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Location changes

• We will use the ground floor seminar 
whenever possible 

• It is bigger and has ventilation 

• Check the schedule on the course 
website for the most up-to-date info 

https://hmc-lab.com/Cogmaps.html



The story so far …
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Thorndike’s (1898) Law of Effect 
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Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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https://www.youtube.com/watch?v=_qLs2K4UXXk


Tolman and Cognitive maps
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• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning



Cognitive maps in biological brains
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Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)



“Hippocampal zoo”
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Behrens et al., (Neuron 2018) 
Whittington et al,. (Nat Neuro 2022)



Cognitive maps support navigation and planning
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Agenda for today: From Tolman to Reinforcement Learning

• Part 1: Introduce RL framework, origins, and terminology (Niv, 2009)


• Part 2: Model-free vs. model-based RL (Dolan & Dayan, 2013)
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Reinforcement 
Learning
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Reinforcement 
Learning

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 



Reinforcement Learning 
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  


• Receives feedback from the 
environment in terms of new 
states  and rewards 


• Updates internal representations


The Environment:


• governs the transition between 
states 


• provides rewards 

at

st+1 R(at, st)

st → st+1

R(at, st)
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• Learns a Policy

•  defines how to act, where  is the probability of selecting 
action  in state 
π π(a |s)

a s

• sample actions from the policy at ∼ π
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The Environment
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Markov Decision Process (MDP)
•  Simplifying assumption that the system is fully defined by only the 

previous state (i.e., Markov Principle): P(st+1 |st, at)
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The Environment

14

Partially Observable MDP (POMDP)

Markov Decision Process (MDP)
•  Simplifying assumption that the system is fully defined by only the 

previous state (i.e., Markov Principle): P(st+1 |st, at)
What are the states?
• Discrete locations, pixels on a screen, a set of feature values, etc…
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Normative vs. Descriptive
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RL as a normative framework: 

• How should a rational agent 
behave when learning from the 
environment? 

• Which learning mechanisms 
and which policies lead to 
better outcomes?

RL as a descriptive framework: 

• How does an agent update 
beliefs and select actions when 
learning from the environment? 

• Which learning mechanisms 
and which policies provide 
better descriptions of behavior 
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Rescorla-Wagner (proto-RL)

CS1 V(CS1) US

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

CS2

Conditioned stimuli Unconditioned stimuli

V(CS2)learning rate Predicted 
outcome

Observed 
outcome

δ

{
Reward prediction error (RPE)

The delta-rule of learning: 

• Learning occurs only when events violate expectations ( )

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0
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From Rescorla-Wagner to Q-learning
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Y-maze example

Q(st, at) ← Q(st, at) + η [r − Q(st, at)]
Q-learning 
(Watkins, 1989)

learning rate Predicted 
reward

Observed 
reward
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Mnih et al,. (Nature, 2015)

Deep Q-Learning can play atari games with human-level control 



Temporal-Difference (TD) learning  
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?
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γ ∈ [0,1]

Temporal-Difference (TD) learning  
(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):
• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

20

V(s) ← V(s) + η (r + γV(s′ ) − V(s))

Schultz et al. (1997)

Dopamine Reward Prediction Signal

TD backups
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• This recursive formulation of the value function is known as the Bellman equation


• This allows us to break the optimization problem into series of simpler sub-problems


• if each sub-problem is solved optimally, the overall problem will also be optimal


• Theoretically optimal solution:


• We first define an optimal value function by assuming value-maximizing actions:


• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:
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V*(s) = arg max
a ∑

s′ 

P(s′ |s, a)[R(s, a) + γV*(s′ )]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′ 

P(s′ |s, a)[R(s′ , a) + γVπ(s′ )]

π* = arg max
a

V*(s)
* In practice, optimal solutions 
are often unobtainable 



[If time] Tabular methods for finding optimal policies
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State

Ac
tio

n

• Based on methods from Dynamic 
programming (Bellman, 1957), 
Tabular methods were first proposed 
as solutions for RL problems by 
Minsky (1961) 


• Think of a giant lookup table, where 
we store a value representation for 
each combination of state+action


• Value iteration and policy iteration 
are examples


• Caveat: solutions require repeat visits 
to each state, which is infeasible in 
most real-world problems



Iteratively visit all states and update the value function until a “good enough” 
solution has been reached.

1. Initialize the value function as  for all statesV0(s) = 0

2. For all  in :s 𝒮

Value iteration

24

Vk+1(s) = max
a∈A ∑

s′ 

P(s′ |s, a)[R(s, a) + γVk(s′ )]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual



Iteratively visit all states and update the value function until a “good enough” 
solution has been reached.

1. Initialize the value function as  for all statesV0(s) = 0

2. For all  in :s 𝒮

 converges on  as , and perhaps sooner, but with many costly 
sweeps through the state space 
Vk V* k → ∞

Value iteration

24

Vk+1(s) = max
a∈A ∑

s′ 

P(s′ |s, a)[R(s, a) + γVk(s′ )]

max
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Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration

25

πk+1 = arg max
a ∑

s′ 

P(s′ |s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′ , a) + γVπk

(s′ )]



Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy can converge faster than value function, but still requires visiting all states 
multiple times and lacks convergence guarantees

Policy iteration

25

πk+1 = arg max
a ∑

s′ 

P(s′ |s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′ , a) + γVπk

(s′ )]



Actor Critic
We’ve already defined value updates in terms of RPE


We can use a similar learning rule to update a policy


Policy is learned gradually rather than an argmax


Similar to modern policy-gradient methods used in many Deep 
RL contexts

26

V(s) ← V(s) + ηδt

π(s, a) ← π(s, a) + ηπδt



RL summary
• Normative framework for learning an optimal 

policy  in arbitrarily complex environments 
• With modern bells and whistles, is able to beat human-experts in a 

variety of domains 
• Also provides a descriptive model of human learning 

• TD-learning prediction error tracks dopamine signals in the brain (more on 
this next week) 

• Value representations and policies seem to capture psychologically 
relevant representations 

• But where is the map? Where is the model of the environment?

π*
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5 minute break
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Goals and habits (Dolan & Dayan 2013)

Goal-directed actions
1. Knowledge of how actions map to consequences 

Reward-Outcome (R-O) control
2. Outcomes should be motivationally relevant 

e,.g., food when hungry, water when thirsty
Habitual actions

• Instrumental responding, even when actions are not motivationally 
relevant

29
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Model-free RL Model-based RL

• Habit 
• Cheap 

•  
• Myopically selecting actions 

that have been associated 
with reward

Q(s, a)

• Goal-directed 
• Computationally costly 

•   
• Planning and seeking of long term 

outcomes 

P(s′ , r |s, a)

Duarte et al,. (2020)

Monte carlo tree search
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What is the model in model-based RL?
Ingredients: 

• Transition model  

• Reward function  

• State space  

• Action space 

T
R

s ∈ 𝒮
a ∈ 𝒜

32

Model

s
a

s′ 

r

MDP Transition Matrix
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Two-step task
• Two-stage decision-making task used to distinguish 

model-free vs. model-based learning


• Rewards of second-stage options changed slowly 
following a random walk

Daw et al., (2011)
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Two-step task
• Two-stage decision-making task used to distinguish 

model-free vs. model-based learning


• Rewards of second-stage options changed slowly 
following a random walk

Daw et al., (2011)

• (model-free) RL predictions 
depend solely on reward


• Model-based RL uses the 
transition structure


• Data suggests a mixture of both



Hierarchy of learning:

Model-based planning can inform model-free learning

Wu, Veléz, & Cushman (2022)
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Hierarchy of learning:

• Value-free habit: deploy a cached policy by 
repeating actions performed in the past  
(Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

• Value-based habit: use a cached action 
value for more flexibility  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

• Model-based planning: Select actions 
expected to produced the best outcomes 
based on our model of the world 
(K. J. Miller et al., 2017; Vikbladh et al., 2019)

Model-based planning builds better habits!
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Simulating experiences with DYNA
• Models of the environment can be used for 

planning

• … but they can also be used to simulate 
experiences, to learn better values and policies

• DYNA uses simulated experiences to update our 
policy/value functions, just like real experiences

• These simulations can be controlled to various 
degrees (e.g., prioritized sweeps)
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Model-free vs. Model-based summary
• Computationally cheap to use model-free learning 

• Maps onto habits and S-R learning 
• Costly but potentially more impactful to use model-based learning 

• Maps onto goal-directed and S-S learning 
• Not one or the other, but rather a mixture of both 
• Model-based learning can help train model-free value functions and 

policies 
• Through experience and through simulation (e.g., DYNA) 

• Still an open question how model-based representations are learned
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Further study
Sutton & Barto book  (free PDF link) 
 
Great course and python code notebooks by Philipp! 
   https://github.com/schwartenbeckph/RL-Course 

R code notebooks for using RL models (with a focus on social learning) 
 https://cosmos-konstanz.github.io/materials/
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Next week 
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Discussion questions
• How important are optimal policies and optimal value functions? People 

seem to use “good enough” solutions, so how are those computed? 

• If model-based learning influences model-free representations, is the 
reverse also true? Do model-free characteristics also influence model-
based learning? 

• Could only partial use of model-based RL in the 2-step task be showing 
cognitive constraints on fully leveraging model-based representations? Are 
there other contexts where we can be more or less model-based?

39


