ [0,1]

Temporal-Difference (TD) learning
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

20

V(s) ← V(s) + η (r + γV(s′) − V(s))

TD backups

γ ∈ [0,1]

Temporal-Difference (TD) learning
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

20

V(s) ← V(s) + η (r + γV(s′) − V(s))

Schultz et al. (1997)

Dopamine Reward Prediction Signal

TD backups

The RL Problem

21

Select a policy that maximizes expected rewardsπ*

The RL Problem

21

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy :π

The RL Problem

21

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy :π

• Let’s unpack that a bit: 

• The expectation can be rewritten in terms of the policy and state transitions𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future reward

The RL Problem

21

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy :π

• Let’s unpack that a bit: 

• The expectation can be rewritten in terms of the policy and state transitions𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future reward

The RL Problem

21

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy :π

• Let’s unpack that a bit: 

• The expectation can be rewritten in terms of the policy and state transitions𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future reward

The RL Problem

21

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

 | s
,a

)

∑
s′

P(s′ |s, a)

State transitions

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy :π

• Let’s unpack that a bit: 

• The expectation can be rewritten in terms of the policy and state transitions𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future reward

The RL Problem

21

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

 | s
,a

)

∑
s′

P(s′ |s, a)

State transitions

• This recursive formulation of the value function is known as the Bellman equation

• This allows us to break the optimization problem into series of simpler sub-problems

• if each sub-problem is solved optimally, the overall problem will also be optimal

• Theoretically optimal solution:

• We first define an optimal value function by assuming value-maximizing actions:

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

22

V*(s) = arg max
a ∑

s′

P(s′ |s, a)[R(s, a) + γV*(s′)]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

π* = arg max
a

V*(s)

• This recursive formulation of the value function is known as the Bellman equation

• This allows us to break the optimization problem into series of simpler sub-problems

• if each sub-problem is solved optimally, the overall problem will also be optimal

• Theoretically optimal solution:

• We first define an optimal value function by assuming value-maximizing actions:

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

22

V*(s) = arg max
a ∑

s′

P(s′ |s, a)[R(s, a) + γV*(s′)]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′

P(s′ |s, a)[R(s′ , a) + γVπ(s′)]

π* = arg max
a

V*(s)
* In practice, optimal solutions
are often unobtainable

[If time] Tabular methods for finding optimal policies

23

State

Ac
tio

n

• Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed
as solutions for RL problems by
Minsky (1961)

• Think of a giant lookup table, where
we store a value representation for
each combination of state+action

• Value iteration and policy iteration
are examples

• Caveat: solutions require repeat visits
to each state, which is infeasible in
most real-world problems

Iteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as for all statesV0(s) = 0

2. For all in :s 𝒮

Value iteration

24

Vk+1(s) = max
a∈A ∑

s′

P(s′ |s, a)[R(s, a) + γVk(s′)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Iteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as for all statesV0(s) = 0

2. For all in :s 𝒮

 converges on as , and perhaps sooner, but with many costly
sweeps through the state space
Vk V* k → ∞

Value iteration

24

Vk+1(s) = max
a∈A ∑

s′

P(s′ |s, a)[R(s, a) + γVk(s′)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Alternate between evaluating a policy and then improving the policy.

Start with (typically a random policy), and then iterate for all in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration

25

πk+1 = arg max
a ∑

s′

P(s′ |s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′ , a) + γVπk

(s′)]

Alternate between evaluating a policy and then improving the policy.

Start with (typically a random policy), and then iterate for all in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy can converge faster than value function, but still requires visiting all states
multiple times and lacks convergence guarantees

Policy iteration

25

πk+1 = arg max
a ∑

s′

P(s′ |s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′ , a) + γVπk

(s′)]

Actor Critic
We’ve already defined value updates in terms of RPE

We can use a similar learning rule to update a policy

Policy is learned gradually rather than an argmax

Similar to modern policy-gradient methods used in many Deep
RL contexts

26

V(s) ← V(s) + ηδt

π(s, a) ← π(s, a) + ηπδt

RL summary
• Normative framework for learning an optimal

policy in arbitrarily complex environments
• With modern bells and whistles, is able to beat human-experts in a

variety of domains
• Also provides a descriptive model of human learning

• TD-learning prediction error tracks dopamine signals in the brain (more on
this next week)

• Value representations and policies seem to capture psychologically
relevant representations

• But where is the map? Where is the model of the environment?

π*

27

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

5 minute break

28

Goals and habits (Dolan & Dayan 2013)

29

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions

29

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions
1. Knowledge of how actions map to consequences

Reward-Outcome (R-O) control

29

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions
1. Knowledge of how actions map to consequences

Reward-Outcome (R-O) control
2. Outcomes should be motivationally relevant

e,.g., food when hungry, water when thirsty

29

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions
1. Knowledge of how actions map to consequences

Reward-Outcome (R-O) control
2. Outcomes should be motivationally relevant

e,.g., food when hungry, water when thirsty
Habitual actions

29

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions
1. Knowledge of how actions map to consequences

Reward-Outcome (R-O) control
2. Outcomes should be motivationally relevant

e,.g., food when hungry, water when thirsty
Habitual actions

• Instrumental responding, even when actions are not motivationally
relevant

29

30

Model-free RL Model-based RL

• Habit
• Cheap

•
• Myopically selecting actions

that have been associated
with reward

Q(s, a)

• Goal-directed
• Computationally costly

•
• Planning and seeking of long term

outcomes

P(s′ , r |s, a)

Duarte et al,. (2020)

Monte carlo tree search

31

What is the model in model-based RL?
Ingredients:

• Transition model

• Reward function

• State space

• Action space

T
R

s ∈ 𝒮
a ∈ 𝒜

32

Model

s
a

s′

r

MDP Transition Matrix

33

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• Rewards of second-stage options changed slowly
following a random walk

Daw et al., (2011)

33

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• Rewards of second-stage options changed slowly
following a random walk

Daw et al., (2011)

• (model-free) RL predictions
depend solely on reward

• Model-based RL uses the
transition structure

• Data suggests a mixture of both

Hierarchy of learning:

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)

Hierarchy of learning:

• Value-free habit: deploy a cached policy by
repeating actions performed in the past  
(Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)

Hierarchy of learning:

• Value-free habit: deploy a cached policy by
repeating actions performed in the past  
(Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

• Value-based habit: use a cached action
value for more flexibility  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)

Hierarchy of learning:

• Value-free habit: deploy a cached policy by
repeating actions performed in the past  
(Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

• Value-based habit: use a cached action
value for more flexibility  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

• Model-based planning: Select actions
expected to produced the best outcomes
based on our model of the world 
(K. J. Miller et al., 2017; Vikbladh et al., 2019)

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Planning

Beliefs Model
update

Model

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)

Hierarchy of learning:

• Value-free habit: deploy a cached policy by
repeating actions performed in the past  
(Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

• Value-based habit: use a cached action
value for more flexibility  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

• Model-based planning: Select actions
expected to produced the best outcomes
based on our model of the world 
(K. J. Miller et al., 2017; Vikbladh et al., 2019)

Model-based planning builds better habits!

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Planning

Beliefs Model
update

Model

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)

Simulating experiences with DYNA

35

Sutton (1990)

Simulating experiences with DYNA
• Models of the environment can be used for

planning

35

Sutton (1990)

Simulating experiences with DYNA
• Models of the environment can be used for

planning

• … but they can also be used to simulate
experiences, to learn better values and policies

35

Sutton (1990)

Simulating experiences with DYNA
• Models of the environment can be used for

planning

• … but they can also be used to simulate
experiences, to learn better values and policies

• DYNA uses simulated experiences to update our
policy/value functions, just like real experiences

35

Sutton (1990)

Simulating experiences with DYNA
• Models of the environment can be used for

planning

• … but they can also be used to simulate
experiences, to learn better values and policies

• DYNA uses simulated experiences to update our
policy/value functions, just like real experiences

• These simulations can be controlled to various
degrees (e.g., prioritized sweeps)

35

Sutton (1990)

Model-free vs. Model-based summary
• Computationally cheap to use model-free learning

• Maps onto habits and S-R learning
• Costly but potentially more impactful to use model-based learning

• Maps onto goal-directed and S-S learning
• Not one or the other, but rather a mixture of both
• Model-based learning can help train model-free value functions and

policies
• Through experience and through simulation (e.g., DYNA)

• Still an open question how model-based representations are learned

36

Further study
Sutton & Barto book (free PDF link)

Great course and python code notebooks by Philipp!
 https://github.com/schwartenbeckph/RL-Course

R code notebooks for using RL models (with a focus on social learning)
 https://cosmos-konstanz.github.io/materials/

37

http://incompleteideas.net/book/RLbook2020.pdf
https://github.com/schwartenbeckph/RL-Course
https://cosmos-konstanz.github.io/materials
http://incompleteideas.net/book/RLbook2020.pdf
https://github.com/schwartenbeckph/RL-Course
https://cosmos-konstanz.github.io/materials

Next week

38

Discussion questions
• How important are optimal policies and optimal value functions? People

seem to use “good enough” solutions, so how are those computed?

• If model-based learning influences model-free representations, is the
reverse also true? Do model-free characteristics also influence model-
based learning?

• Could only partial use of model-based RL in the 2-step task be showing
cognitive constraints on fully leveraging model-based representations? Are
there other contexts where we can be more or less model-based?

39

