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Intro to Reinforcement Learning

Cognitive Maps Seminar
Nov 2nd, 2022



|_ocation changes

* \We will use the ground floor seminar

whenever possible

* |t IS bigger and has ventilation

* Check the schedule on the course
website for the most up-to-date Info

Date

19.
Oct
2022

206.
Oct
2022

2. Nov
2022

9. Nov
2022

16.
Nov
2022

23.
Nov
2022

30.
Nov
2022

7. Dec
2022

14.
Dec
2022

https.//hmc-lab.com/Cogmaps.html

Location

4th floor

4th floor

Ground
floor

4th floor

Ground
floor

Ground
floor

Ground
floor

4th floor

Ground
floor

Host

Charley

Philipp

Charley

Philipp

Nir Moneta
(MPI Berlin)

Noémi

Georgy
Antonov
(MPI BO)

Philipp

Philipp

Topic

Introduction to cognitive maps
(slides)

What is a cognitive map? An
overview of modem
neuroscientific discoveries
(slides)

Introduction to Reinforcement
Leaming

Neuroscience of RL

Cognitive maps beyond spatial
stimuli

From maps to behavior and
back again

Linking memory and navigation

Student led presentation

Student led presentation 2

Required Readings

Tolman, E. C. (1948). Cognitive maps in rats and
men. Psychological review, 55(4), 189.

Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H.
J. (2017). The cognitive map in humans: spatial
navigation and beyond. Nature neuroscience, 20(11),
1504-1513.

Niv, Y. (2009). Reinforcement learning in the brain.
Jourmal of Mathematical Psychology, 53(3), 139-154.
[Section 1 only]

Dolan, R. J., & Dayan, P. (2013). Goals and habits in
the brain. Neuron, 80(2), 312-325. [Focus on
generation 3]

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis

of reinforcement learning and decision making.
Annual review of neuroscience, 35, 287.

Doeller, C. F., Barry, C., & Burgess, N. (2010).
Evidence for grid cells in a human memory network.
Nature, 463(7281), 657-661.

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S.
J. (2017). The hippocampus as a predictive map.
Nature neuroscience, 20(11), 1643-1653.

Eichenbaum, H. (2017). On the integration of space,
time, and memory. Neuron, 95(5), 1007-1018.

See list of recommended papers



The story so far ...



Thorndike’s (1898) Law of Effect
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Thorndike’s (1898) Law of Effect

1
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PUzzle Box Time to escape
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Actions associlated with satisfaction are
strengthened, while those associated
with discomfort become weakened.
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Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk

Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

el CURTAIN

START o FooaBo:I

Plan of maze
14-Unit T-Alley Maze

. Fie, !
{From M, H. Elliott, The cficct of change of reward on the maze per-
formance of rats. Univ, Calif. Pubdl. Prychol., 1928, 4, p, 20,)



Cognitive maps in biological brains

Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)



“Hippocampal zoo”

Place cell

Border cell

Head Direction Cell Reward cell Boundary Vector Cell

reward
A4

120° 60°

P .

240° 300°
(Taube et al. 1990) (Gauthier & Tank 2018) (Lever et al 2009)

180°

Splitter cell Place cell

Behrens et al., (Neuron 2018)
Whittington et al,. (Nat Neuro 2022)




Cognitive maps support navigation and planning




Agenda for today: From Tolman to Reinforcement Learning

* Part 1: Introduce RL framework, origins, and terminology (Niv, 2009)

* Part 2: Model-free vs. model-based RL (Dolan & Dayan, 2013)

10



Reinforcement |
Learning

An Introduction /
second edition

Reinforcement

Learning

11



Pavlovian (classical)
conditioning

il \\
\\\

Learn which environmental cues predict reward

Reinforcement
Learning

An Introduction
secon d edition

/ = 7 | \ ’t:
Richard S. Sutton and Andrew G. Barto /
7,

Reinforcement
Learning

11



Pavlovian (classical)
conditioning

il \\
\\\

Learn which environmental cues predict reward

Reinforcement
Learning

An Introduction
secon d edition

/ 2 A\
Richard S. Sutton and Andrew G. Barto /
7,

.
Relnforcement
Learning

Operant (instrumental)
conditioning

Learn which actions predict reward

11



Pavlovian (classical)

Reinforcement
Learnlng

nnnnnnnnnnnn

Operant (instrumental)

eeeeeeeeeee

conditioning conditioning
ot % ‘% \ ' I
3
Relnforcement ®
Learn which environmental cues predict reward Learning Learn which actions predict reward

|

Neuro-dynamic programing
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

11



Reinforcement Learning
The Agent:

o |teratively selects actions a,

e Recelves feedback from the
environment in terms of new

states s,,; and rewards R(a,, S,)  giate

>

Reward Action

 Updates internal representations 1

: : R(a,
The Environment —. _ St)
: Environment
: ——
S|

e governs the transition between
states §;, = S,.4

. prgvides rewards R(at’ St) Sutton and Barto (2018 [1998])

12
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Agent

 Experiences Rewards

 Learns a Policy
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Agent

 Experiences Rewards
» How good is a given state? V(s,)

» How good is a state-action pair? Q(s,, a,)

» How good is a trajectory T = (S, 4y, S, A5 - -

 Learns a Policy

)?
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Agent

 Experiences Rewards
» How good is a given state? V(s,)
» How good is a state-action pair? Q(s,, a,)

» How good is a trajectory © = (S, g, S1, A5 - --

 Learns a Policy

» 1 defines how to act, where z(a | s) is the probability of selecting -
action a in state s :

« sample actions from the policy a, ~ 7 5

Grid World 13



actions \ \

N\
Markov Decision Process (MDP) ~ ewara @

o Simplifying assumption that the system is fully defined by only the
previous state (i.e., Markov Principle): P(s,. (|, a,)

14



actions \
Environment statos @\ ’ \ : \. .
Markov Decision Process (MDP) ~ ewara @

o Simplifying assumption that the system is fully defined by only the
previous state (i.e., Markov Principle): P(s,. (|, a,)

What are the states?

e Discrete locations, pixels on a screen, a set of feature values, etc...

Grid World
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actions . .

Environment statos @ @ .
Markov Decision Process (MDP) ~ ewara @

o Simplifying assumption that the system is fully defined by only the
previous state (i.e., Markov Principle): P(s,. (|, a,)

What are the states?

e Discrete locations, pixels on a screen, a set of feature values, etc...

. ' 14
Grid World



actions \ \
Environment statos @\ ’ \ : \. .
Markov Decision Process (MDP) ~ ewara @

o Simplifying assumption that the system is fully defined by only the
previous state (i.e., Markov Principle): P(s,. (|, a,)

What are the states?

e Discrete locations, pixels on a screen, a set of feature values, etc...

1 2 3 4 5 eaten
\\\\
‘T-, ' Num Ghosts
: ‘ Sue's x, y
location
2 ,
Inky’s x, y
location
3 Obstacle states j Blinky’s x, y
location
4 Termin'al state o L Agent's x, y
/ location
i ,/

-

Lives

Grid World Score
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actions . .
Environment statos @ @ .
Markov Decision Process (MDP) ~ ewara @

o Simplifying assumption that the system is fully defined by only the
previous state (i.e., Markov Principle): P(s,. (|, a,)
What are the states?

* Discrete locations, pixels on a screen, a set of feature values, etc..
Partially Observable I\/IDP (POMDP)

U Q
Ag?nt 1 2 3 4 5 eatfen
\\ . '
‘T__.,. Num Ghosts
. | | | | 4 Sue's x, y
location
2 ,
Inky’s x, y
‘ | location
3 Obstacle states i Blinky’s x, y
. - I location
4 Termm}al state o LN Agent's x, y
| / location
- yd

- —

Lives

Grid World Score

14



Normative vs. Descriptive

=L as a normative ramework;

® HOw Should a rational agent
Oehave when learning from the
environment’?

® \/Vhich learning mechanisms
and which policies lead to
petter outcomes'?

1L as a descriptive framework:

® How does an agent update

neliets and select actions when
eaming from the environment?

® \/\/hich learning mechanisms

and which policies p

ovige

petter descriptions o

" behavior

15



Marr’s Levels of Analysis (1982)

Algorithmic

Implementation

16
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How does it behave?

Algorithmic

Implementation
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Marr’s Levels of Analysis (1982)

What is the goal of the system?
How does it behave?

Algorithmic

Which representations
and computations?

Implementation

How is the system realized?
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N3

Flight
Flapping

Feathers

Marr’s Levels of Analysis (1982)

What is the goal of the system?
How does it behave?

Algorithmic

Which representations
and computations?

Implementation

How is the system realized?

16



N3

Flight
Flapping

Feathers

Marr’s Levels of Analysis (1982)

Computational it
What is the goal of the system? - ?1 oo
How does it behave? s

Algorithmic

Which representations
and computations?

Implementation

How is the system realized?

16



N3

Flight
Flapping

Feathers

Computational

What is the goal of the system?
How does it behave?

Algorithmic

Which representations
and computations?

Implementation

How is the system realized?

Marr’s Levels of Analysis (1982)

E< Rt+l - )
. S.. | Environment

Initialize (Q{s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @Q (e.g.. s-greedy)
Take action a. observe r, &
Qls.al « Qls.a) n‘r Fomax, Q(s", a’) (QIix.u)'
8 — g

until s 1s terminal

16



Marr’s Levels of Analysis (1982)

reward

Flight Computational st |
What is the goal of the system? ‘ ?1 Environment '
How does it behave? i —_—

Initialize (Q{s.a) arbitrarily
Repeat (for each episode):

Initialize s
AI .t h . Repeat (for each step of episode):
g O rl m IC Choose a from s using policy derived from @Q (e.g.. s-greedy)
Take action a. observe r, &'

Qls.al « Qls.a) (1‘1' Fomax, Q(s", a’) Q[x.u”
!
8 — &

Which representations AT
. nuntil s 1s termna
and computations?

Feathers Implementation

How is the system realized?

Flapping

Convolution
v

Vi Vi i\ IS i




Rescorla-Wagner (proto-RL)

Rescorla-Wagner model " . " o
(Bush & Mosteller, 195% Rescorla & Wagner, 1972) Conditioned stimuli  Unconditioned stimuli

) - 0SS V(CS1)
View (CSi) = Voia(CS) + 1 | Aus — ) Voia(CS) | \ .
‘ V(CSy)
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Rescorla-Wagner (proto-RL)

Rescorla-Wagner model " . " o
(Bush & Mosteller, 195% Rescorla & Wagner, 1972) Conditioned stimuli  Unconditioned stimuli

) - 0SS V(CS1)
View (CSi) = Vi (CS;) + 1 | Ays — Z Vo1a(CS;) 1 \ US
/ | I I .

learning rate Observed  Predicted ‘ V(CSy)
outcome  outcome




Rescorla-Wagner (proto-RL)

Rescorla-Wagner model " o " o
Bush & Mosteller, 195% Rescorla & Wagner, 1972) Conditioned stimuli - Unconditioned stimull
I CS1 V(CSi) S
Vnew(Csi) — Vold(CSi) + n )‘vUS o Z vold(csi)] \
learning rate Observed Predicted ‘ V(CSy)
outcome outcome
R
0

Reward prediction error (RPE)

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs



From Rescorla-Wagner to Q-learning

Rescorla-Wagner model Y-maze example
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Vnew (CS)) = Voua(CS)) + 1 | Aus — ) vom(cso]
i

Q-learning
(Watkins, 1989)
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Q-learning
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From Rescorla-Wagner to Q-learning

Rescorla-Wagner model Y-maze example
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Vnew (CS)) = Voua(CS) + 1 | Aus — Y Voua(CS;)
i

Q-learning
(Watkins, 1989)

Q(s,,a) < O(spa)+1n|r— 0O, a)]
I I

Observed Predicted -
reward reward




From Rescorla-Wagner to Q-learning

Rescorla-Wagner model Y-maze example
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Vnew (CS)) = Voua(CS) + 1 | Aus — Y Voua(CS;)
i

Q-learning
(Watkins, 1989)

Q(Sta ar) < an [7’ T Q(Sta a;)] |
learning rate Observed Predicted :
reward reward




Mnih et al,. (Nature, 2015)

Deep Q-Learning can play atari games with human-level control

Video Pinball |
Boxing ’
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber i
Gopher |

Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong 7

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master 7
Freeway 7

Time Pilot |
Enduro |

Fishing Derby 7
Up and Down |
Ice Hockey 7
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command i
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien ]|

Venture |
Seaquest |
Double Dunk |
Bowling 7

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |

Private Eye 7
ntezuma's Revenge |

if

Convolution Convolution Fully connected
v v v

11
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&
0

O
‘3
=
@
< 2 <> 2
@
Q

508%
449%

No input

Ilii

|

¥
S
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dodoobh  ddo

771 TANN
LA e

At human-level or above

Below human-level

“60

I

N

N\
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S
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2 Bl EX EXN EX Bl EX E: ™

ece"g'“-l
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3]
N

T
N
B

Best linear learner

.:.
2
B

—
—

| | | | | |
100 200 300 400 500 600 1,000 4,500%

O —
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Temporal-Difference (TD) learning

(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963);
® \\/hich actions are responsible for (future) rewards”

20
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® \\/hich actions are responsible for (future) rewards”
Augment reward expectations by the discounted value of the next state

V(s) < V(s) +n (r+yV(s") — V(s))
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Temporal-Difference (TD) learning

(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963);
® \\/hich actions are responsible for (future) rewards”
Augment reward expectations by the discounted value of the next state

V(s) < V(s) +n (r+yV(s") — V(s))

Temporal Discounting
Y
y € [0,1] -
- 0.7
0.8

Discount

0.9




Temporal-Difference (TD) learning

(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963);
® \\/hich actions are responsible for (future) rewards”
Augment reward expectations by the discounted value of the next state

V(s) < V(s) +n (r +w) — V(s))

Temporal Discounting

y € 10,1} : -

0.8
0.9

Discount

tttttttttt

tttttttttt

Iteration 4

Iteration 5

lteration 20

Possible Solution 2

20



Temporal-Difference (TD) learning

(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963);
® \\/hich actions are responsible for (future) rewards”
Augment reward expectations by the discounted value of the next state

V(s) < V(s) +n (r +w) — V(s))

Temporal Discounting

1.’)[’_‘,J Y
ye [0,1] —-
? — 06
= — 0.7
3 0.8
S |
g 0.9

ttttttttt n3
S S S
HD
G G G
ttttttttt neo
S S S
[ ] | e
BN L]
BN ]
G G G
ttttttttt 20 ossible Sol Possible Sol 2
S S S
G G G

Dopamine Reward Prediction Signal

J-n-l-l-d-a-u-r‘m-u

No prediction 3 -
Reward occurs ( LI v ¥ T .‘_I
’1) > s T g l..‘f
» I E
(No CS) R

Reward predicted  [':5 %" ..;1¢§.-.‘ meee X PN N
Reward occurs S R N TR Y

Reward predicted [ "3 1.2, 0 28 ol Vo
No reward occurs [ . .°

20

Schultz et al. (1997)
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The RL Problem

Select a policy 7* that maximizes expected rewards
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The RL Problem

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

e Value function under some policy 7:

Vﬂ'(S) — _TNJZ'[ 2 }/th+1 ‘S() — S]

IET
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The RL Problem

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

e Value function under some policy 7:

Vals) = Bl 2 Y'Rip1 159 = 5]

IET

* | et’s unpack that a bit:

Vi(s)= ) mlals) ) P(s'|s,a)[R(s,a) + yV,(s)]

» The expectation [E___ can be rewritten in terms of the policy and state transitions

 The sum can be written recursively as immediate reward + discounted future reward
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The RL Problem

m(a|s)

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

e Value function under some policy 7:

Vals) = Bl Z Y'Rip1 159 = 5]

€T

* | et’s unpack that a bit:

Vis)= ) mlals) ) P(s'|s,a)[R(s’,a) + yV,(s))]

» The expectation [E___ can be rewritten in terms of the policy and state transitions

 The sum can be written recursively as immediate reward + discounted future reward
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The RL Problem

n(als)

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

State transitions

e Value function under some policy 7:

ViZ'(S) — _TNJZ'[ Z tht+1 ‘S() — S]

€T

P(s’| s, a)

* | et’s unpack that a bit:

Vi(s)= ) mlals) ) P(s'|s,a)[R(s"a)+ VVE(S’)]

» The expectation [E___ can be rewritten in terms of the policy and state transitions

 The sum can be written recursively as immediate reward + discounted future reward

21



The RL Problem

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

m(a|s)

Value function under some policy :
ViZ'(S) — _TNJZ'[ Z tht+1 ‘ 50 =

_ et
Let’s unpack that a bit:

4//\

Vi(s)= ) mlals) ) P(s'|s,a)[R(s"a) + VVE(S’)]

P(s’| s, a)

The expectation [E__, _ can be rewritten in terms of the policy and state transitions

The sum can be written recursively as immediate reward + discounted future reward

21



Optimal policies via Bellman Equations

* This recursive formulation of the value function is known as the Bellman equation
V_(s) = Z r(als) Z P(s’| s, a) [R(S’, a) + }/Vﬂ(s’)]
e This allows us to bregk the optimiélation problem into series of simpler sub-problems
* |f each sub-problem is solved optimally, the overall problem will also be optimal
* Theoretically optimal solution:
* We first define an optimal value function by assuming value-maximizing actions:
Vi«(s) = arg max Z P(s’|s, a) [R(S, a) + yV*(s’)]
a /
* We then (theoretically) arrive at an Soptimal policy by selecting actions that maximize value:

7. = arg max V.(s)

22



Optimal policies via Bellman Equations

* This recursive formulation of the value function is known as the Bellman equation
V_(s) = Z r(als) Z P(s’| s, a) [R(S’, a) + }/Vﬂ(s’)]
e This allows us to bregk the optimiélation problem into series of simpler sub-problems
* |f each sub-problem is solved optimally, the overall problem will also be optimal
* Theoretically optimal solution:
* We first define an optimal value function by assuming value-maximizing actions:
Vi«(s) = arg max Z P(s’|s, a) [R(S, a) + yV*(s’)]
a /
* We then (theoretically) arrive at an Soptimal policy by selecting actions that maximize value:

7. = arg max V.(s)

p * In practice, optimal solutions

are often unobtainable

22



[If time] Tabular methods for finding optimal policies

Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed

as solutions for RL problems by
Minsky (1961)

Think of a giant lookup table, where
we store a value representation for
each combination of state+action

Value iteration and policy iteration
are examples

Caveat: solutions require repeat visits
to each state, which iIs infeasible In
most real-world problems

Action

State

23



Value iteration

lteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as V,(s) = 0 for all states

2. Forall sin &
Vier(s) = max ) P(s'| s, @)[R(s, @) + yVi(s")]

acA

until max |V, (s) = V,_;(s)| < @ Bellman residual
SES

24



Value iteration

lteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as V,(s) = 0 for all states

2. Forall sin &
Vier(s) = max ) P(s'| s, @)[R(s, @) + yVi(s")]

acA

until max |V, (s) = V,_;(s)| < @ Bellman residual
SES

V) converges on V. as k — o0, and perhaps sooner, but with many costly
sweeps through the state space

24



Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7, (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = B, [RG% @) + 7,9

 Policy Improvement

T, | = arg max z P(s’| s, a) lR(S, a) + ;/Vﬂk]

25



Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7, (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = B, [RG% @) + 7,9

 Policy Improvement

T, | = arg max z P(s’| s, a) lR(S, a) + ;/Vﬂk]

Policy can converge faster than value function, but still requires visiting all states
multiple times and lacks convergence guarantees

25



' Actor
p(alS)

Eg N policy m
Actor Critic _ [z ]
We've already defined value updates in terms of RPE B s.ﬁﬁ
%' . function V(S) T
V(S) <« V(S) + ;/]51‘ re\(/:a)ird/
We can use a similar learning rule to update a policy r

Environment J<—
\

n(s,a) < n(s,a) + 1.0,

Policy is learned gradually rather than an argmax

Similar to modern policy-gradient methods used in many Deep
RL contexts

action (a)



>
> Agent

RL summary

S, a4,

® Normative framework for learning an optimal ;<R<af,sf>
Environment <
S

policy £ in arbitrarily complex environments

® \/\/ith modem bells and whistles, Is able to beat human-experts in a
variety of domains

® AlSO provides a descriptive model of human leaming

® [D-leamning prediction error tracks dopamine signals in the brain (more on
this next week|

® \/alue representations and policies seem to capture psychologically
relevant representations

® But where is the map” VWhere Is the model of the environment”/

27



5 minute break
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Goal-directed actions

1. Knowledge of how actions map to conseguences
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(Goals and habits (Dolan & Dayan 2013)

Goal-directed actions

1. Knowledge of how actions map to conseguences 9
Reward-Outcome (R-O) control

2. Qutcomes should be motivationally relevant
e,.d., food when hungry, water when thirsty -

Habitual actions

® |nhstrumental responding, even wnen actions are not motivationally
relevant




Model-free RL

® Hapit
® Cheap

® (J(s
® \/lyO
that
WITh

,a)

pically selecting actions

nave been assoclated
reward

Center Pannel
Key

Key rure .l Key lights

Z
° H .

’

=
2
z
. Z
s ”
Z

Magazine light
Solenoid
=l _Foos
RS A Storage
£
A / ! | Counter weight
‘-' 1/ Food
Jf ‘el ,th ) ‘B
-,/ ). ’ Food Tray
0o CTZ S D [

4
Illustration. Skinner box as adapted for the pigeon.

D . Model-based RL

® (Soal-directed
® Computationally costly
o P(s',r|s,a)

® Planning and seeking of long term
OUtlCcomes

Monte carlo tree search

Selection » Expansion » Simulation » Backup
l _
— .‘l
| .
| e (3
— l.0~ - ’.."
. Selected state ) ; , ,
L P Docr “R'I .
. o ceecf - CuRTAIN i -
I_ - ‘ Tree Policy | \ Rollout Policy
START ,mga,l Expanded state
Plan of maze ‘
14-Unit T-Alley Maza
Fie. 1

{(From M, H, Elliott, The eficct of change of reward on the maze per-

formance of rats. Univ, Calif. Publ. Piychol., 1928, 4, p, 20.) D ua rte et al y - (2 O 2 O) 30



blocked blocked normal

state

model-based model-free
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What is the model in model-based RL?

Ingredients:

® [ransition model T

e Reward function R
e Statespaces € &
e Action space a €

Transition Matrix

S1 S S3

S1 03 0O 0.7
S5 0.3 0.3 0.2
S3 0.2 04 0.1

formaance of rats. Unmiv, Calif. Pubdl. Psychol., 1928, 4, p, 20

Fie,
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Two-step task

* Two-stage decision-making task used to distinguish
model-free vs. model-based learning

 Rewards of second-stage options changed slowly
following a random walk

Daw et al., (2011)
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Daw et al., (2011)

Two-step task

* Two-stage decision-making task used to distinguish
model-free vs. model-based learning

 Rewards of second-stage options changed slowly
following a random walk

* (model-free) RL predictions A reinforcement B model-based C data
1
depend solely on reward 8 commor
r

e Model-based RL uses the
transition structure

stay probability
-
N
(&)

* Data SuggeStS a mixture of both 05 rewarded unrewarded rewarded unrewarded rewarded unrewarded
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Hierarchy of learning;

* Value-free habit: deploy a cached policy by
repeating actions performed in the past

(Thomdike, 1932: Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)

Cached Value
- . ‘
 Value-based habit: use a cached action Value
value for more flexibility Value-based Habit
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019) Cached
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Wu, Veléz, & Cushman (2022)

Model-based planning can inform model-free learning

Hierarchy of learning;

Model

Planning

* Value-free habit: deploy a cached policy by

repeating actions performed in the past

(Thomdike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020) Cached Value

e Value-based habit: use a cached action

value for more flexibility Value-based Habit
(Botvinick & Weinstein, 2014, Keramati et al., 2016; Maisto et al., 2019) Cached
Policy
 Model-based planning: Select actions ¢
expected to produced the best outcomes e es Hebit b

based on our model of the world

(K. J. Miller et al., 2017: Vikbladh et al., 2019)
' Outcome |

Decision-Making




Wu, Veléz, & Cushman (2022)

Model-based planning can inform model-free learning

Hierarchy of learning;

Model

Planning

* Value-free habit: deploy a cached policy by
repeating actions performed in the past

(Thomdike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020) Cached Value

e Value-based habit: use a cached action

value for more flexibility Value-based Habit
(Botvinick & Weinstein, 2014, Keramati et al., 2016; Maisto et al., 2019) Cached
Policy
 Model-based planning: Select actions ¢
expected to produced the best outcomes e es Hebit b

based on our model of the world

(K. J. Miller et al., 2017: Vikbladh et al., 2019)
' Outcome |

Model-based planning builds better habits!

Decision-Making
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Sutton (1990)

Simulating experiences with DYNA

® \odels of the environment can be used for planning .
. model » policy
planning
® ... butthey can also be used to simulate model - Simulated DK values ~ policy
experiences, to leamn better values and policies
// \\
P/olicy/value funct\ions
® DYNA uses simulated experiences to update our planning update
policy/value functions, just like real experiences direct RL simulated
update experience
(  real A
\_experience o search
learning control
Model

[Environment]
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Simulating experiences with DYNA

Sutton (1990)

® \odels of the environment can be used for planning .
. model » policy
planning
® ... butthey can also be used to simulate model - Simulated DK values ~ policy
experiences, to leamn better values and policies
// \\
P/olicy/value funct\ions
® DYNA uses simulated experiences to update our planning update
policy/value functions, just like real experiences direct RL simulated
update experience
 real A
\.experience o sea:chl
. , : i contro
® [hese simulations can be controlled to various gaming
degrees (e.9., priortized sweeps) Model

[Environment]
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Model-free vs. Model-based summary

e Computationally cheap to use model-free leaming

® \aps onto habits and S-R leaming

® Costly but potentially more impactiful to use model-based leaming
® \aps onto goal-directed and S-S learning

® Not one or the other, but rather a mixture of both

® |\lodel-based learning can help train model-free value functions and
policies

® [hrough experience and through simulation (e.9., DYNA)

® Still an open question how model-based representations are leameo
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1 \\\¢
Further study S\
Sutton & Barto book  (free PDE link)
Great course and python code notebooks by Philipp! _—

https://aithub.com/schwartenbeckph/RL-Course

= code notebooks for using RL models (with a focus on social learning)
https.//cosmos-konstanz.aithub.io/materials/
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http://incompleteideas.net/book/RLbook2020.pdf
https://github.com/schwartenbeckph/RL-Course
https://cosmos-konstanz.github.io/materials
http://incompleteideas.net/book/RLbook2020.pdf
https://github.com/schwartenbeckph/RL-Course
https://cosmos-konstanz.github.io/materials

Next week

Neural Basis of Reinforcement
Learning and Decision

Making

Daeyeol Lee,'* Hyojung Seo,' and Min Whan Jung’
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DLPFC

= Before
—  After

0.0
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o

Confederate weighting (a.u.)
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Discussion questions

® How iImportant are optimal policies and optimal value functions” People
seem to use “‘good enough” solutions, so how are those computed”

® || model-based learning influences modadel-tfree representations, Is the
reverse also true” Do model-free characteristics also influence model-

pased leaming’”

® Could only partial use of model-based RL in the 2-step task be showing
cognitive constraints on fully leveraging model-based representations” Are
there other contexts where we can be more or less model-based”
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