

Intro to Reinforcement Learning

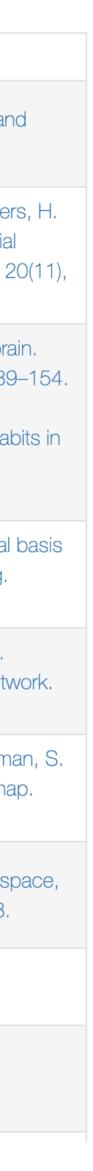
Cognitive Maps Seminar Nov 2nd, 2022

Location changes

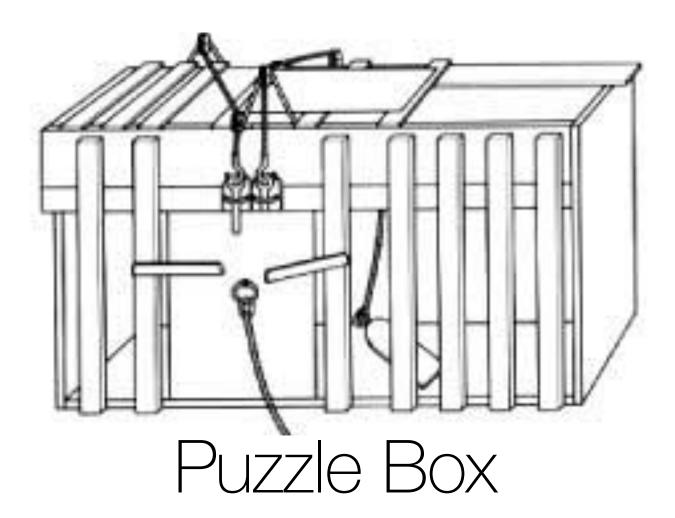
- We will use the ground floor seminar whenever possible
- It is bigger and has ventilation
- Check the schedule on the course website for the most up-to-date info

https://hmc-lab.com/Cogmaps.html

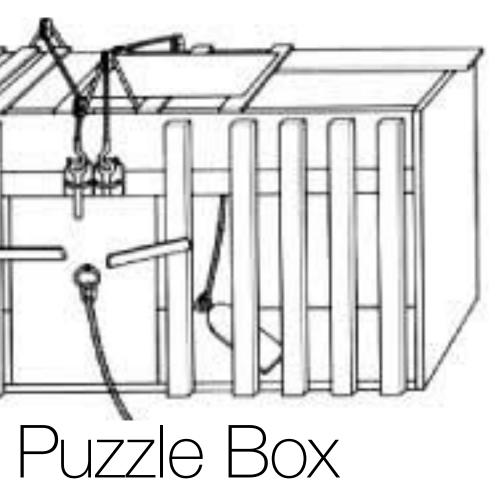
Date	Location	Host	Торіс	Required Readings
19. Oct 2022	4th floor	Charley	Introduction to cognitive maps (slides)	Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189.
26. Oct 2022	4th floor	Philipp	What is a cognitive map? An overview of modern neuroscientific discoveries (slides)	Epstein, R. A., Patai, E. Z., Julian, J. B., & Spier J. (2017). The cognitive map in humans: spatial navigation and beyond. Nature neuroscience, 2 1504-1513.
2. Nov 2022	Ground floor	Charley	Introduction to Reinforcement Learning	Niv, Y. (2009). Reinforcement learning in the brack Journal of Mathematical Psychology, 53(3), 139 [Section 1 only] Dolan, R. J., & Dayan, P. (2013). Goals and halo the brain. Neuron, 80(2), 312–325. [Focus on generation 3]
9. Nov 2022	4th floor	Philipp	Neuroscience of RL	Lee, D., Seo, H., & Jung, M. W. (2012). Neural of reinforcement learning and decision making. Annual review of neuroscience, 35, 287.
16. Nov 2022	Ground floor	Nir Moneta (MPI Berlin)	Cognitive maps beyond spatial stimuli	Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory netw Nature, 463(7281), 657-661.
23. Nov 2022	Ground floor	Noémi	From maps to behavior and back again	Stachenfeld, K. L., Botvinick, M. M., & Gershma J. (2017). The hippocampus as a predictive ma Nature neuroscience, 20(11), 1643-1653.
30. Nov 2022	Ground floor	Georgy Antonov (MPI BC)	Linking memory and navigation	Eichenbaum, H. (2017). On the integration of sp time, and memory. Neuron, 95(5), 1007-1018.
7. Dec 2022	4th floor	Philipp	Student led presentation	See list of recommended papers
14. Dec 2022	Ground floor	Philipp	Student led presentation 2	



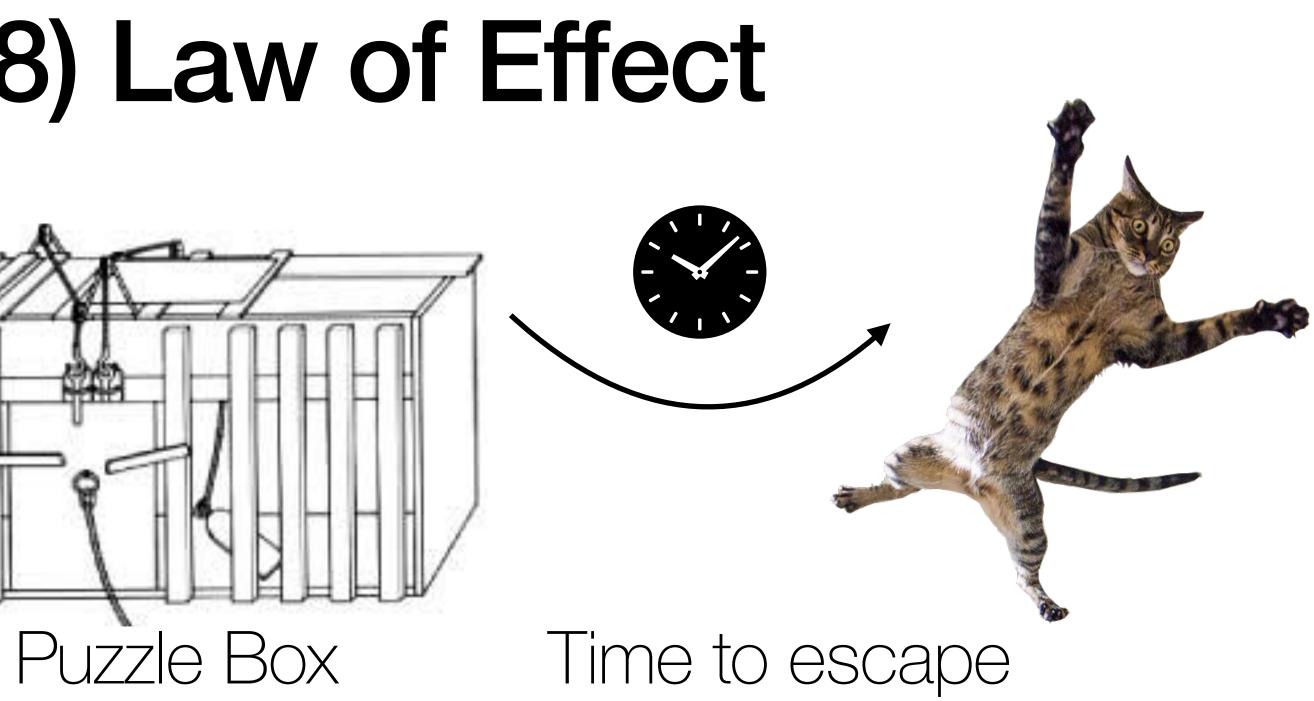
The story so far ...



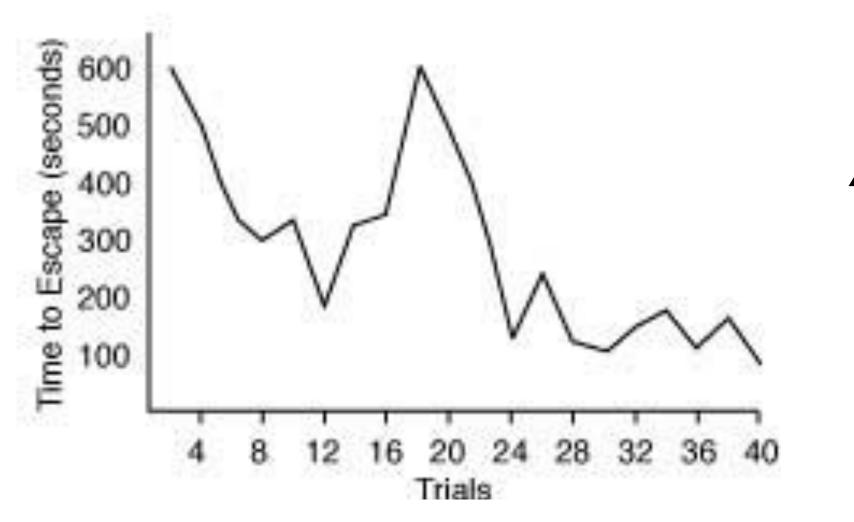
Cat

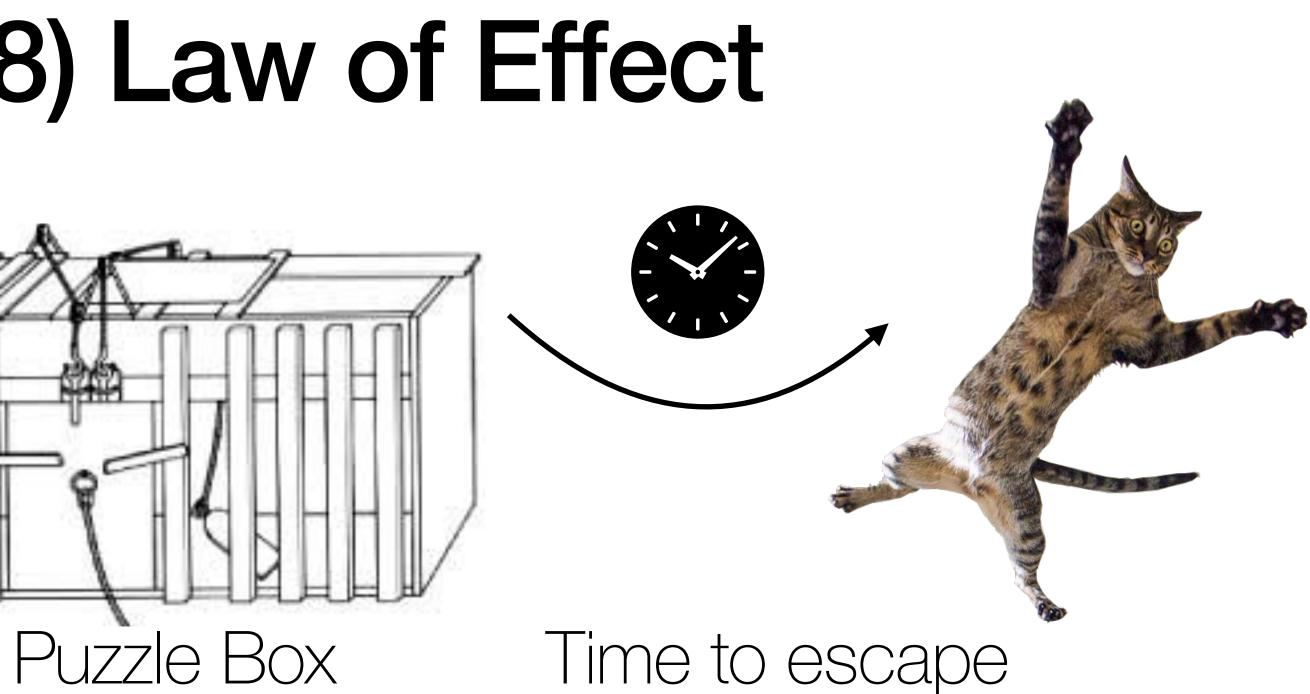


Cat



Cat





Actions associated with satisfaction are strengthened, while those associated with discomfort become weakened.

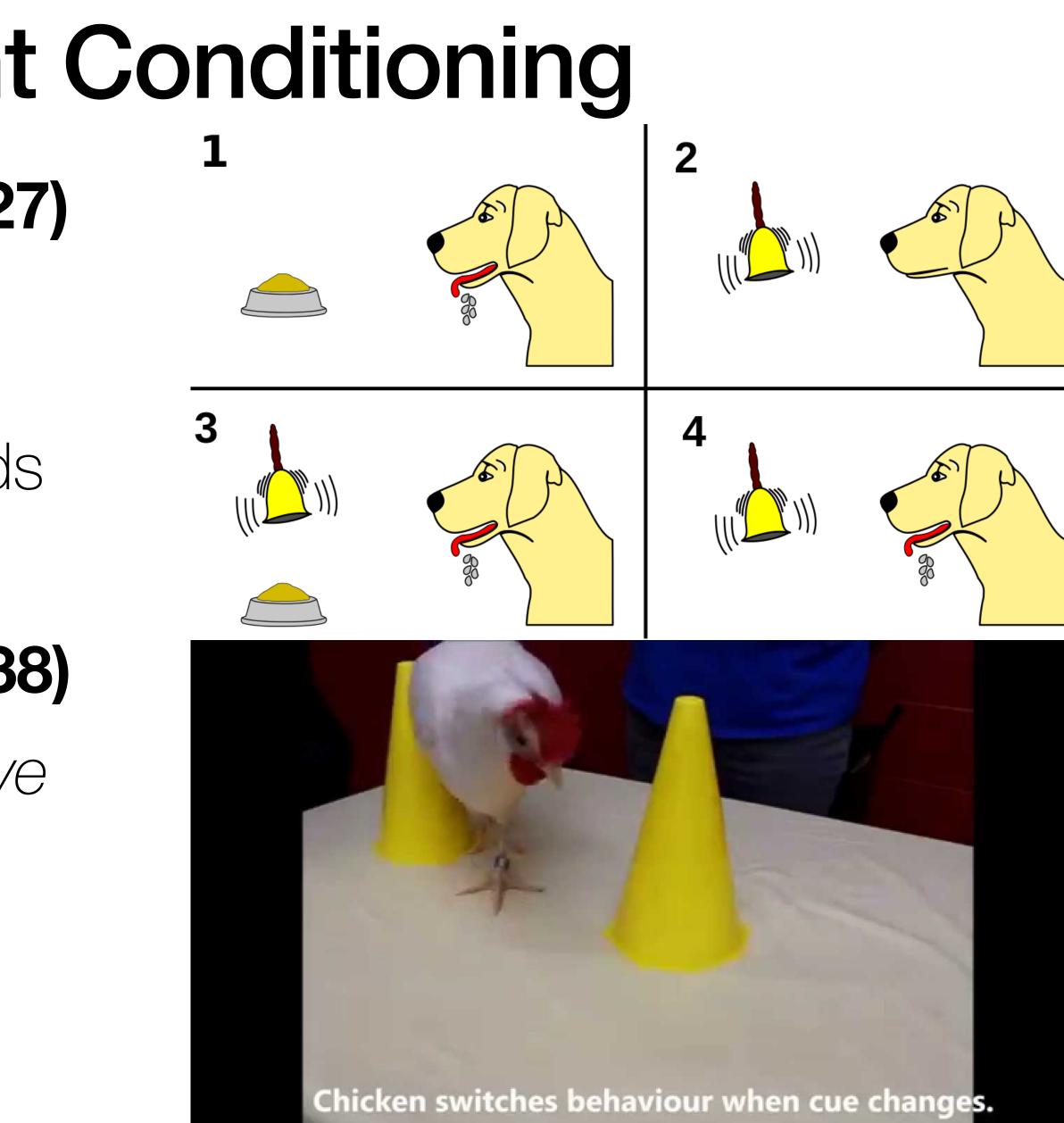
Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

Learning as the *passive* coupling of stimulus (bell ringing) and response (salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Learning as the *active* shaping of behavior in response to rewards or punishments



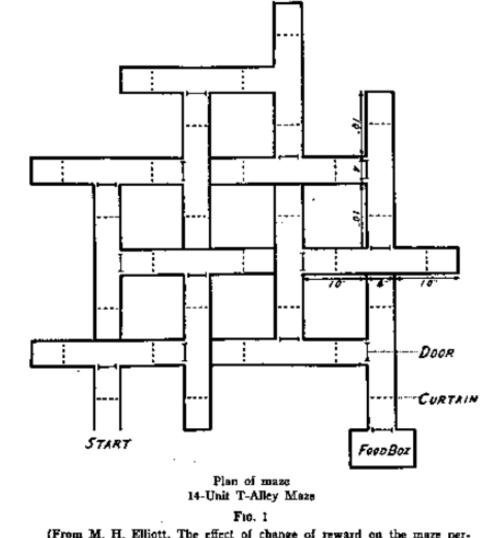
Tolman and Cognitive maps

- signals to outgoing responses (S-R Learning)
- Rather, "latent learning" establishes something like a "field map of the environment" gets etablished (S-S learning)

Stimulus-Response (S-R) Learning

• Learning is not just a telephone switchboard connecting incoming sensory

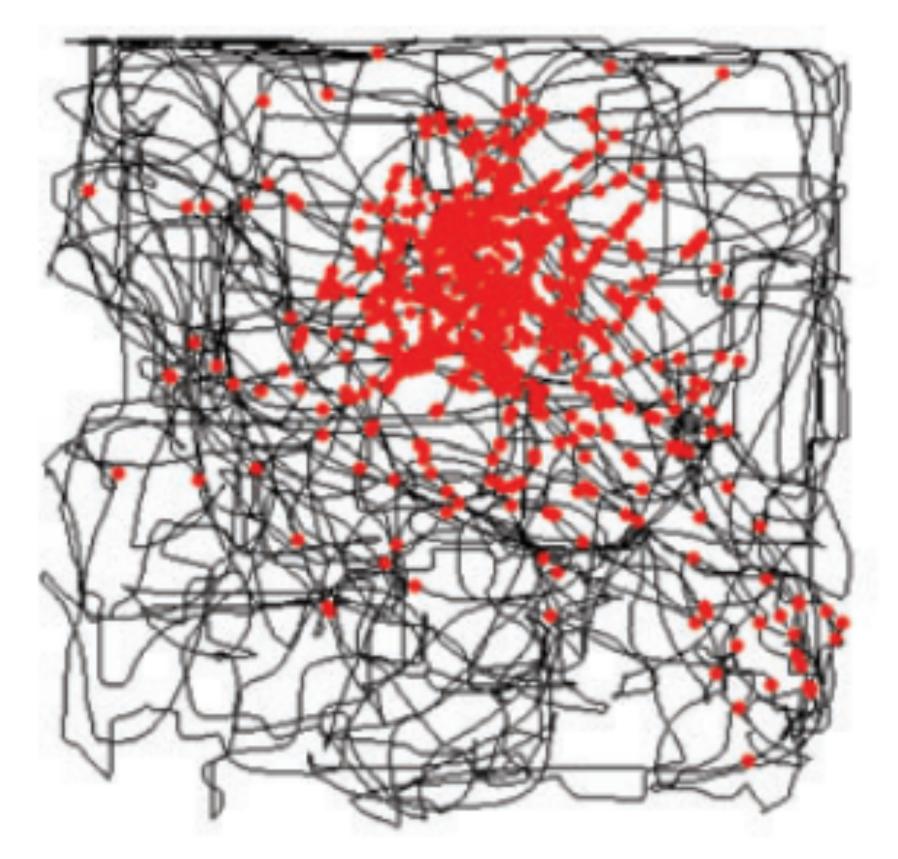
Stimulus-Stimulus (S-S) Learning



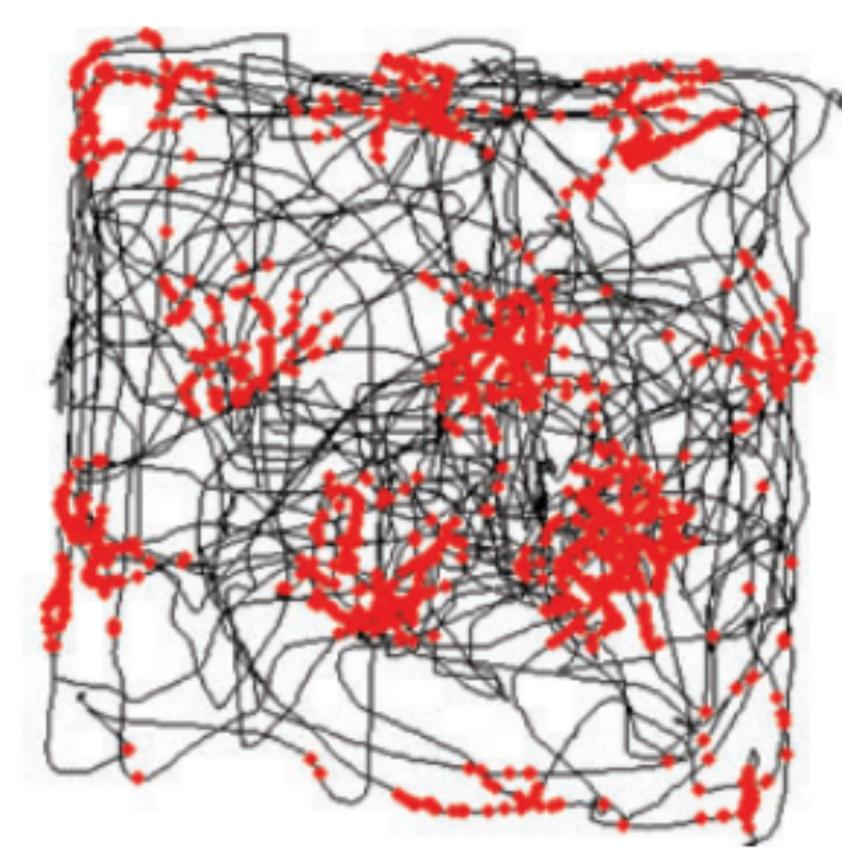
(From M, H, Elliott, The effect of change of reward on the mare performance of rats. Univ. Calif. Publ. Psychol., 1928, 4, p. 20.)

Cognitive maps in biological brains

Place cells in the hippocampus

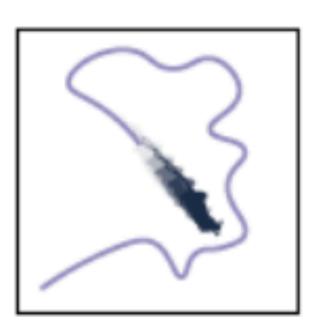


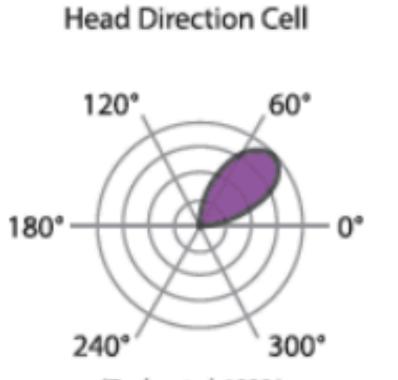
Grid cells in the medial entorhinal cortex

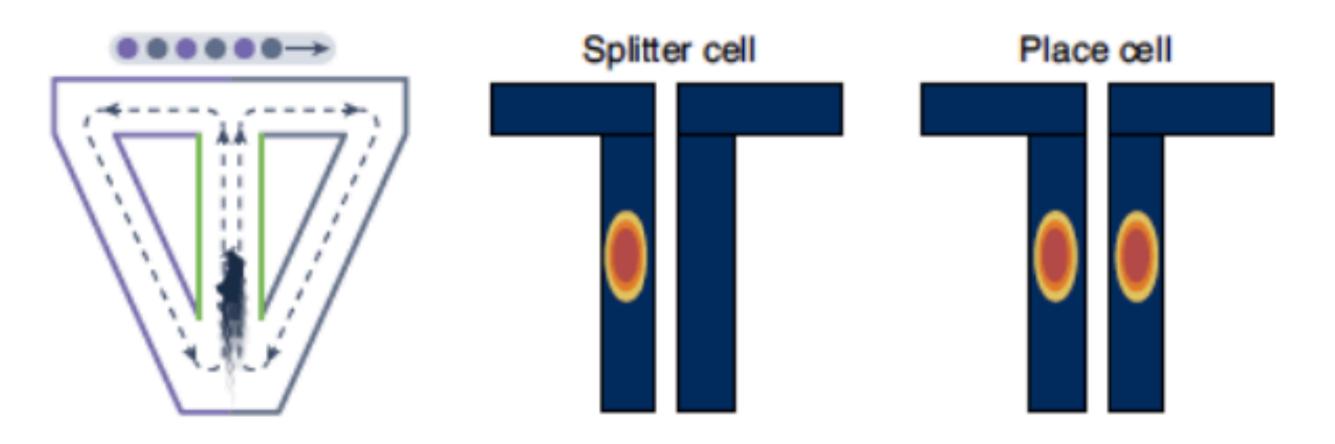


Moser et al., (Ann Rev Neuro 2008)

"Hippocampal zoo"

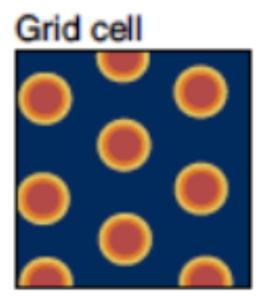






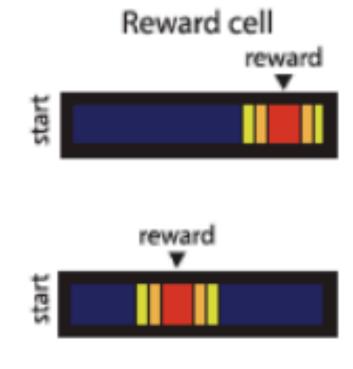
Place cell

Border cell



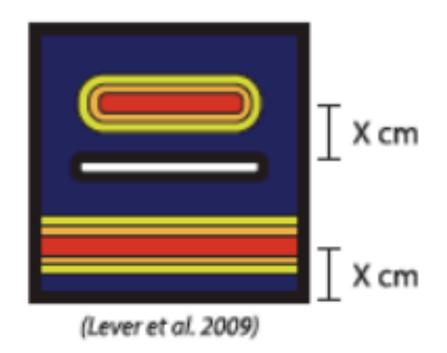
Object-vector cell

(Taube et al. 1990)



(Gauthier & Tank 2018)

Boundary Vector Cell



Behrens et al., (Neuron 2018) Whittington et al,. (Nat Neuro 2022)

Cognitive maps support navigation and planning

New goal

Entorhinal cortex Euclidian

Decision point

Hippocampus Hippocampus Path distance & goal direction No. of connected streets

New street entry

Travel

Hippocampus Path distance

Agenda for today: From Tolman to Reinforcement Learning

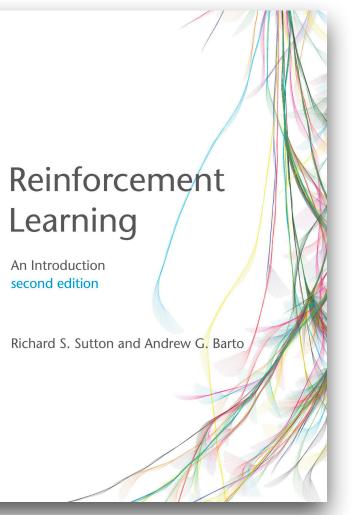
• Part 2: Model-free vs. model-based RL (Dolan & Dayan, 2013)

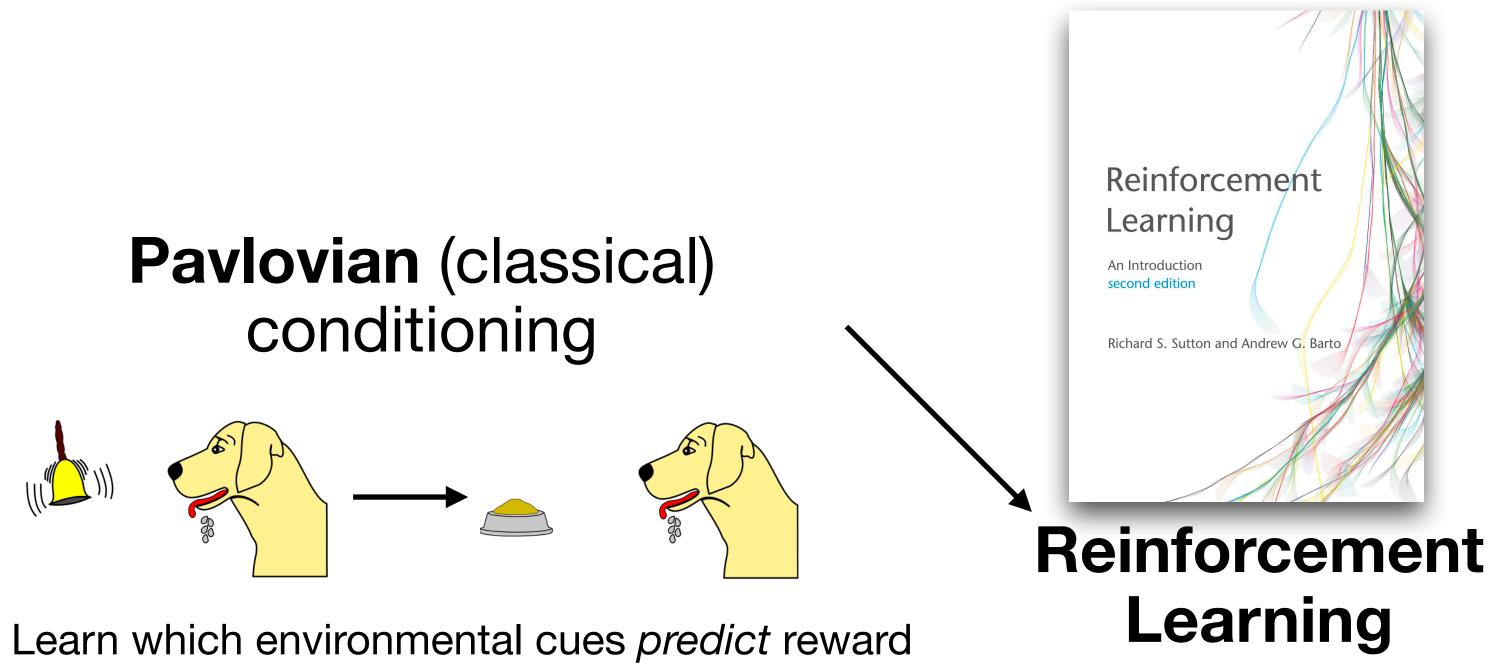
• **Part 1**: Introduce RL framework, origins, and terminology (Niv, 2009)

Learning

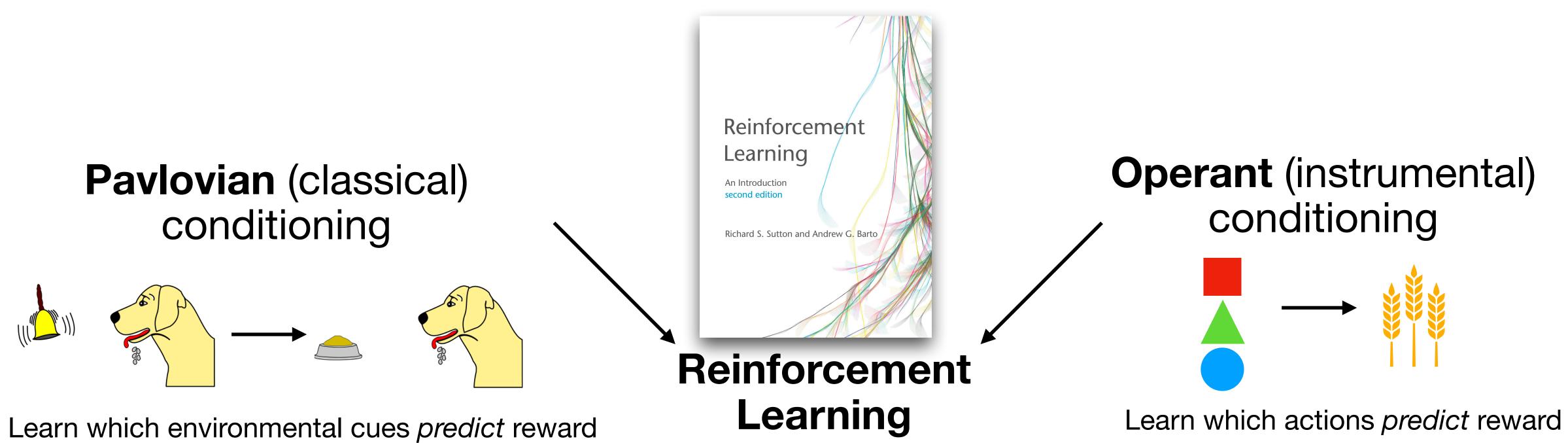
An Introduction second edition

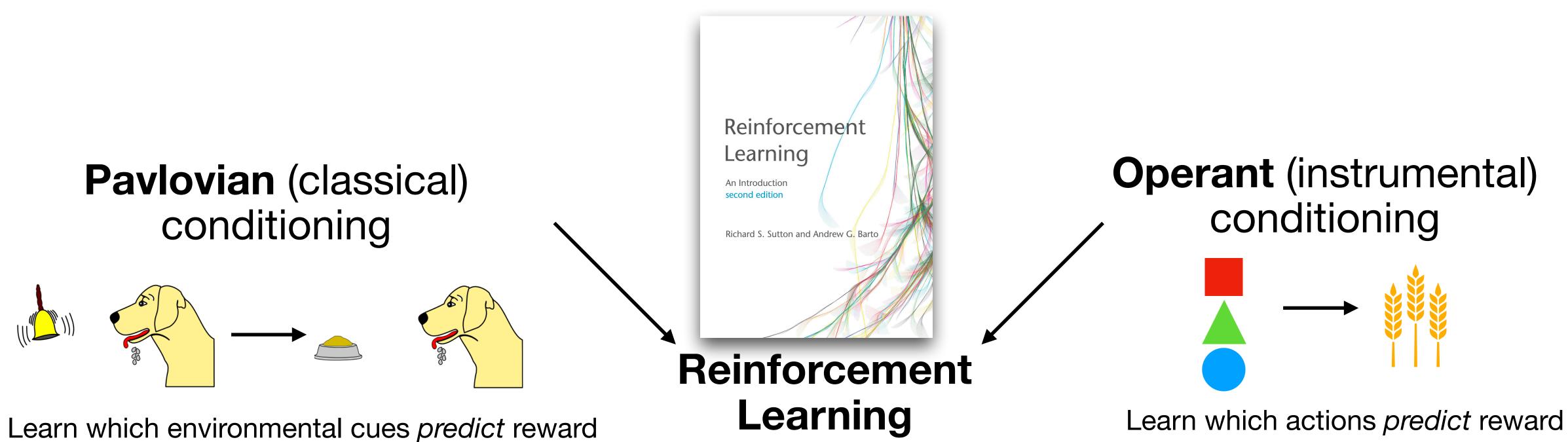
Reinforcement Learning





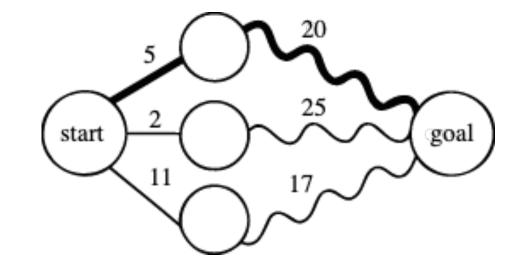
Learning





Neuro-dynamic programing Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

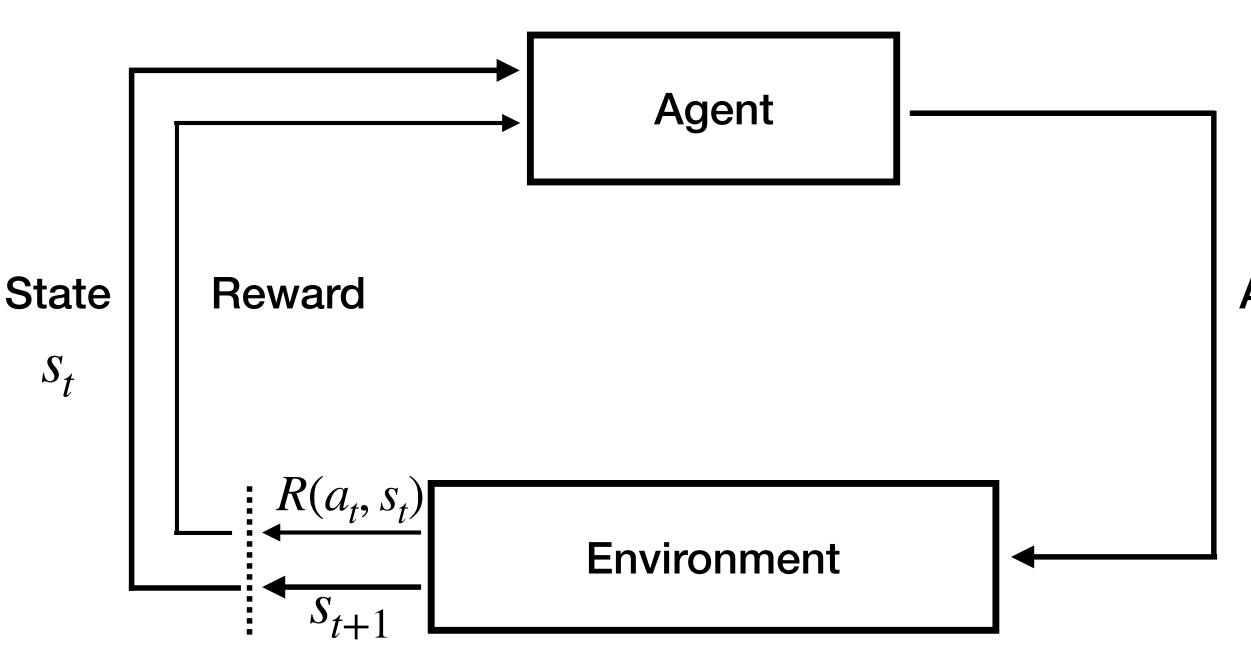


Reinforcement Learning The Agent:

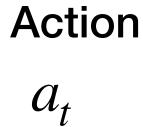
- Iteratively selects actions a_t
- Receives feedback from the environment in terms of new states S_{t+1} and rewards $R(a_t, s_t)$
- Updates internal representations

The Environment:

- governs the transition between states $s_t \rightarrow s_{t+1}$
- provides rewards $R(a_t, s_t)$



Sutton and Barto (2018 [1998])



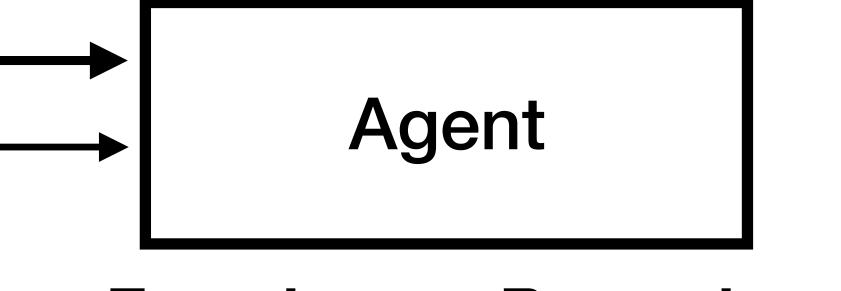
Action

 a_t

• Experiences Rewards

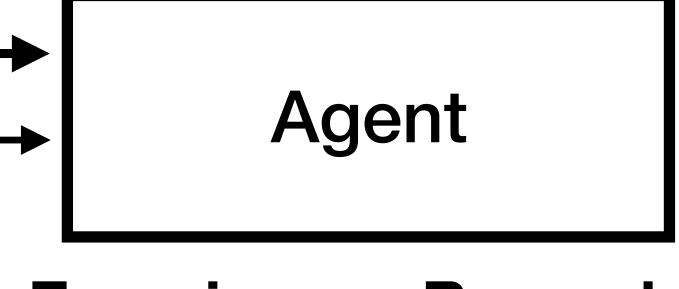
Action

 a_t

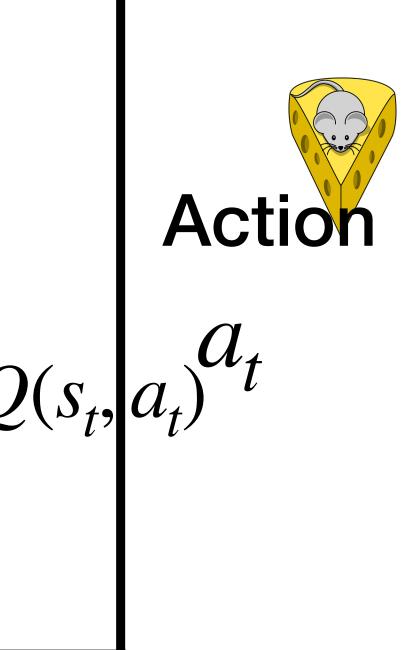


- Experiences Rewards
 - How good is a given state? $V(s_t)$

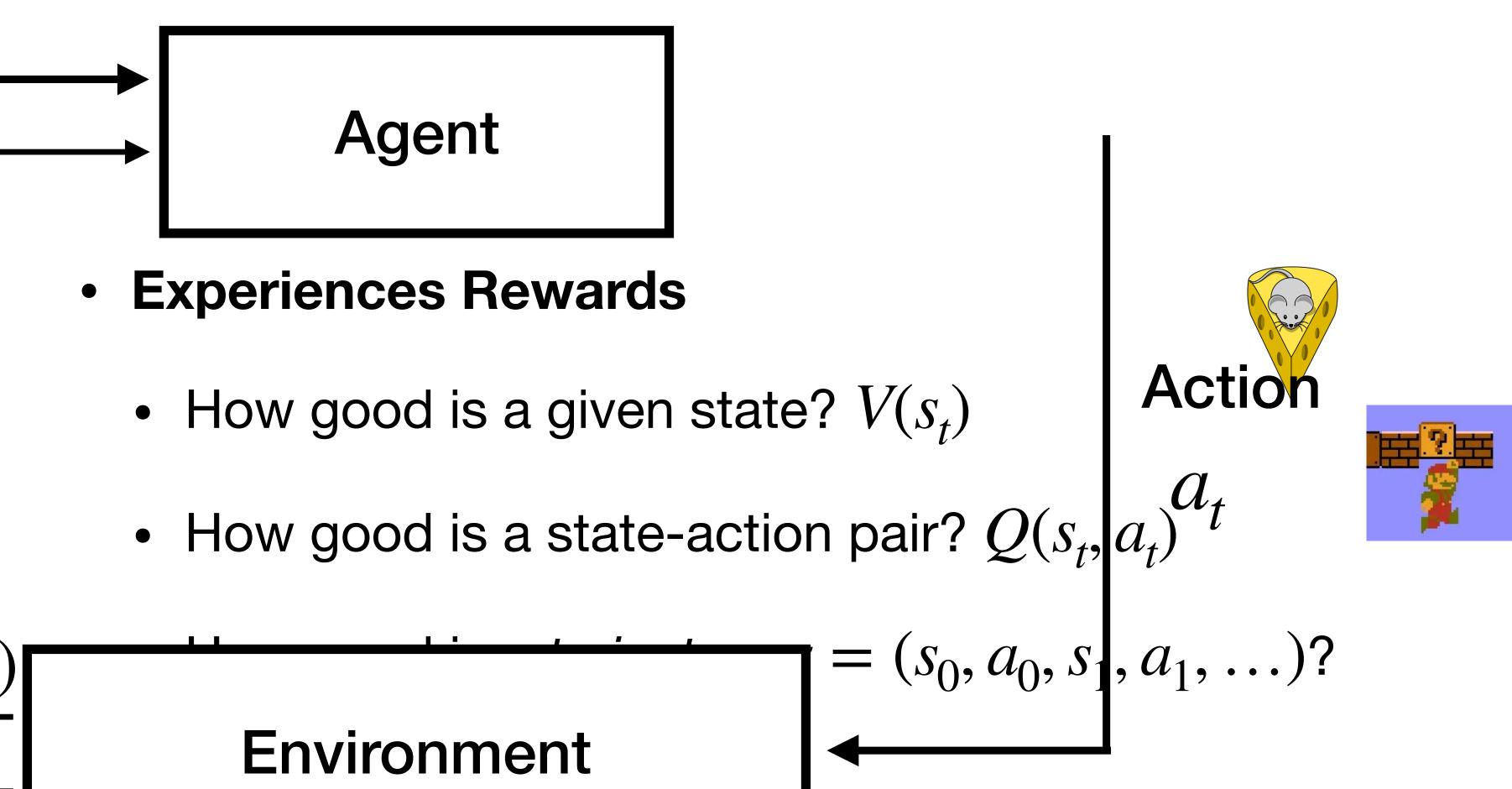
 a_t

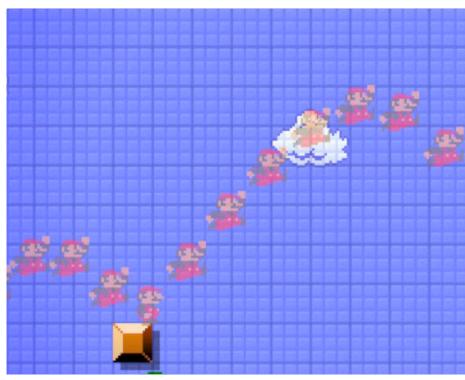


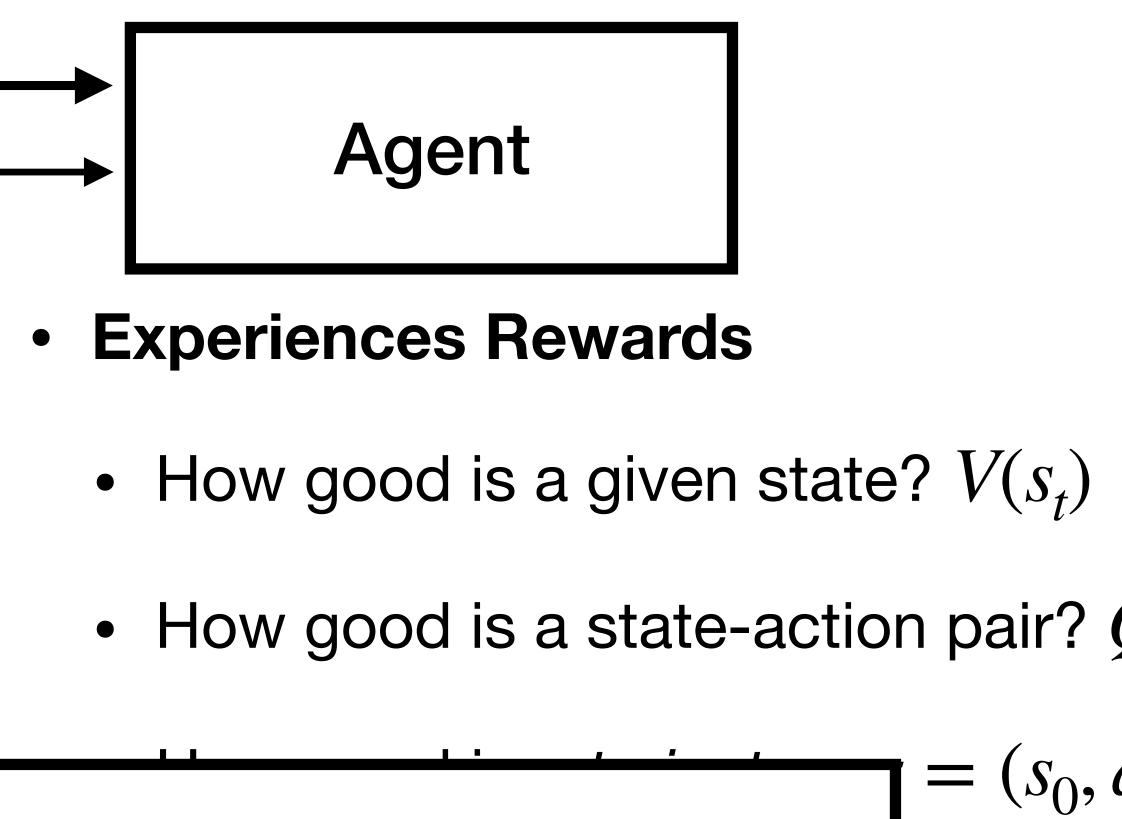
- Experiences Rewards
 - How good is a given state? $V(s_t)$
 - How good is a state-action pair? $Q(s_t, a_t)^{a_t}$







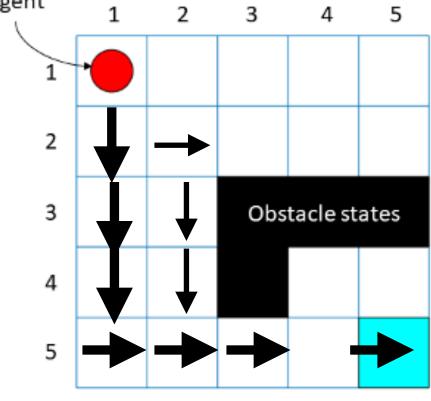




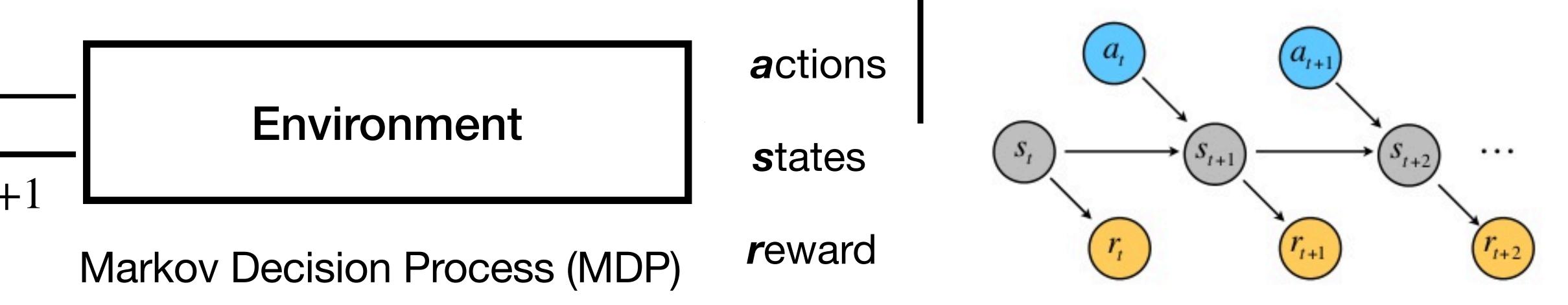
- π defines how to act, where $\pi(a \mid s)$ is the probability of selecting action *a* in state *s*
- sample actions from the policy $a_t \sim \pi$

$$Q(s_t, a_t)^{a_t}$$

$$a_0, s_1, a_1, \ldots)?$$



Grid World



previous state (i.e., Markov Principle): $P(s_{t+1} | s_t, a_t)$

Simplifying assumption that the system is fully defined by only the

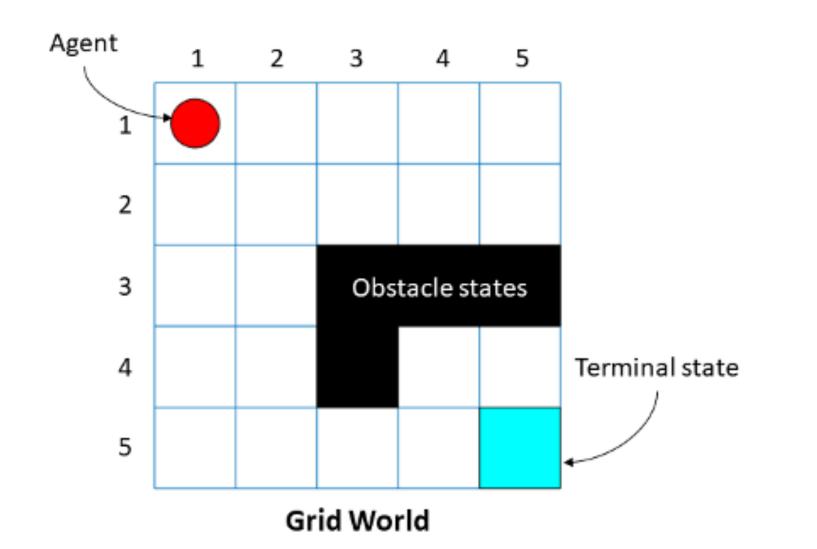
Markov Decision Process (MDP)

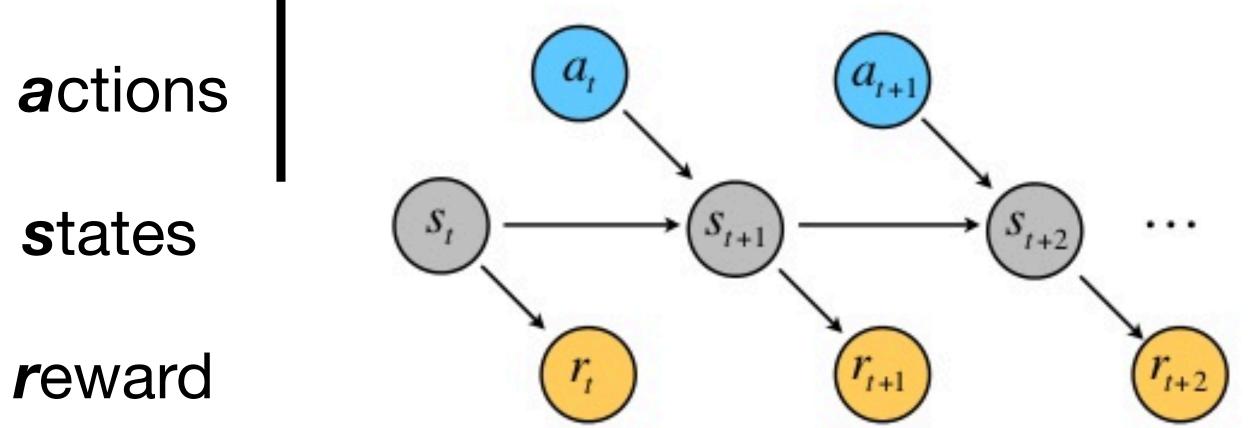
lacksquareprevious state (i.e., Markov Principle): $P(s_{t+1} | s_t, a_t)$

What are the states?

+1

• Discrete locations, pixels on a screen, a set of feature values, etc...





Simplifying assumption that the system is fully defined by only the

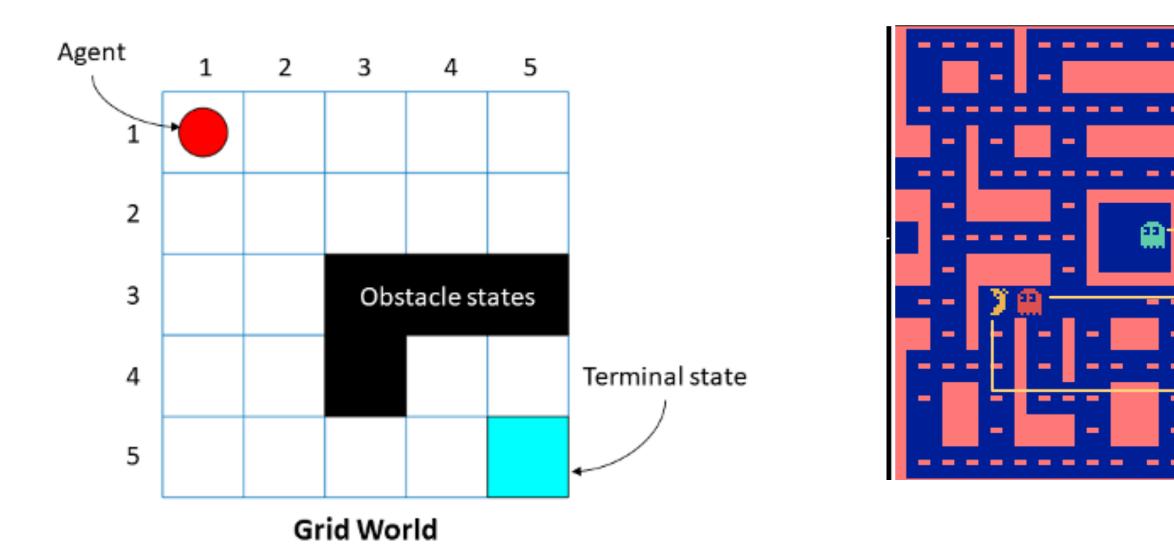
Markov Decision Process (MDP)

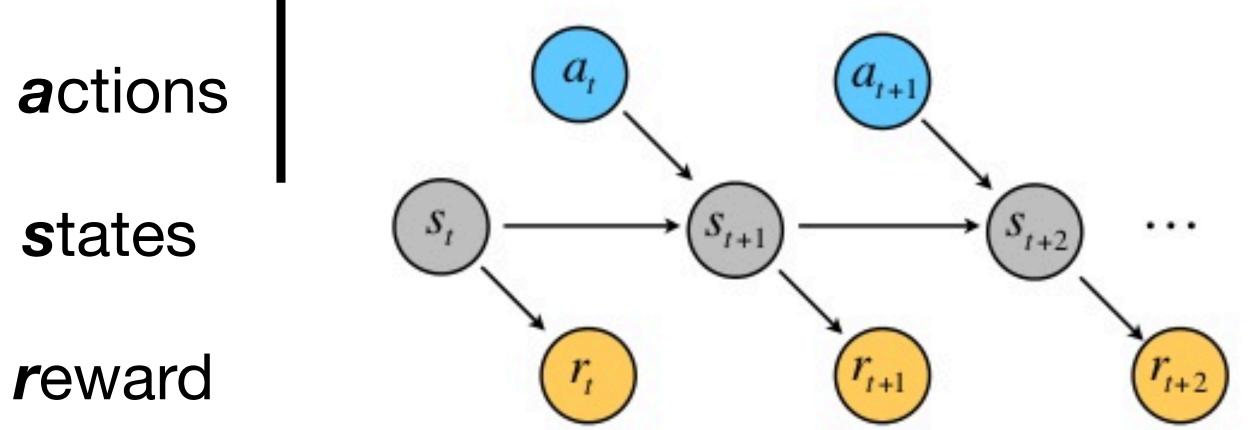
• Simplifying assumption that the system is fully defined by only the previous state (i.e., Markov Principle): $P(s_{t+1} | s_t, a_t)$

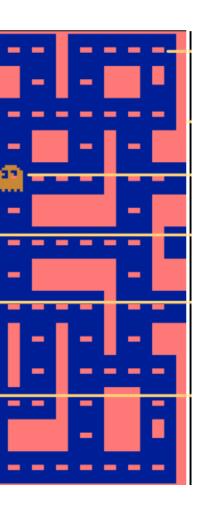
What are the states?

+1

• Discrete locations, pixels on a screen, a set of feature values, etc...







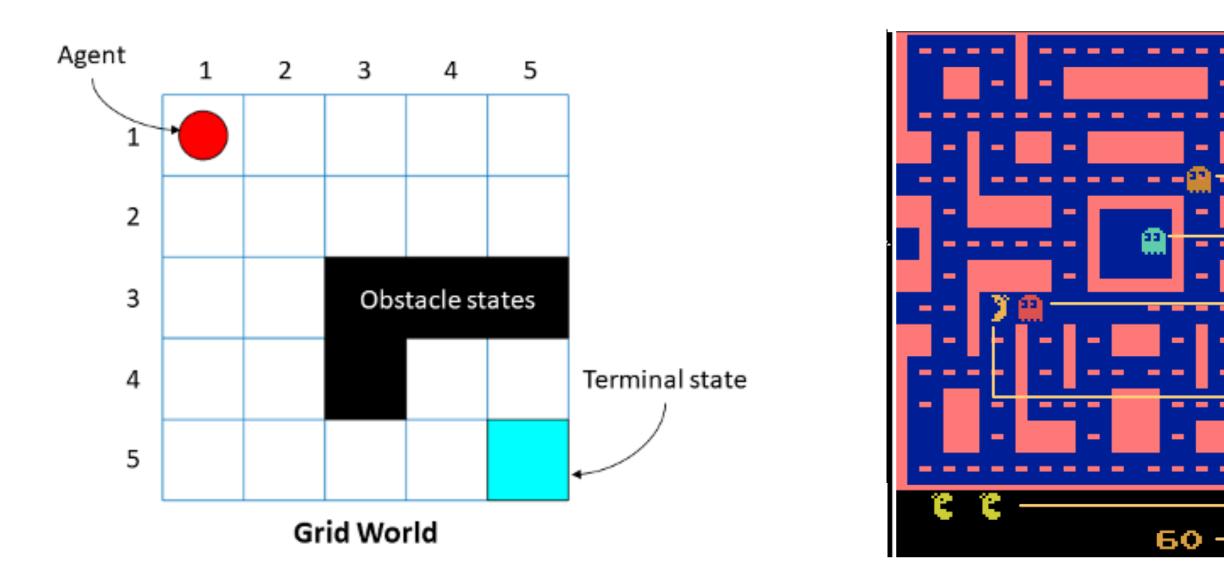
Markov Decision Process (MDP)

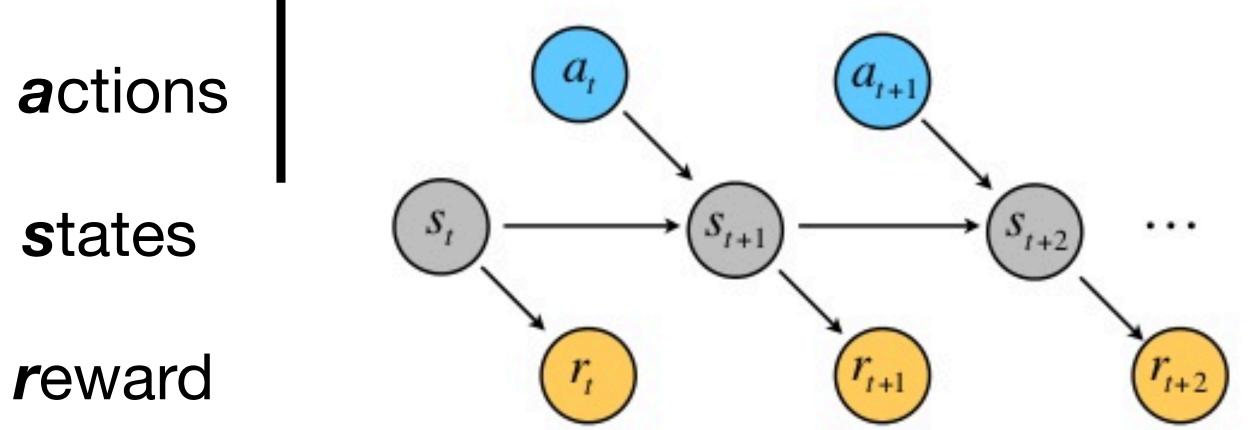
• Simplifying assumption that the system is fully defined by only the previous state (i.e., Markov Principle): $P(s_{t+1} | s_t, a_t)$

What are the states?

+1

• Discrete locations, pixels on a screen, a set of feature values, etc...





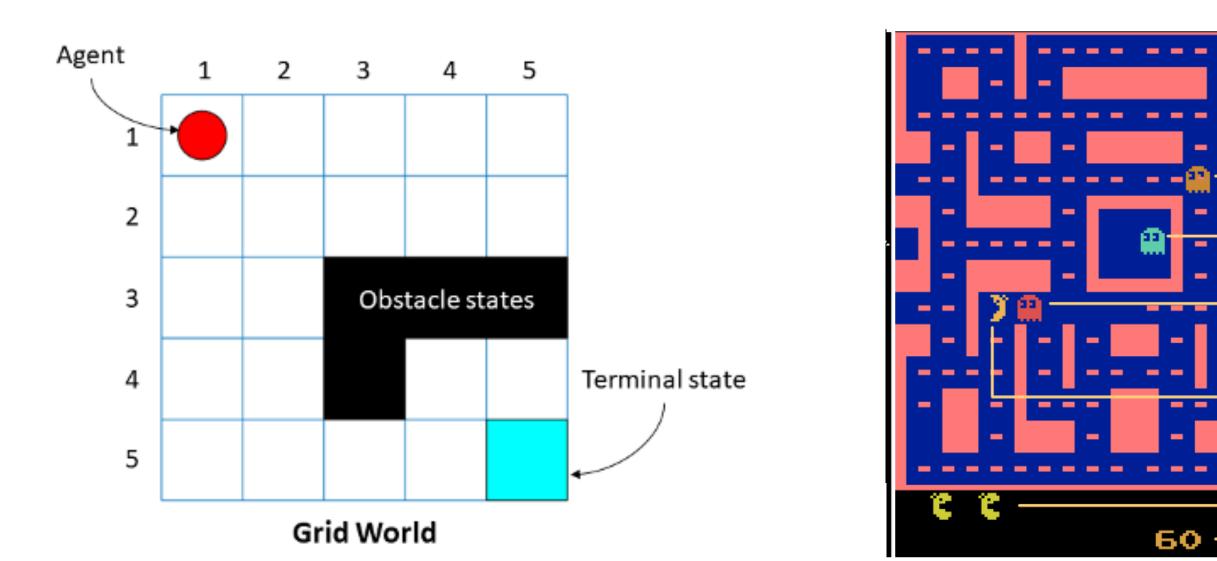
Markov Decision Process (MDP)

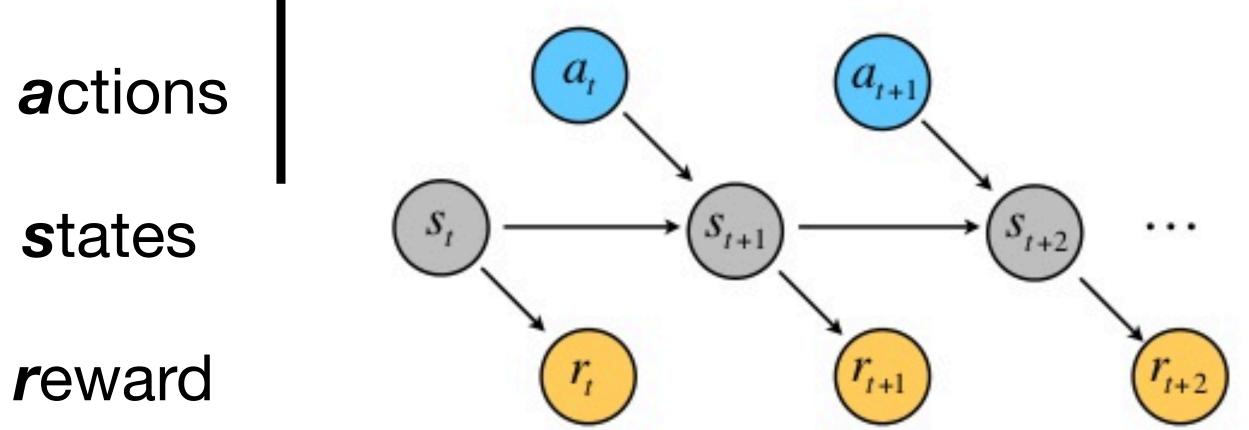
 Simplifying assumption that the system is fully defined by only the previous state (i.e., Markov Principle): $P(s_{t+1} | s_t, a_t)$

What are the states?

+1

• Discrete locations, pixels on a screen, a set of feature values, etc...







Normative vs. Descriptive RL as a **normative** framework: RL as a **descriptive** framework:

- How should a rational agent behave when learning from the environment?
- Which learning mechanisms and which policies lead to better outcomes?

- How does an agent update
 beliefs and select actions when
 learning from the environment?
- Which learning mechanisms and which policies provide better descriptions of behavior

Computational

Algorithmic

Implementation

Computational

What is the goal of the system? How does it behave?

Algorithmic

Implementation

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

Computational

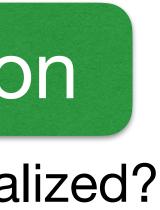
What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?



Flight

Flapping

Feathers

Computational

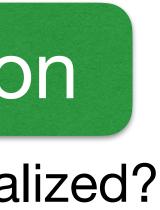
What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?



Flight

Flapping

Feathers

Computational

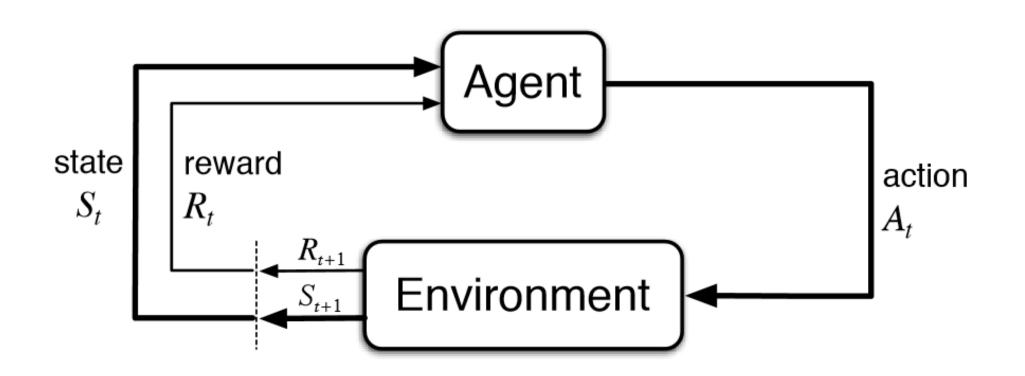
What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?



Marr's Levels of Analysis (1982)

Flight

Flapping

Feathers

Computational

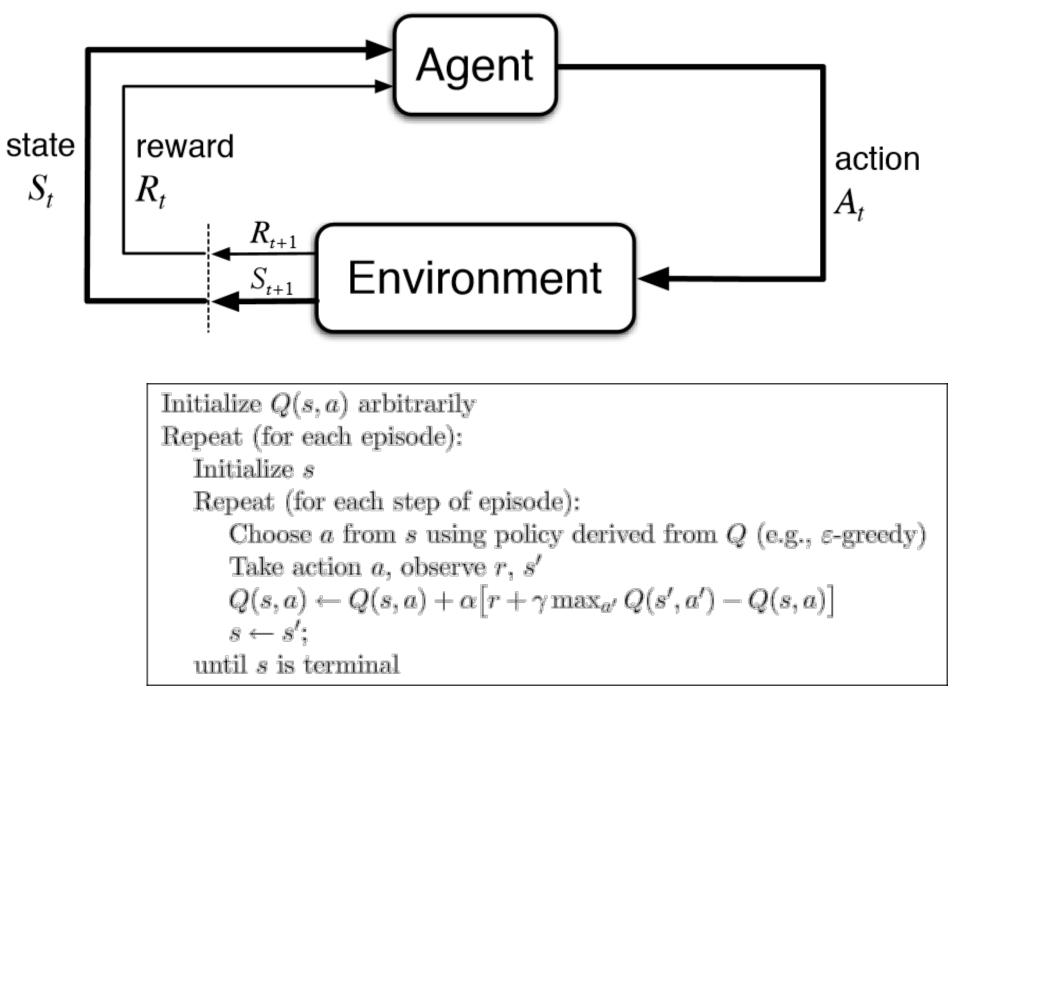
What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

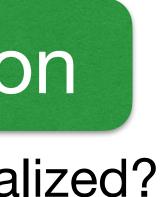
How is the system realized?



Take action a, observe r, s'

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{s'} Q(s', a') - Q(s', a')]$$

$$s \leftarrow s';$$



Marr's Levels of Analysis (1982)

Flight

Flapping

Feathers

Computational

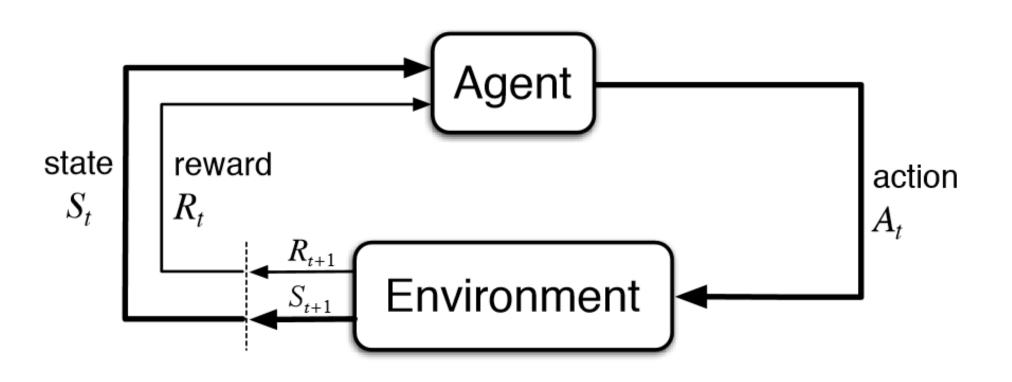
What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

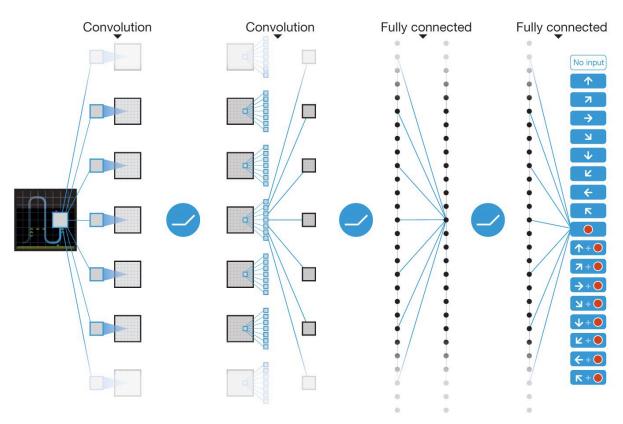


Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize sRepeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s'

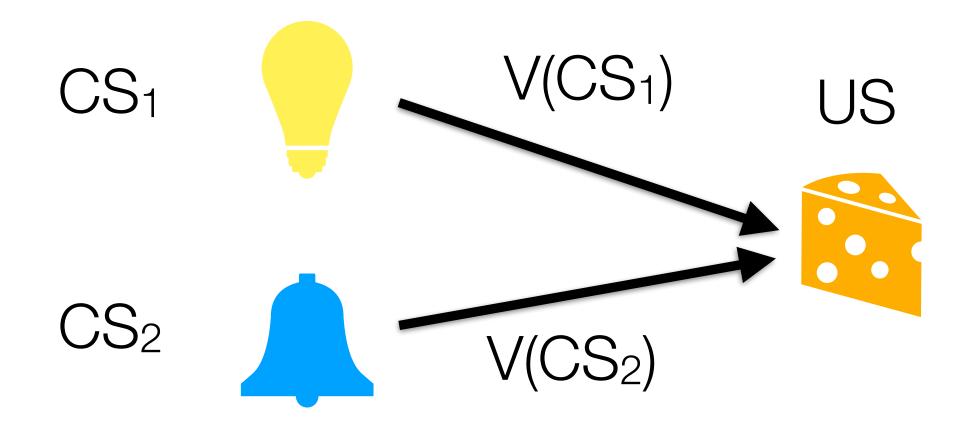
$$Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]$$

until s is terminal



Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

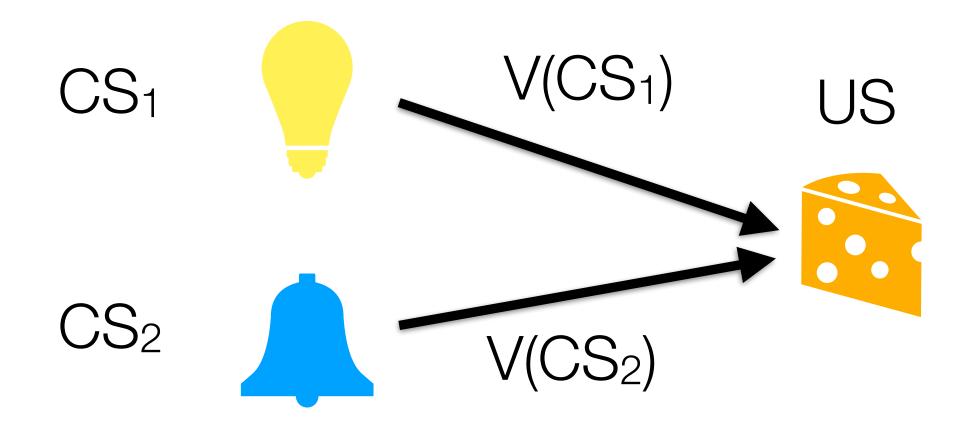
$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$



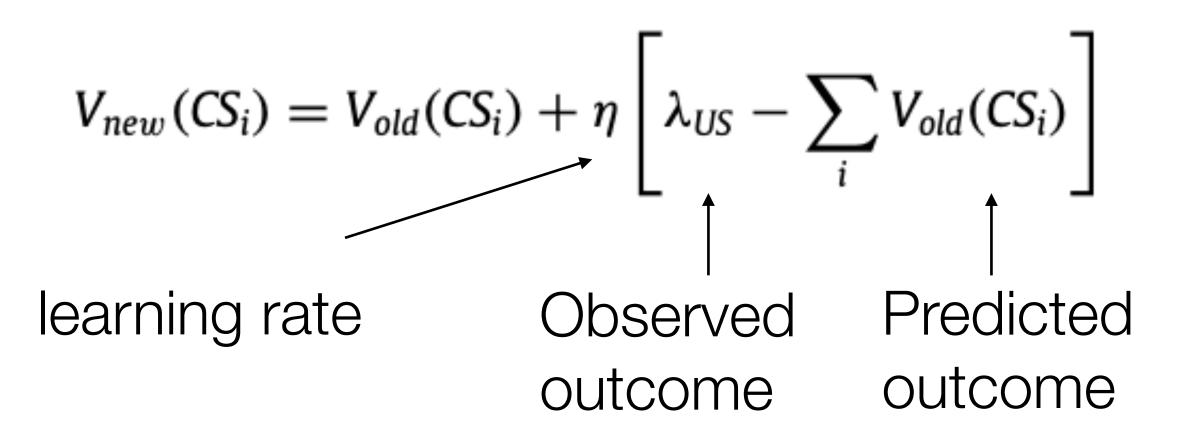
Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

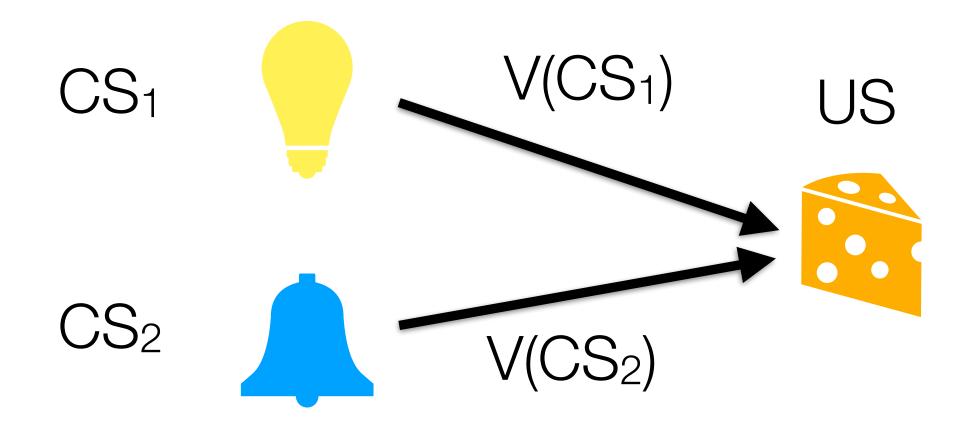
$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$

Observed Predicted
outcome outcome

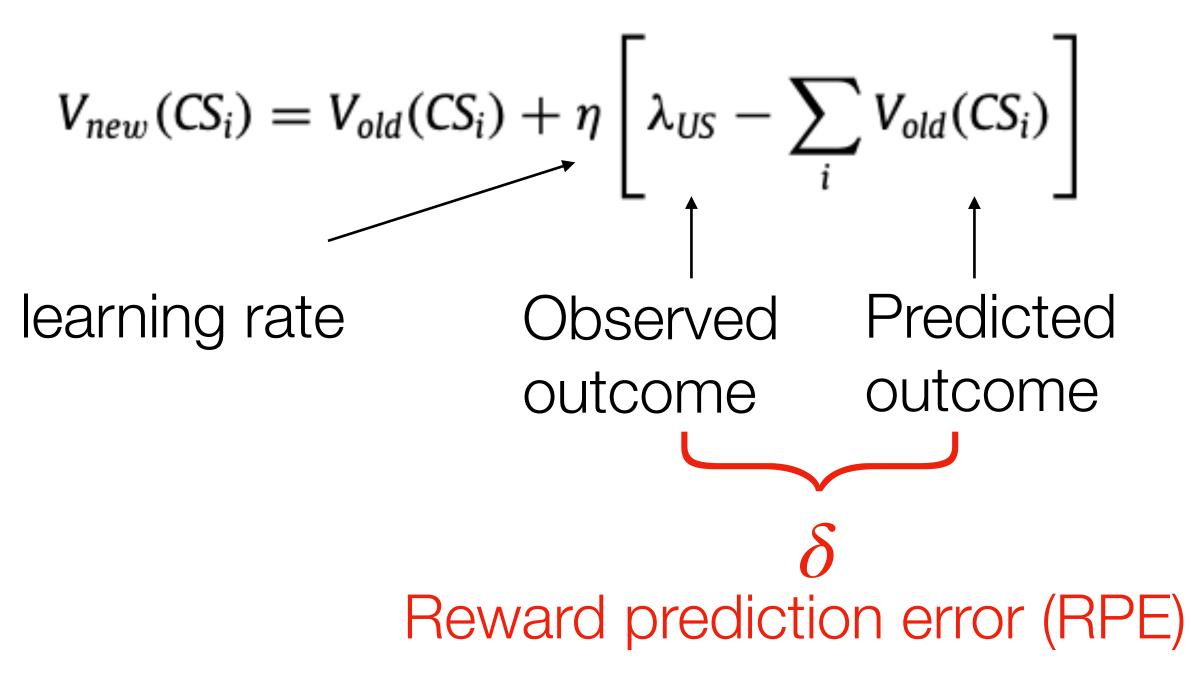


Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)



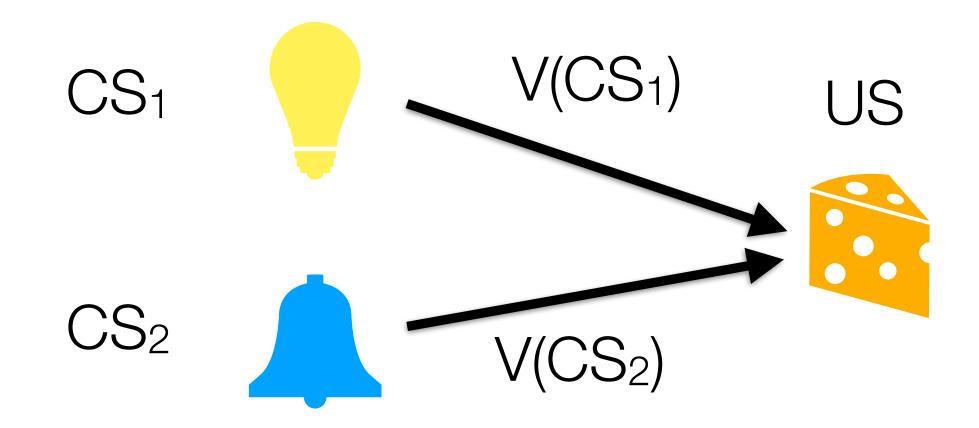


Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)



The delta-rule of learning:

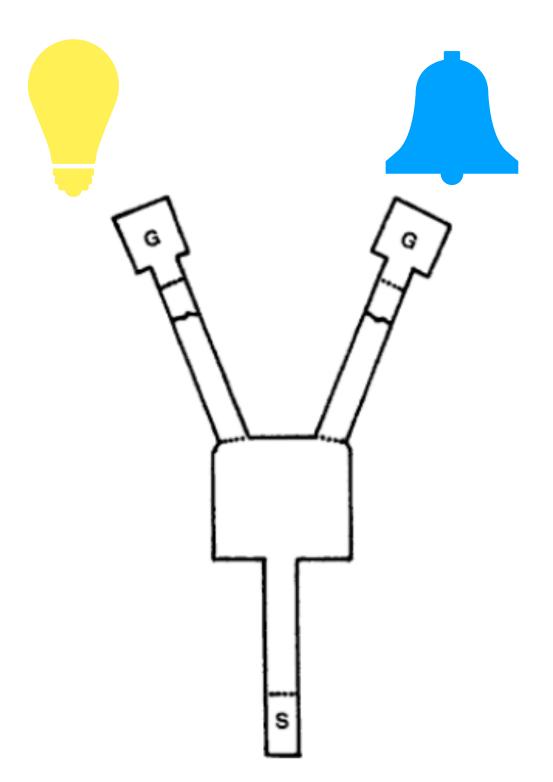
- Learning occurs only when events violate expectations ($\delta \neq 0$)
- The magnitude of the error corresponds to how much we update our beliefs



Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$

Q-learning (Watkins, 1989) Y-maze example



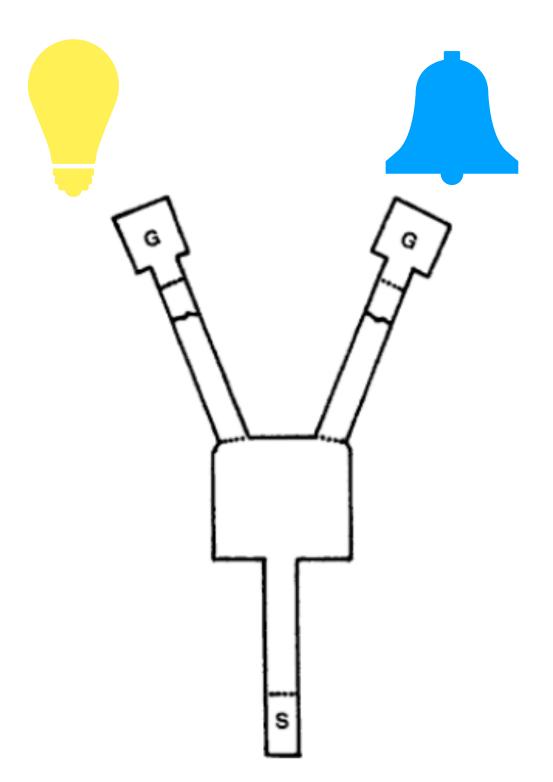
Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$

Q-learning (Watkins, 1989)

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \left[r - Q(s_t, a_t) \right]$

Y-maze example



Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$

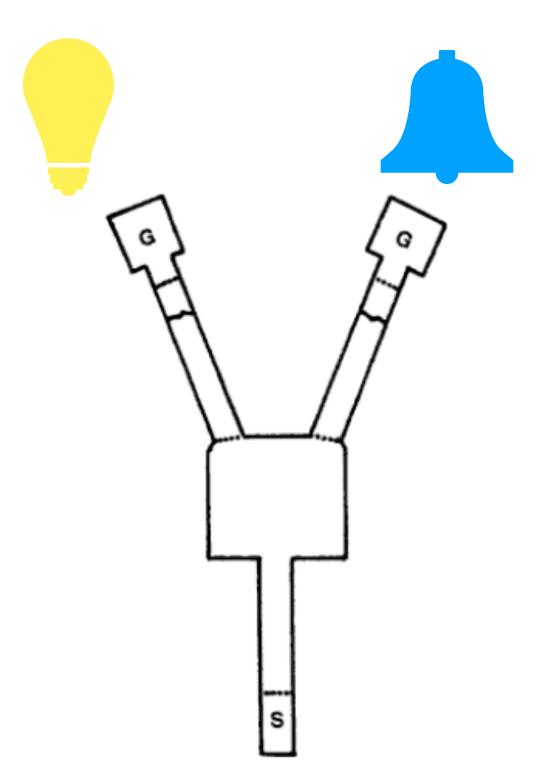
Q-learning (Watkins, 1989)

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \left[r - Q(s_t, a_t) \right]$$

$$\uparrow \qquad \uparrow$$

$$Observed \qquad Predictered areward \qquad reward \qquad rewar$$

Y-maze example



ed

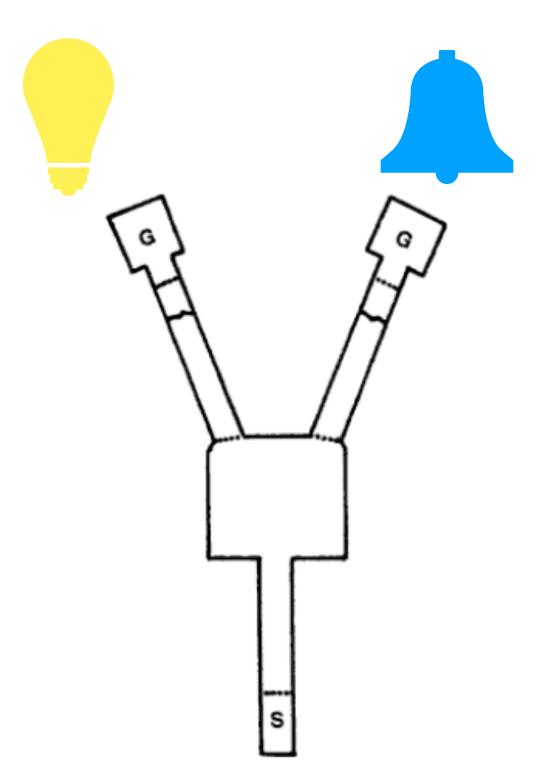
Rescorla-Wagner model (Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

$$V_{new}(CS_i) = V_{old}(CS_i) + \eta \left[\lambda_{US} - \sum_i V_{old}(CS_i) \right]$$

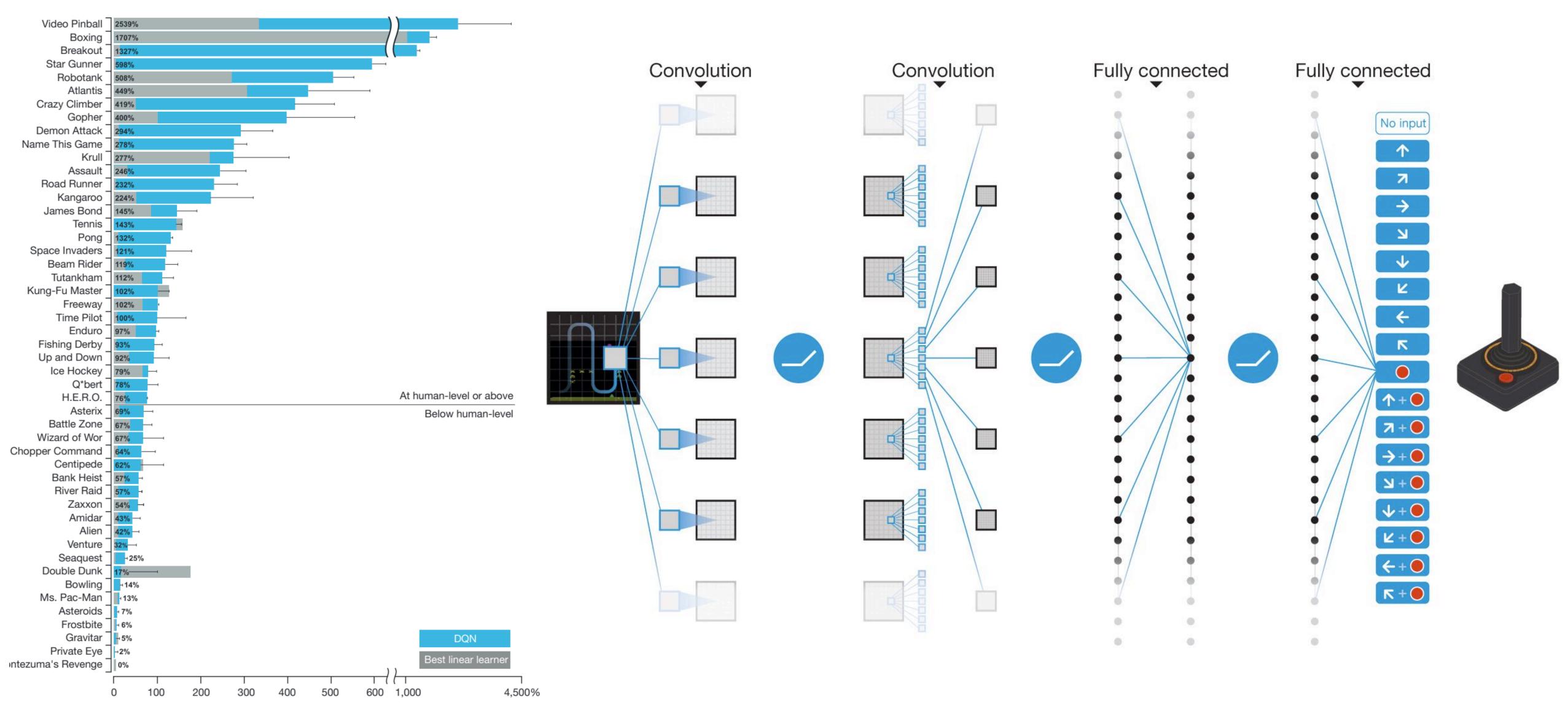
Q-learning (Watkins, 1989)

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \left[r - Q(s_t, a_t) \right]$ learning rate Predicted Observed reward reward

Y-maze example



Deep Q-Learning can play atari games with human-level control



Mnih et al,. (Nature, 2015)

Temporal-Difference (TD) learning

(Sutton & Barton, 1990)

Solving the credit assignment problem (Minsky, 1963):

• Which actions are responsible for (future) rewards?

1963): rewards?

Solving the credit assignment problem (Minsky, 1963):

• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') \right)$$

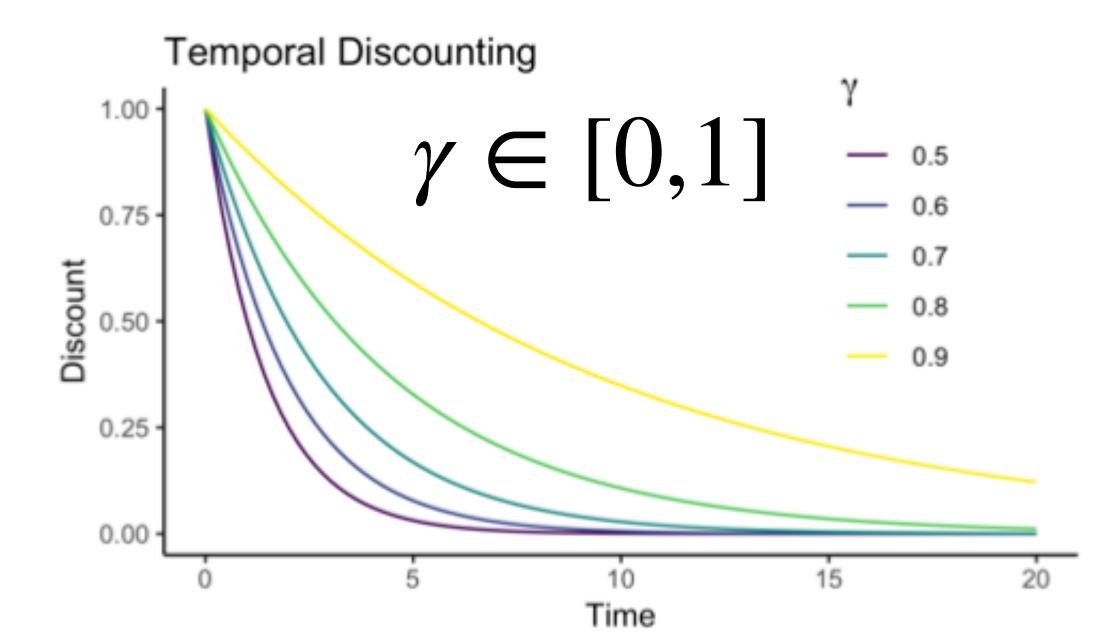
- -V(s)

Solving the credit assignment problem (Minsky, 1963):

• Which actions are responsible for (future) rewards?

Augment reward expectations by the discounted value of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') \right)$$



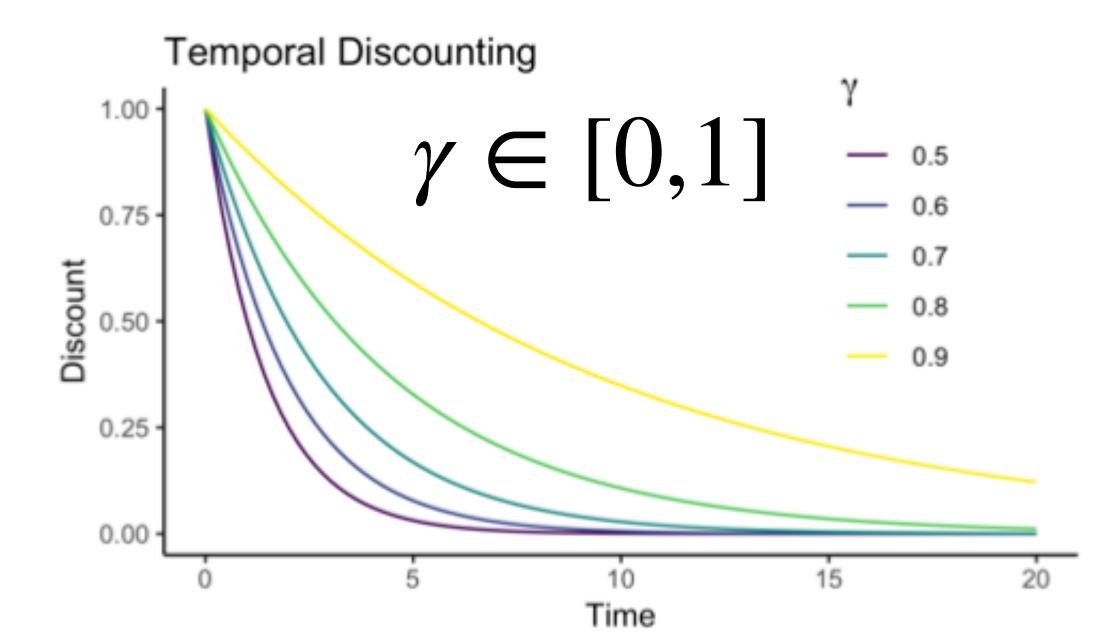
- -V(s)

Solving the credit assignment problem (Minsky, 1963):

• Which actions are responsible for (future) rewards?

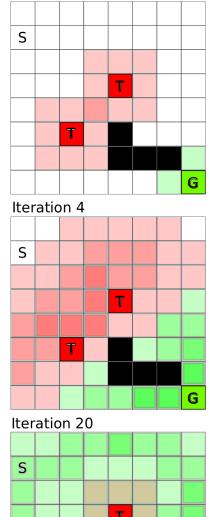
Augment reward expectations by the discounted value of the next state

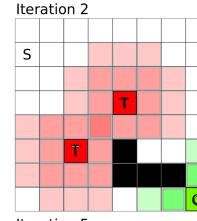
$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') \right)$$

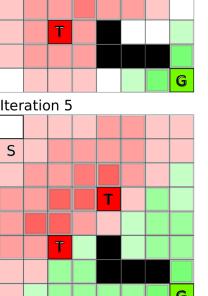


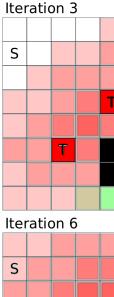
- -V(s)

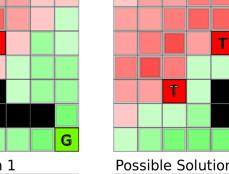
TD backups Iteration 1

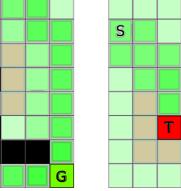


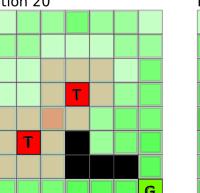












						G
os	sibl	e So	olut	ion	1	
S						
				Т		
		Т				
						G

	G

	G

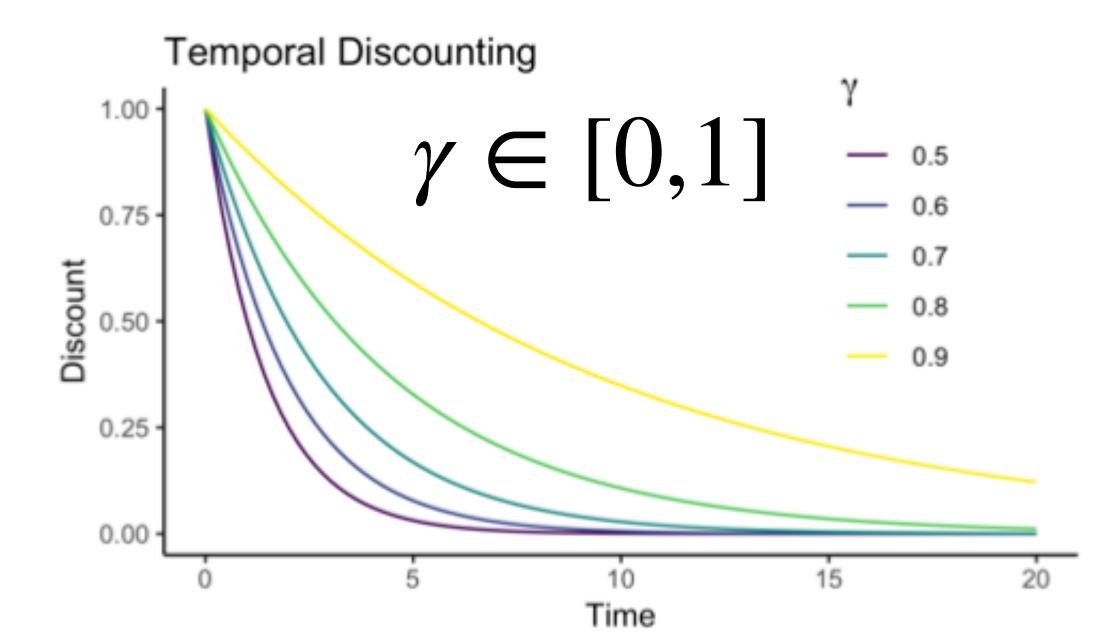
n	2	
		G

Solving the credit assignment problem (Minsky, 1963):

Which actions are responsible for (future) rewards?

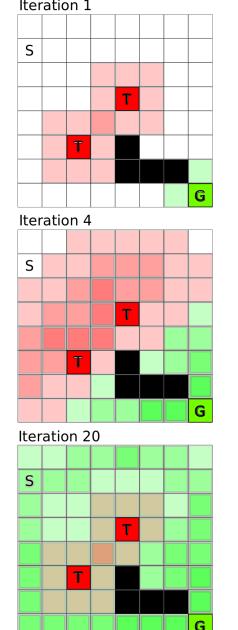
Augment reward expectations by the discounted value of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') \right)$$

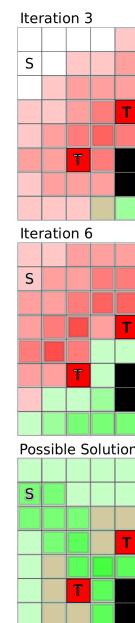


-V(s)

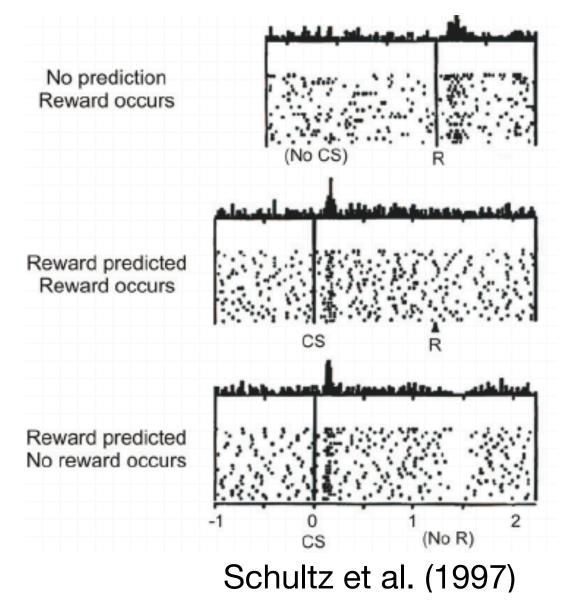
TD backups







Dopamine Reward Prediction Signal



		G
_		

Image: state
Image: state

า	2	
		G

Select a policy π^* that maximizes expected rewards

Select a policy π^* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy π : $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[\sum \gamma^{t} R_{t+1} | s_{0} = s]$

 $t \in \tau$

Select a policy π^* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

- Value function under some policy π : $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[\sum \gamma^{t} R_{t+1} | s_{0} = s]$ $t \in \tau$
- Let's unpack that a bit:

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

- The expectation $\mathbb{E}_{\tau \sim \pi}$ can be rewritten in terms of the policy and state transitions
- The sum can be written recursively as immediate reward + discounted future reward

$(s, a) \left[R(s', a) + \gamma V_{\pi}(s') \right]$

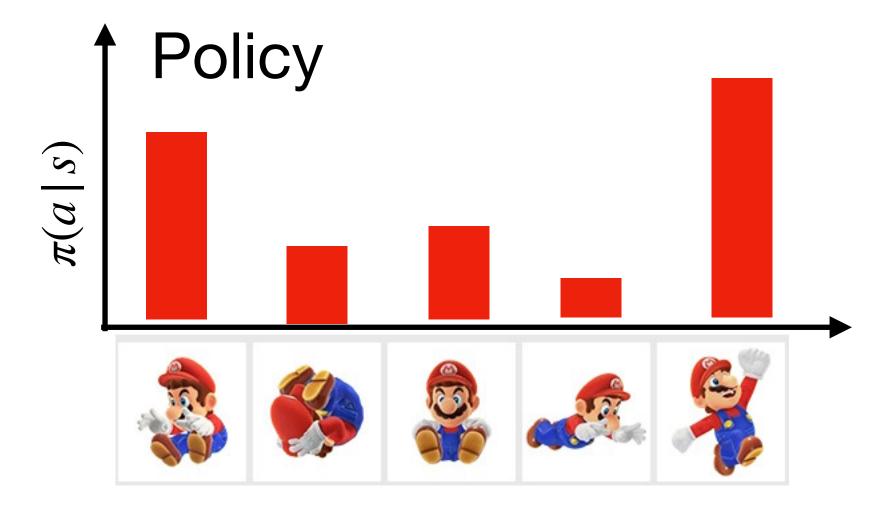
Select a policy π^* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

- Value function under some policy π : $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[\sum \gamma^{t} R_{t+1} | s_{0} = s]$ $t \in \tau$
- Let's unpack that a bit:

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

- The expectation $\mathbb{E}_{\tau \sim \pi}$ can be rewritten in terms of the policy and state transitions
- The sum can be written recursively as immediate reward + discounted future reward



21

$(s, a) \left[R(s', a) + \gamma V_{\pi}(s') \right]$

Select a policy π^* that maximizes expected rewards

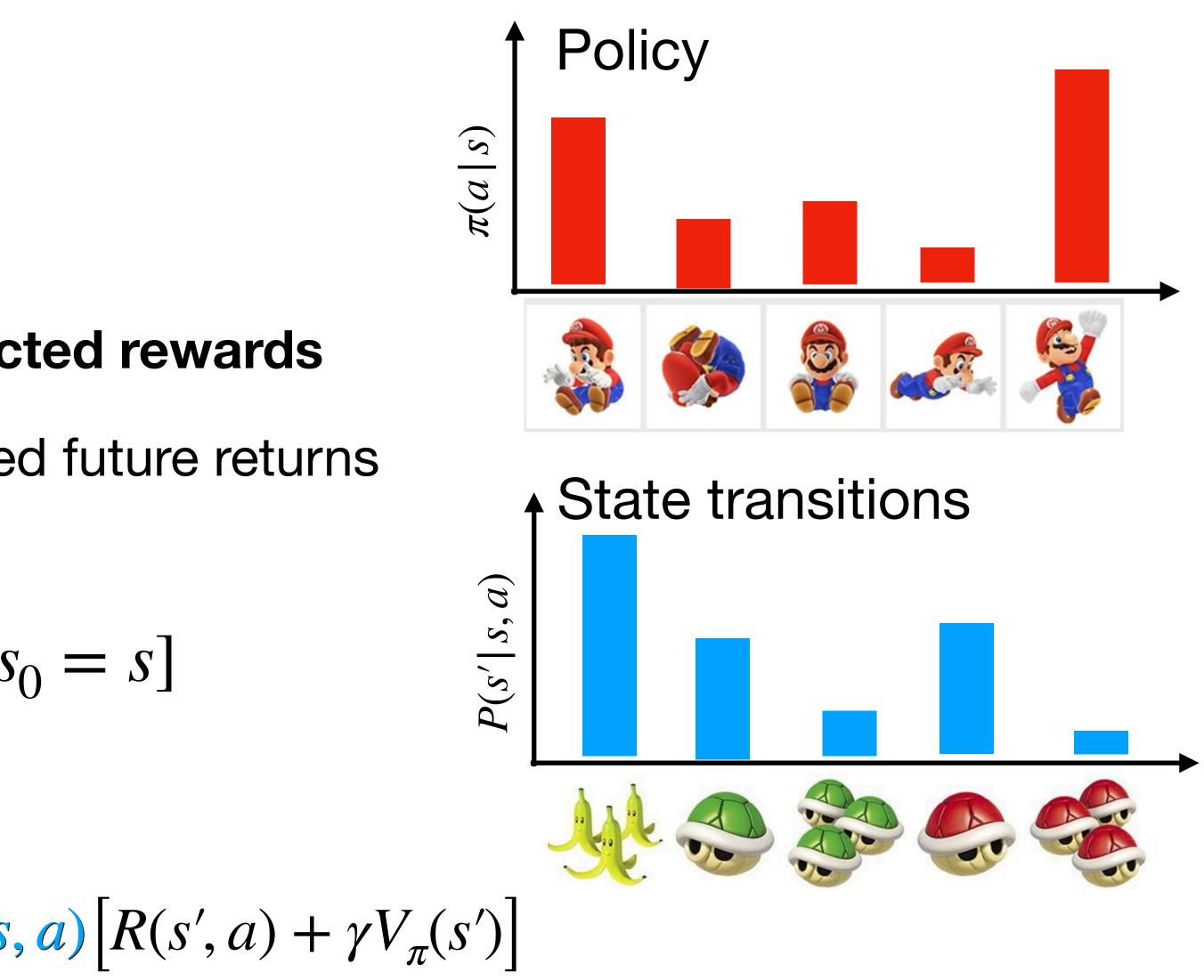
Not just immediate rewards, but discounted future returns

- Value function under some policy π : $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[\sum \gamma^{t} R_{t+1} | s_{0} = s]$
- Let's unpack that a bit:

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

 $t \in \tau$

- The expectation $\mathbb{L}_{\tau \sim \pi}$ can be rewritten in terms of the policy and state transitions
- The sum can be written recursively as immediate reward + discounted future reward



Select a policy π^* that maximizes expected rewards

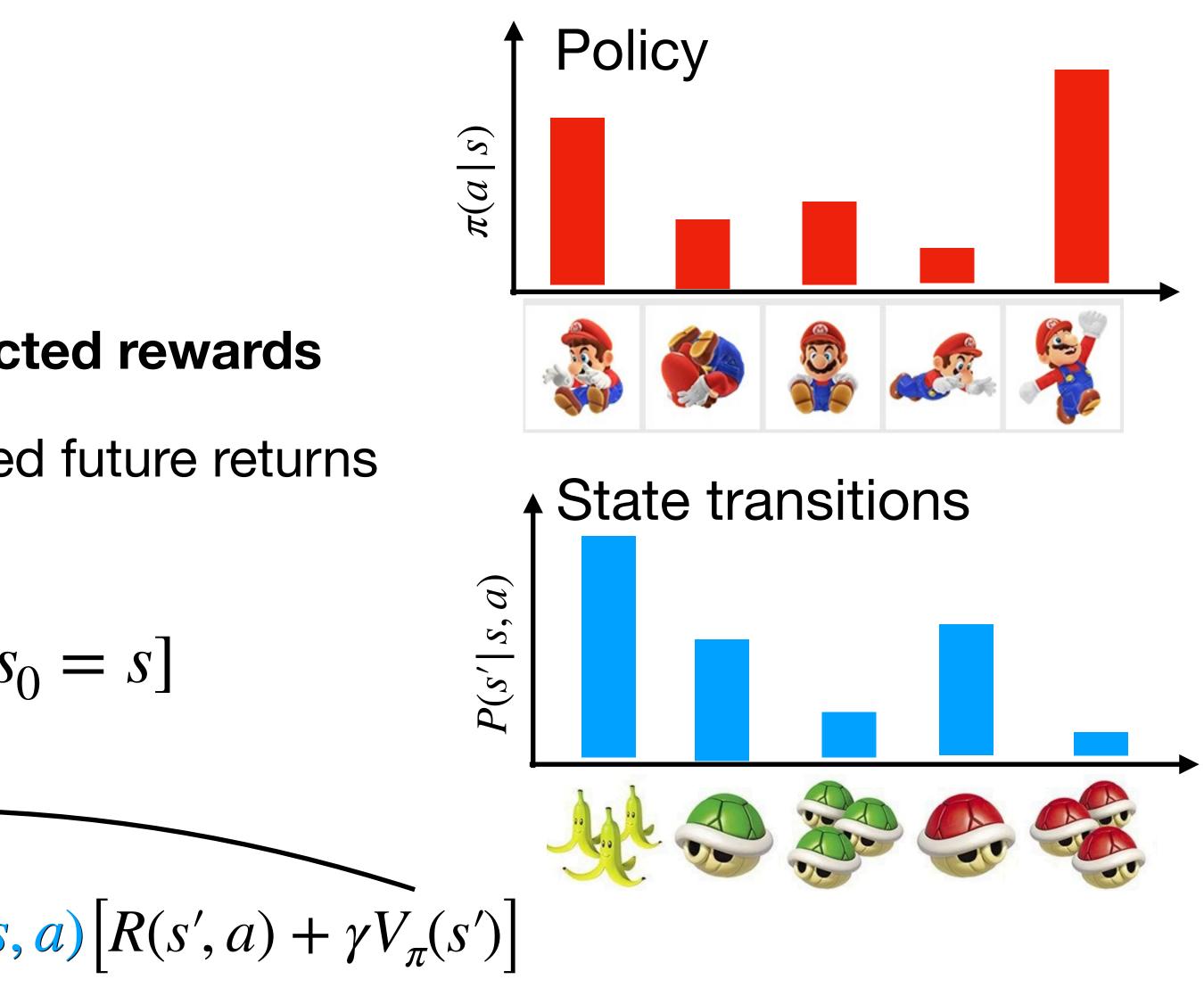
Not just immediate rewards, but discounted future returns

- Value function under some policy π : $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{\tau \sim \pi} \gamma^{t} R_{t+1} | s_{0} = s \right]$
- Let's unpack that a bit:

$$V_{\pi}(s) = \sum_{\alpha} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

 $t \in \tau$

- The expectation $\mathbb{E}_{\tau \sim \pi}$ can be rewritten in terms of the policy and state transitions
- The sum can be written recursively as immediate reward + discounted future reward



Optimal policies via Bellman Equations

This recursive formulation of the value function is known as the Bellman equation \bullet

$$V_{\pi}(s) = \sum_{n} \pi(a \,|\, s) \sum_{n} P(s' \,|\, s, a) \left[R(s', a) + \gamma V_{\pi}(s') \right]$$

- This allows us to break the optimization problem into series of simpler sub-problems
- if each sub-problem is solved optimally, the overall problem will also be optimal \bullet
- Theoretically optimal solution:
 - We first define an optimal value function by assuming value-maximizing actions: \bullet $V_*(s) = \arg\max_{a} \sum_{s'} P(s' | s, a) [R(s, a) + \gamma V_*(s')]$
- We then (theoretically) arrive at an optimal policy by selecting actions that maximize value: \bullet

$$\pi_* = \arg\max_a V_*(s)$$

Optimal policies via Bellman Equations

This recursive formulation of the value function is known as the Bellman equation \bullet

$$V_{\pi}(s) = \sum_{n} \pi(a \,|\, s) \sum_{n} P(s' \,|\, s, a) \left[R(s', a) + \gamma V_{\pi}(s') \right]$$

- This allows us to break the optimization problem into series of simpler sub-problems
- if each sub-problem is solved optimally, the overall problem will also be optimal \bullet
- Theoretically optimal solution:
 - We first define an optimal value function by assuming value-maximizing actions: \bullet $V_*(s) = \arg\max_{a} \sum_{s'} P(s' | s, a) [R(s, a) + \gamma V_*(s')]$
- We then (theoretically) arrive at an optimal policy by selecting actions that maximize value: \bullet

$$\pi_* = \arg\max_a V_*(s)$$

* In practice, optimal solutions are often unobtainable

[If time] Tabular methods for finding optimal policies State

- Based on methods from Dynamic programming (Bellman, 1957), Tabular methods were first proposed as solutions for RL problems by Minsky (1961)
- Think of a giant lookup table, where we store a value representation for each combination of state+action
- Value iteration and policy iteration are examples
- Caveat: solutions require repeat visits to each state, which is infeasible in most real-world problems

2	7 7	*	27	*	☆?	%	*	☆?	*	文	公	\$	☆?	73
27	*	27	*	27	2	*	*	*	5	*	*	*	*	73
27	文	2	2	*	27	73	文	73	*	*	27	文	*	*
23	*	*	27	2	27	53	*	27	27	2	27	73	*	23
*	文	27	53	23	*	*	文	27	文	*	*	73	73	73
27	27	27	53	73	23	*	2	27	文	27	27	23	73	*
文	73	2	☆?	*	27	23	27	73	27	27	27	文	7 7	*
☆	2	27	5	23	23	2	文	☆	*	文	文	*	*	23
文	27	53	27	*	27	*	*	27	2	文	公	27	2	23
27	73	27	2	27	27	2	*	27	*	27	33	27	73	*
\$	73	*	文	*	27	2	*	27	23	*	*	33	*	*
2	73	23	☆?	23	23	53	*	73	2	*	27	文	27	*
*	3	*	2	27	*	*	2	*	*	*	☆	73	23	73
2	*	2	\$	*	7 7	27	☆	27	7 7	*	27	*	☆?	%
☆	文	27	27	2	*	☆?	*	*	公	*	27	*	27	*
文	文	27	☆?	文	27	*	文	27	27	27	2	文	\$	73
文	☆	2	\$	公	文	*	*	*	☆	公	公	文	27	*
☆	文	文		*		27	27	27	*	文	文	☆	公	2
文	☆	☆	☆	\$	文	*	*	27	\$	☆	文	文	*	公
*	\$	☆	☆	27	☆	☆?	文	*	☆	쑰		*		*
2	*	껈	*	公	公	73	☆	*	*	☆	*	57	33	2
*	*	5	*		*	73	*	5	53	*			*	1

Action

Value iteration

Iteratively visit all states and update the value function until a "good enough" solution has been reached.

1. Initialize the value function as $V_0(s) = 0$ for all states

2. For all s in S: $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [R(s, a) + \gamma V_k(s')]$

until $\max_{s \in S} |V_k(s) - V_{k-1}(s)| < \theta$ Bellman residual

Value iteration

Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as $V_0(s) = 0$ for all states
- 2. For all s in S:

$$V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [R(s, a) + \gamma V_k(s')]$$

 V_k converges on V_* as $k \to \infty$, and perhaps sooner, but with many costly sweeps through the state space

until $\max_{s \in S} |V_k(s) - V_{k-1}(s)| < \theta$ Bellman residual

Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with π_0 (typically a random policy), and then iterate for all $s \in S$ in each step

Policy Evaluation

$$V_{\pi_k}(s) = \mathbb{E}_{\pi_k} \left[R(s', a) + \gamma V_{\pi_k} \right]$$

Policy Improvement

$$\pi_{k+1} = \arg\max_{a} \sum_{s'} P(s' \mid s, a)$$

 $\left[s' \right]$

(x) $R(s, a) + \gamma V_{\pi_k}$

Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with π_0 (typically a random policy), and then iterate for all $s \in S$ in each step

Policy Evaluation

$$V_{\pi_k}(s) = \mathbb{E}_{\pi_k} \left[R(s', a) + \gamma V_{\pi_k} \right]$$

Policy Improvement

$$\pi_{k+1} = \arg\max_{a} \sum_{s'} P(s' \mid s, a)$$

Policy can converge faster than value function, but still requires visiting all states multiple times and lacks convergence guarantees

 $\left(s' \right) \right]$

$$\left[R(s,a)+\gamma V_{\pi_k}\right]$$

Actor Critic

We've already defined value updates in terms of RPE

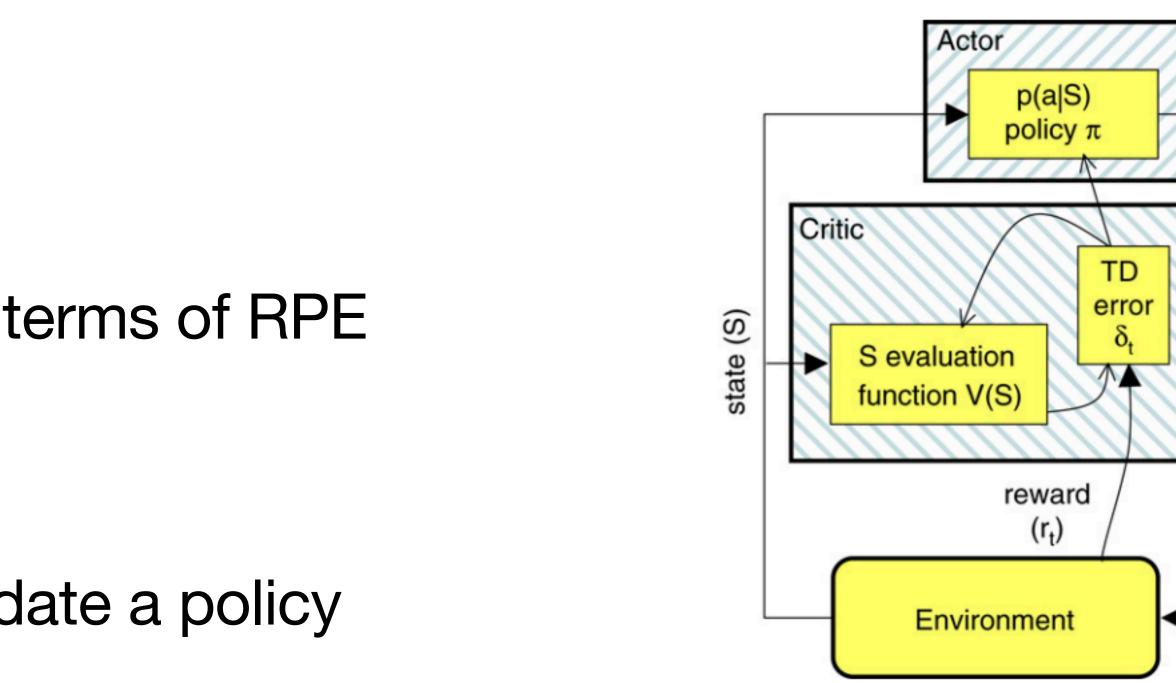
 $V(s) \leftarrow V(s) + \eta \delta_t$

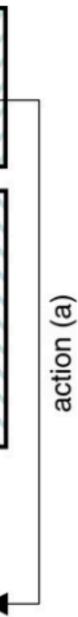
We can use a similar learning rule to update a policy

$$\pi(s,a) \leftarrow \pi(s,a) + \eta_{\pi}\delta_t$$

Policy is learned gradually rather than an argmax

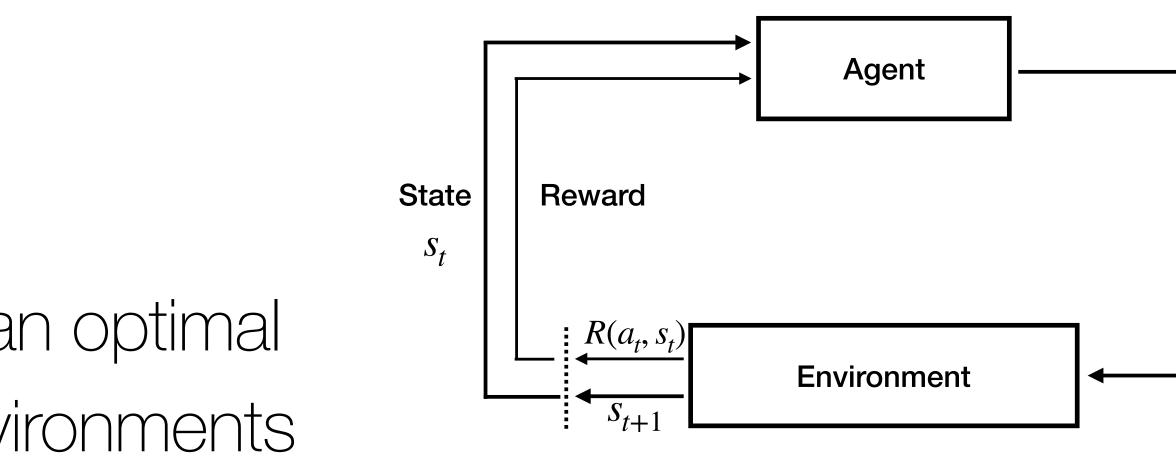
Similar to modern policy-gradient methods used in many Deep RL contexts





RL summary

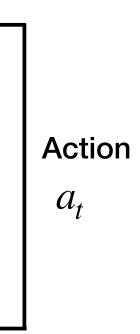
- Normative framework for learning an optimal policy π^* in arbitrarily complex environments
 - variety of domains
- Also provides a descriptive model of human learning
 - this next week)
 - relevant representations
 - But where is the map? Where is the model of the environment?



• With modern bells and whistles, is able to beat human-experts in a

• TD-learning prediction error tracks dopamine signals in the brain (more on

Value representations and policies seem to capture psychologically



5 minute break

Goals and habits (Dolan & Dayan 2013)

Goals and habits (Dolan & Dayan 2013) **Goal-directed actions**

Goals and habits (Dolan & Dayan 2013)

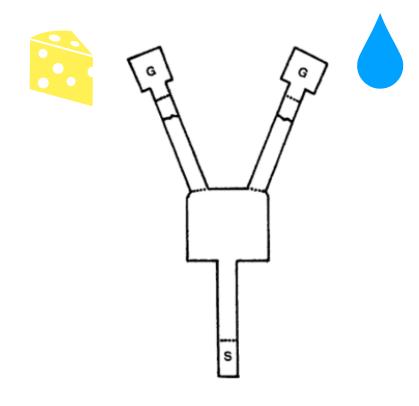
Goal-directed actions

1. Knowledge of how actions map to consequences Reward-Outcome (R-O) control

Goals and habits (Dolan & Dayan 2013)

Goal-directed actions

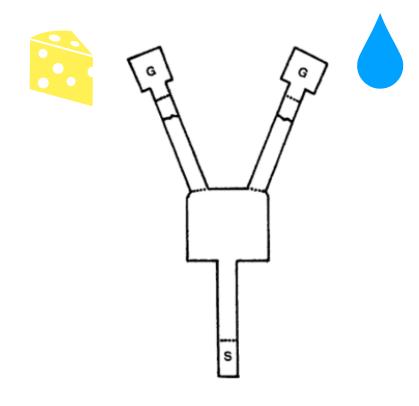
- 1. Knowledge of how actions map to consequences Reward-Outcome (R-O) control
- 2. Outcomes should be motivationally relevant e,.g., food when hungry, water when thirsty



Goals and habits (Dolan & Dayan 2013)

Goal-directed actions

- 1. Knowledge of how actions map to consequences Reward-Outcome (R-O) control
- 2. Outcomes should be motivationally relevant e,.g., food when hungry, water when thirsty
- Habitual actions



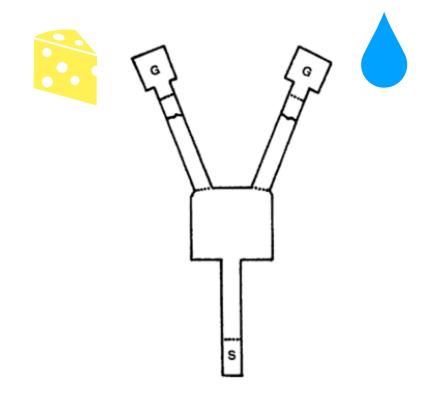
Goals and habits (Dolan & Dayan 2013)

Goal-directed actions

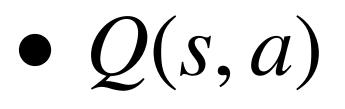
- 1. Knowledge of how actions map to consequences Reward-Outcome (R-O) control
- 2. Outcomes should be motivationally relevant e,.g., food when hungry, water when thirsty

Habitual actions

 Instrumental responding, even when actions are not motivationally relevant



Model-free RL



 Myopically selecting actions that have been associated with reward

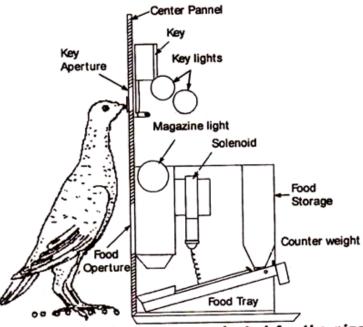
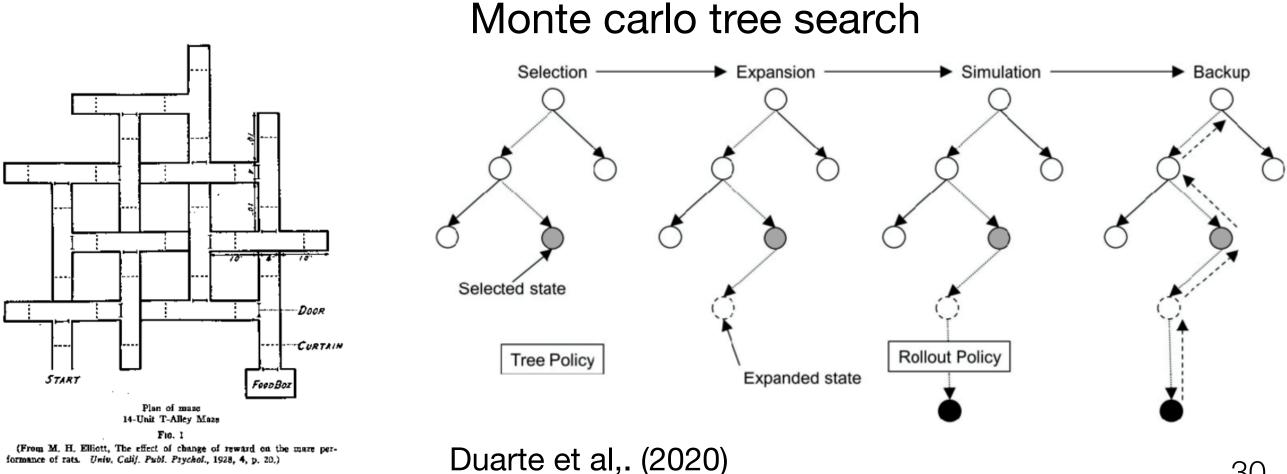


Illustration. Skinner box as adapted for the pigeon.

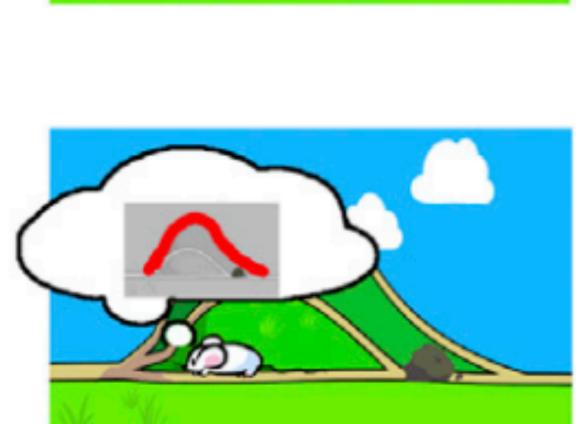
Model-based RL

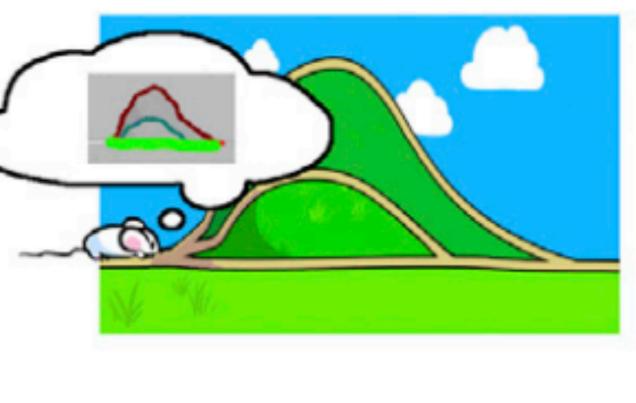
- Goal-directed
- Computationally costly
- $P(s', r \mid s, a)$
- Planning and seeking of long term outcomes



formance of rats. Univ. Calif. Publ. Psychol., 1928, 4, p. 20.)

30





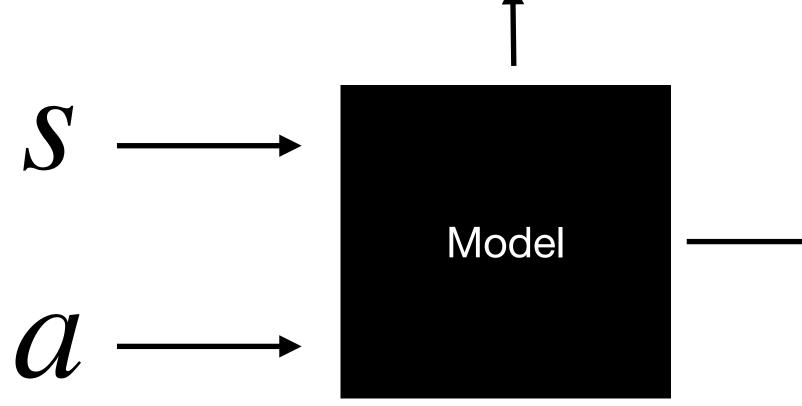
model-based

model-free

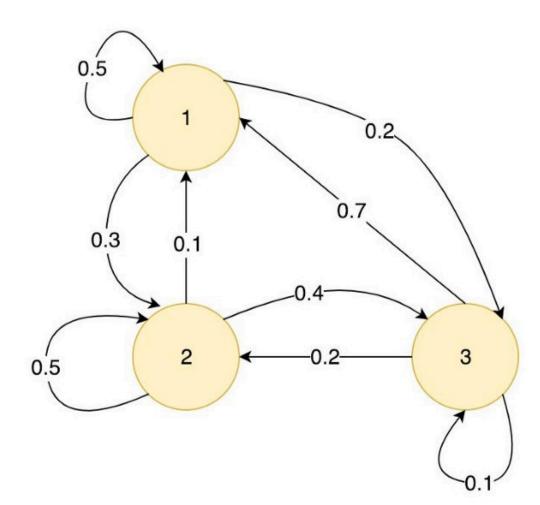
What is the model in model-based RL?

Ingredients:

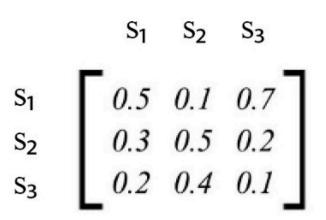
- Transition model T
- Reward function R
- State space $s \in \mathcal{S}$
- Action space $a \in \mathscr{A}$



MDP



Transition Matrix



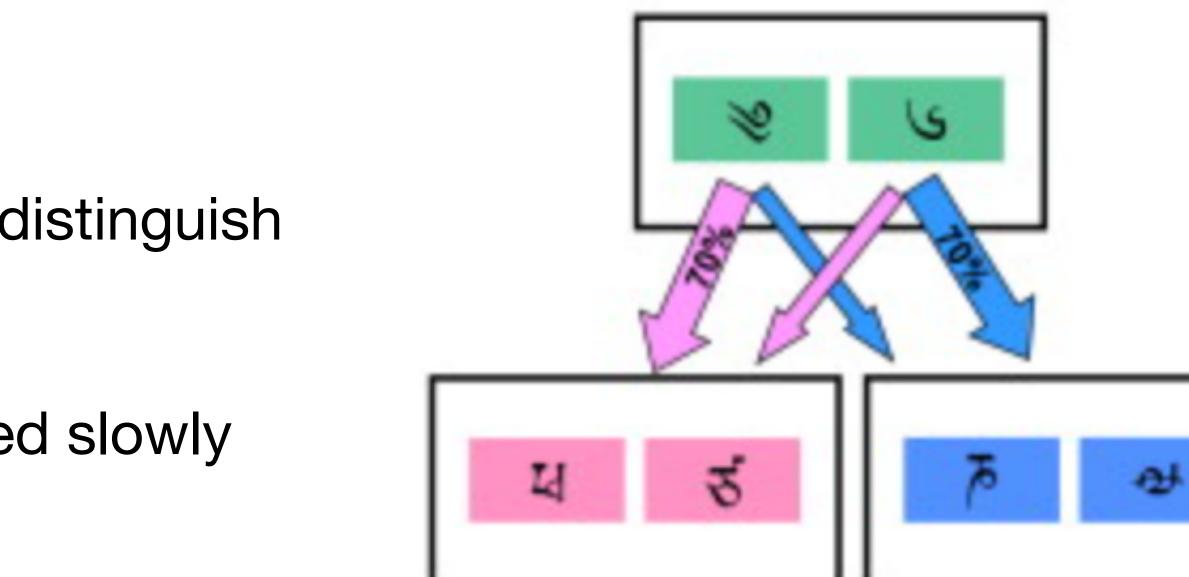


(From M. H. Elliott, The effect of change of reward on the maze performance of rats. Univ. Calif. Publ. Psychol., 1928, 4, p. 20.)

Two-step task

- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- Rewards of second-stage options changed slowly following a random walk

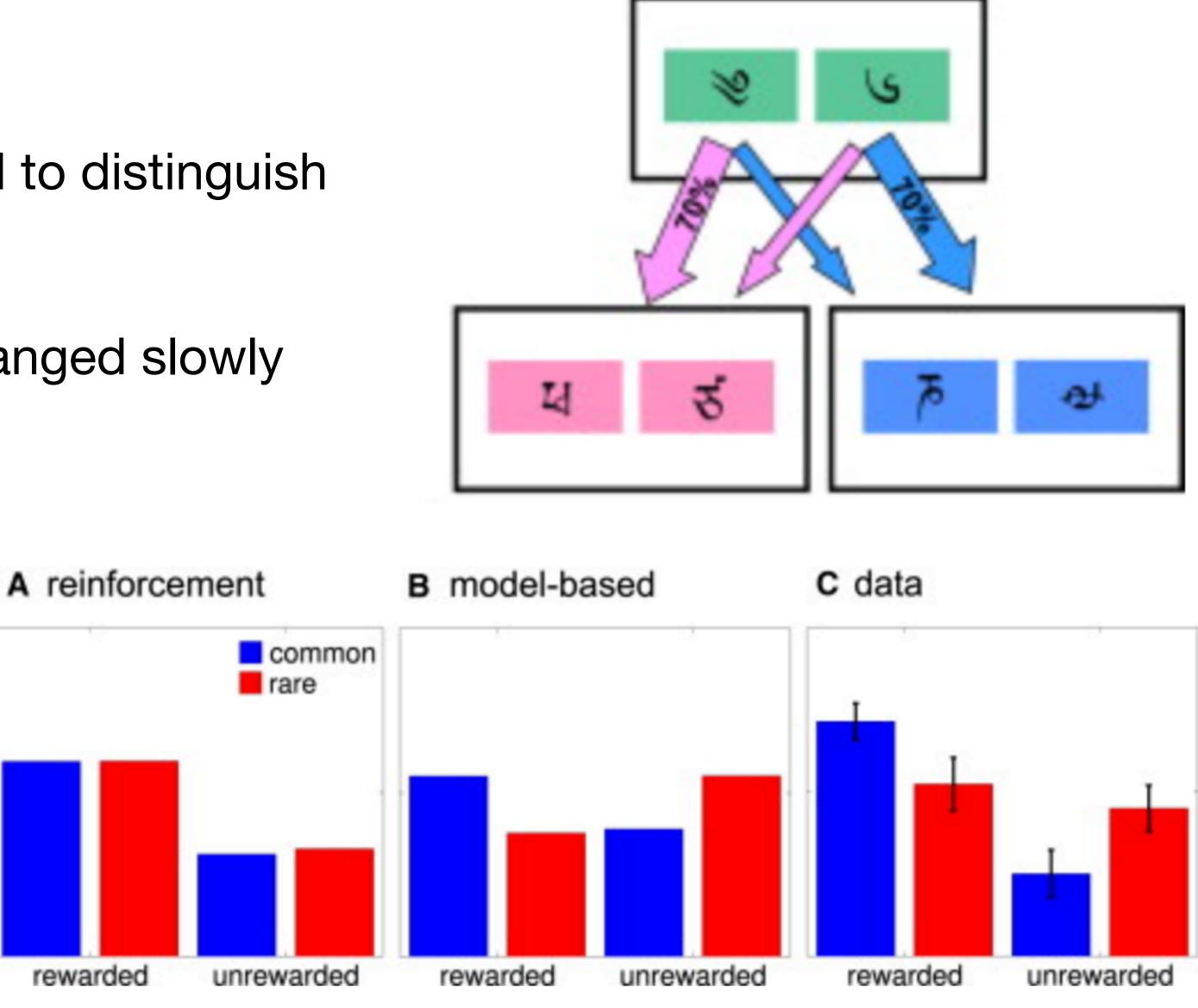
Daw et al., (2011)



Two-step task

- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- Rewards of second-stage options changed slowly following a random walk
 - (model-free) RL predictions depend solely on reward
 Model-based RL uses the transition structure
 Data suggests a mixture of both

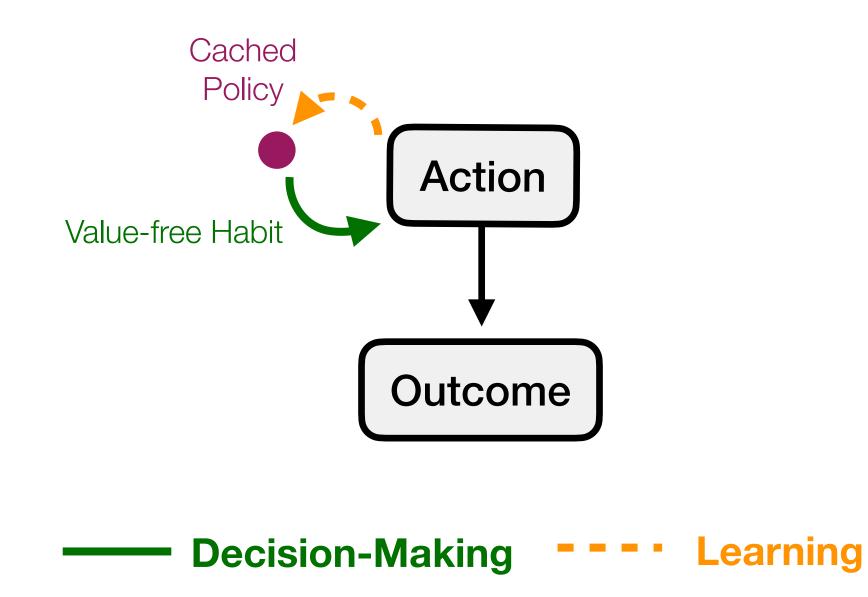
Daw et al., (2011)



Hierarchy of learning:

Hierarchy of learning:

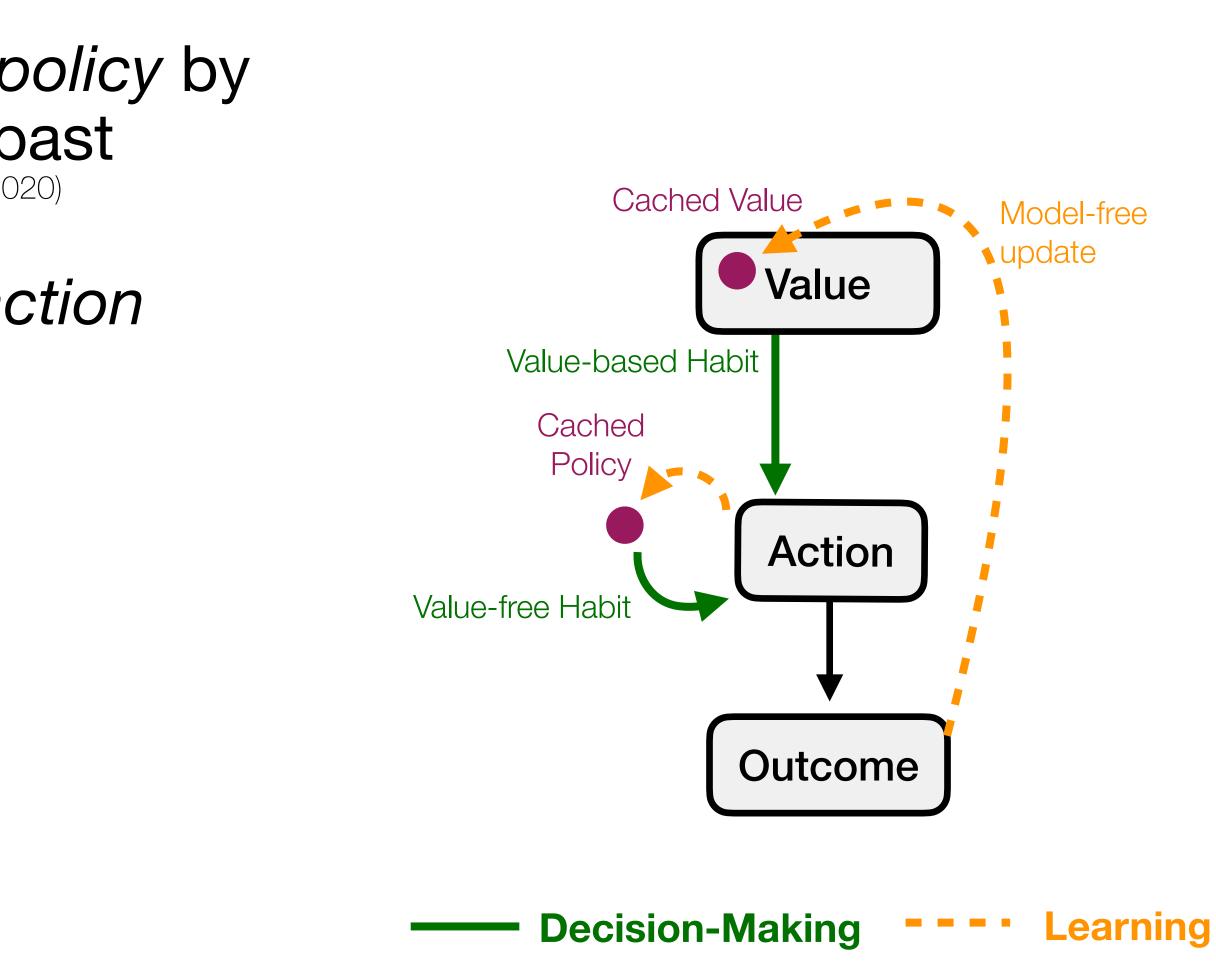
• Value-free habit: deploy a cached policy by repeating actions performed in the past (Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)



Hierarchy of learning:

- Value-free habit: deploy a cached policy by repeating actions performed in the past (Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)
- Value-based habit: use a cached action *value* for more flexibility

(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

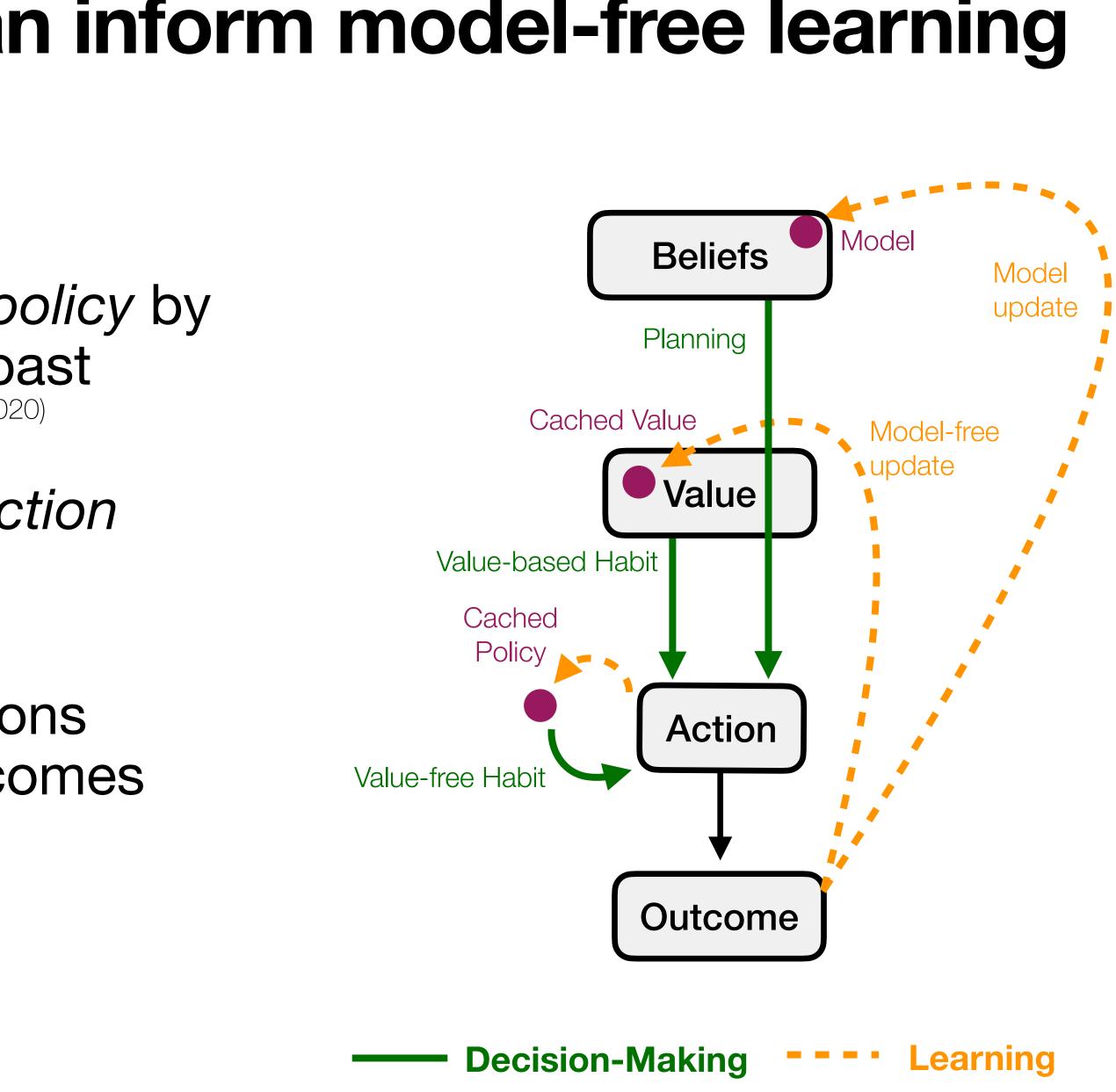


Hierarchy of learning:

- Value-free habit: deploy a cached policy by repeating actions performed in the past (Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)
- Value-based habit: use a cached action *value* for more flexibility

(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

Model-based planning: Select actions \bullet expected to produced the best outcomes based on our model of the world (K. J. Miller et al., 2017; Vikbladh et al., 2019)



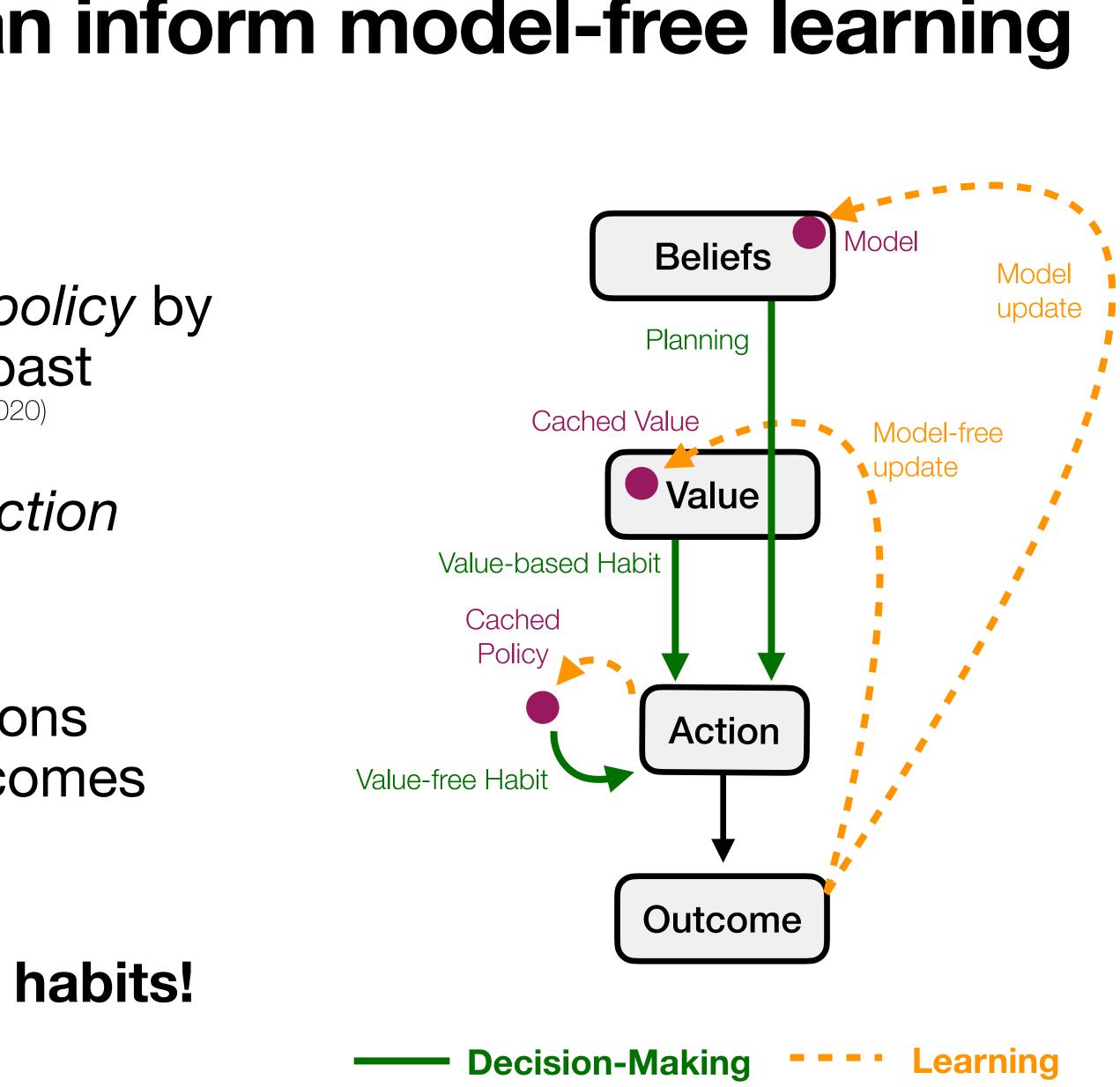
Hierarchy of learning:

- Value-free habit: deploy a cached policy by repeating actions performed in the past (Thorndike, 1932; Cushman & Morris, 2015; Daw et al., 2005; Gershman, 2020)
- Value-based habit: use a cached action *value* for more flexibility

(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto et al., 2019)

Model-based planning: Select actions \bullet expected to produced the best outcomes based on our model of the world (K. J. Miller et al., 2017; Vikbladh et al., 2019)

Model-based planning builds better habits!

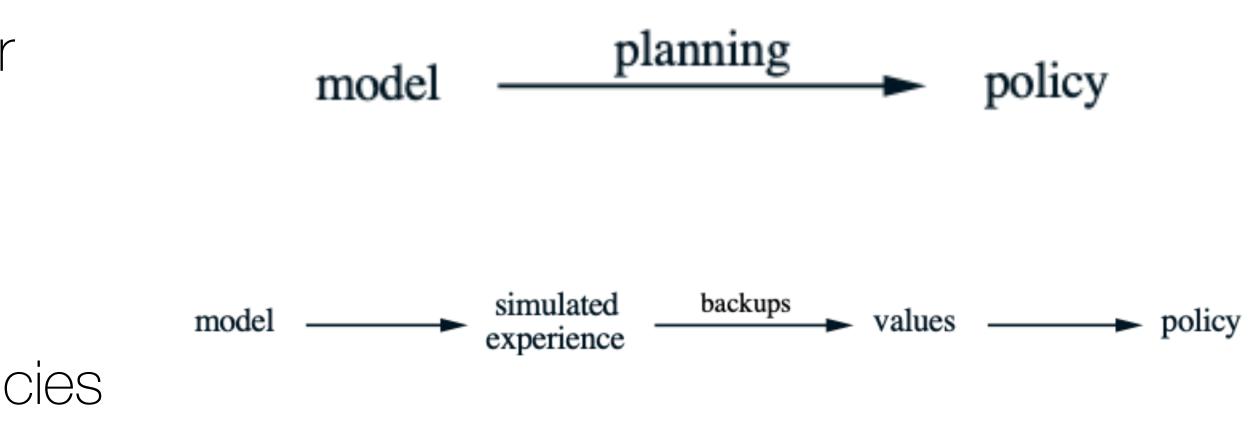


Sutton (1990)

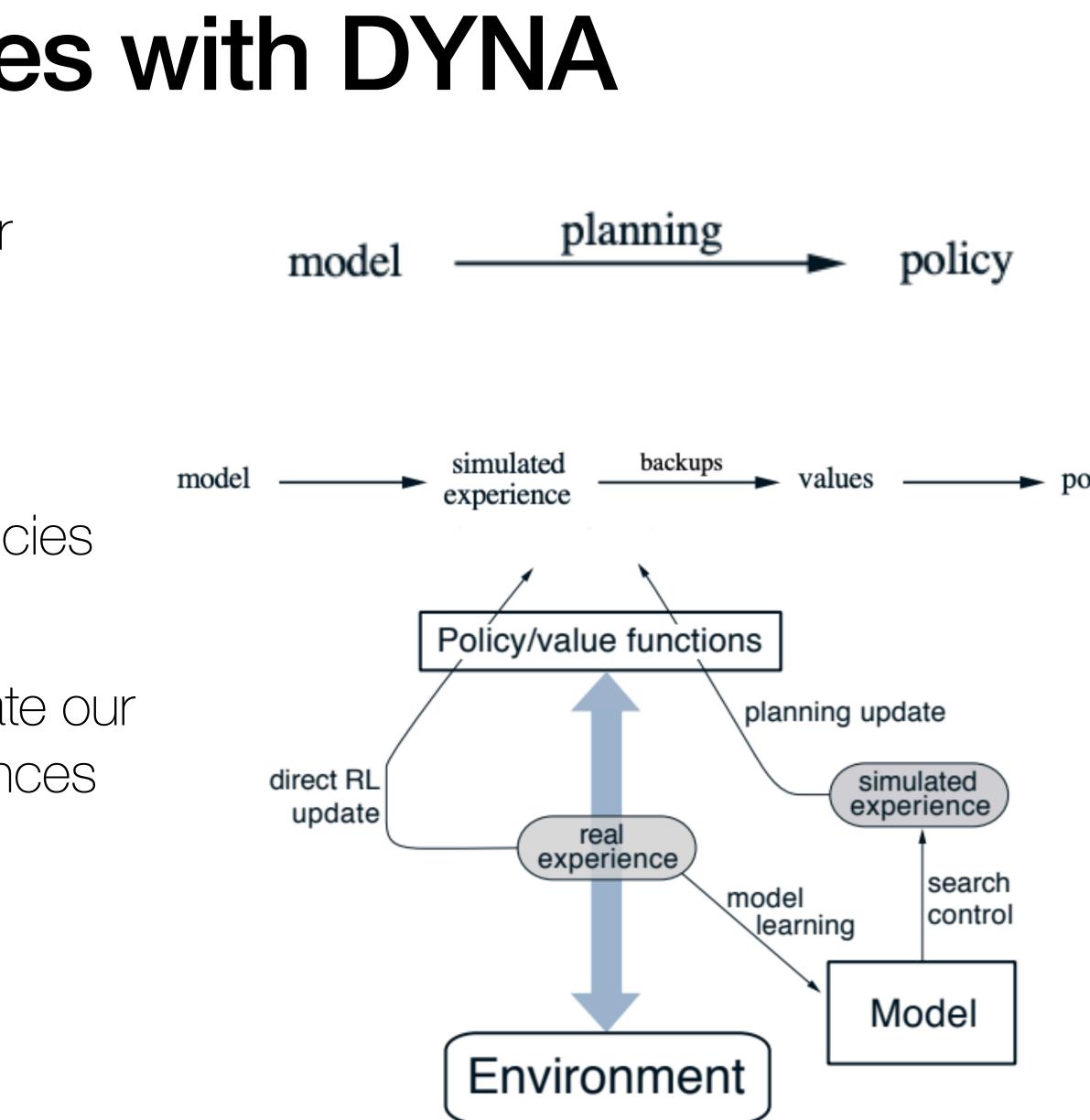
 Models of the environment can be used for planning

Sutton (1990)

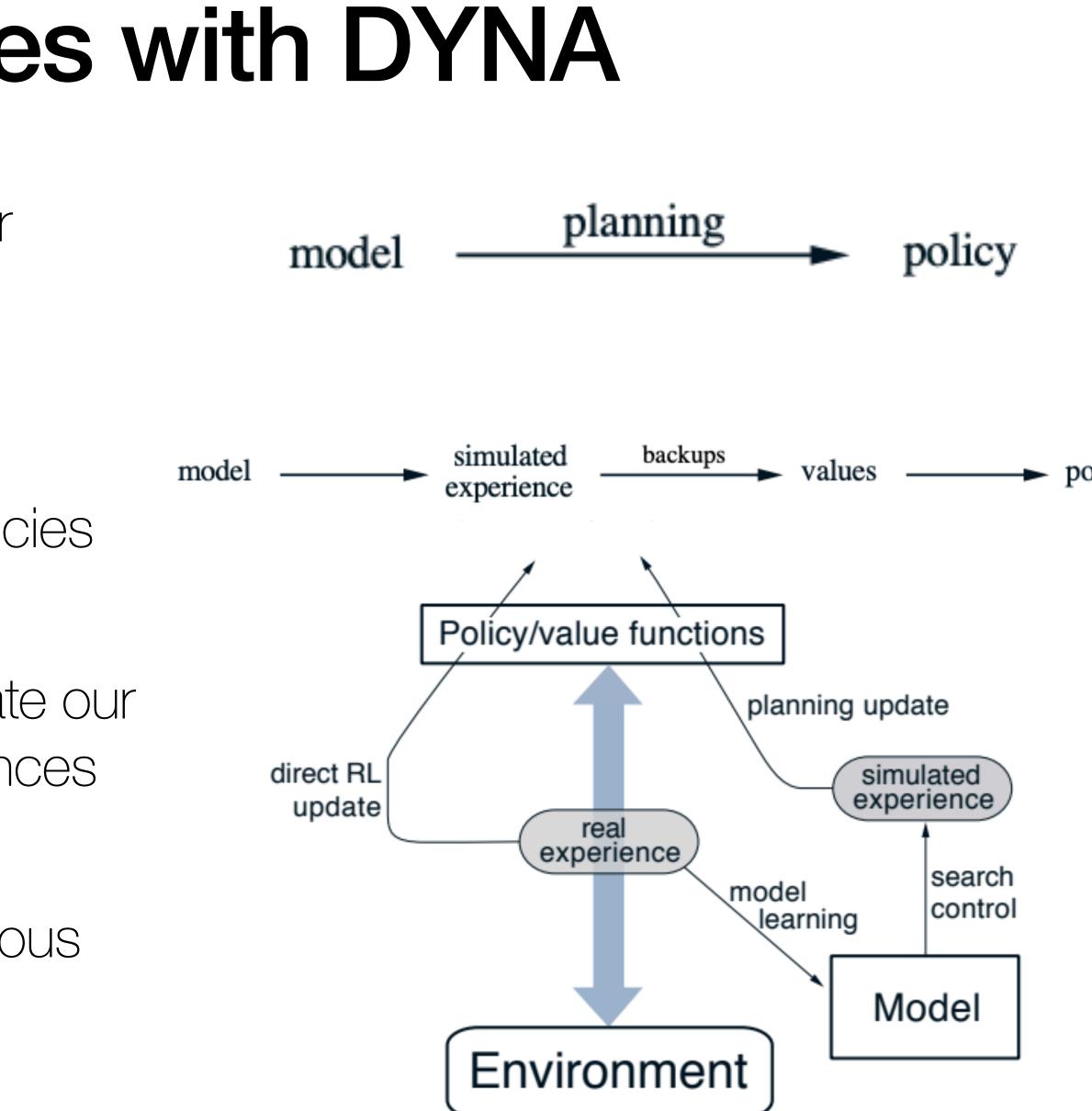
- Models of the environment can be used for planning
- ... but they can also be used to simulate experiences, to learn better values and policies



- Models of the environment can be used for planning
- ... but they can also be used to simulate experiences, to learn better values and policies
- DYNA uses simulated experiences to update our policy/value functions, just like real experiences



- Models of the environment can be used for planning
- ... but they can also be used to simulate experiences, to learn better values and policies
- DYNA uses simulated experiences to update our policy/value functions, just like real experiences
- These simulations can be controlled to various degrees (e.g., prioritized sweeps)

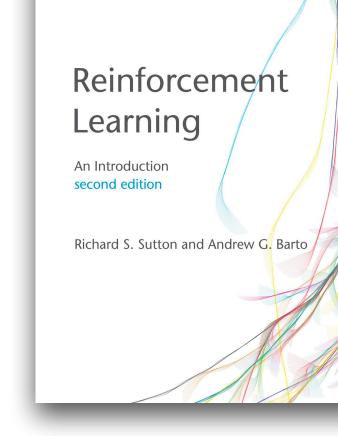


Model-free vs. Model-based summary

- Computationally cheap to use model-free learning
 - Maps onto habits and S-R learning
- Costly but potentially more impactful to use model-based learning.
 - Maps onto goal-directed and S-S learning
- Not one or the other, but rather a mixture of both
- Model-based learning can help train model-free value functions and policies
- Through experience and through simulation (e.g., DYNA) Still an open question how model-based representations are learned

Further study Sutton & Barto book (free PDF link) Great course and python code notebooks by Philipp! https://github.com/schwartenbeckph/RL-Course

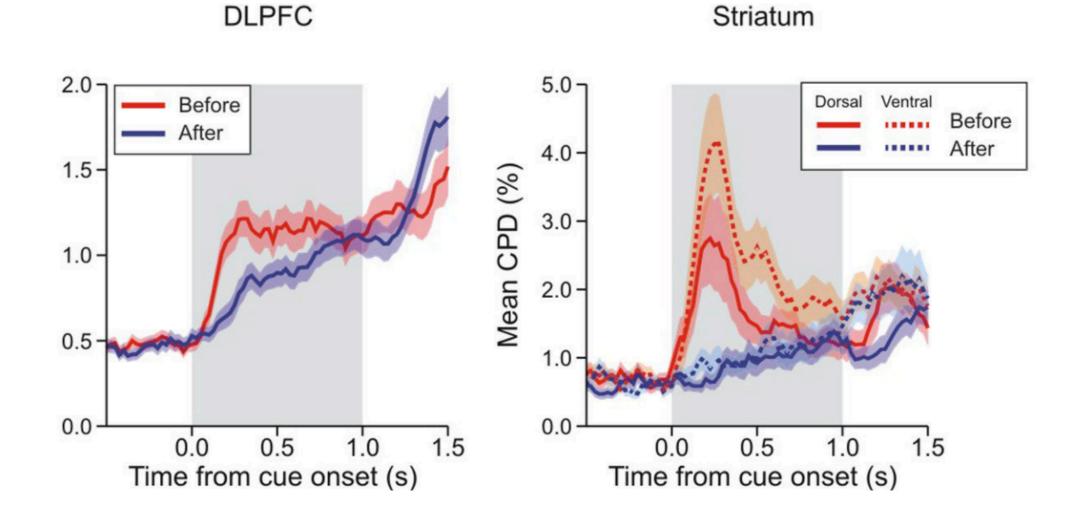
R code notebooks for using RL models (with a focus on social learning) https://cosmos-konstanz.github.io/materials/

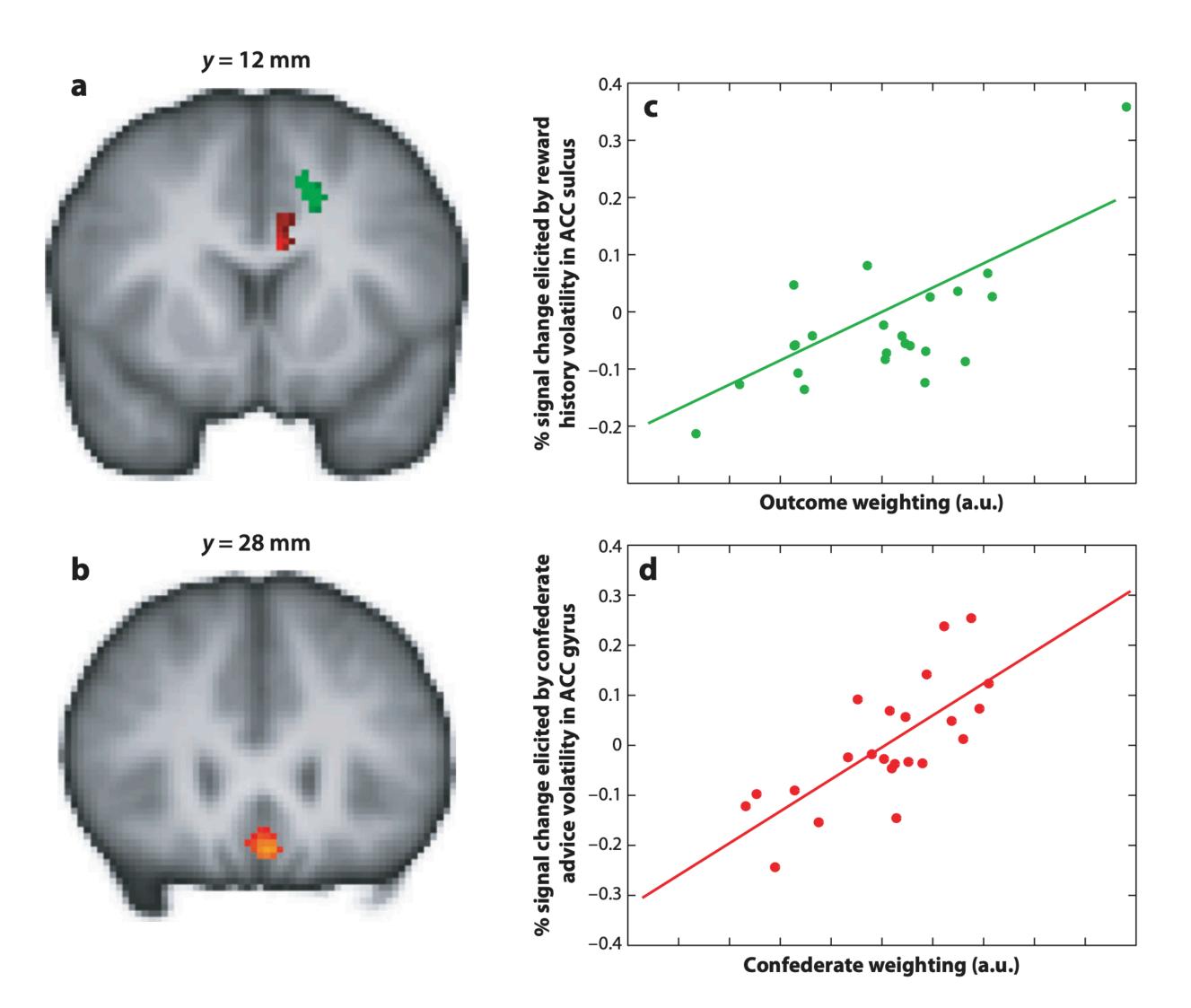


Next week

Neural Basis of Reinforcement Learning and Decision Making

Daeyeol Lee,^{1,2} Hyojung Seo,¹ and Min Whan Jung³





Discussion questions

- If model-based learning influences model-free representations, is the based learning?
- there other contexts where we can be more or less model-based?

 How important are optimal policies and optimal value functions? People seem to use "good enough" solutions, so how are those computed?

reverse also true? Do model-free characteristics also influence model-

 Could only partial use of model-based RL in the 2-step task be showing cognitive constraints on fully leveraging model-based representations? Are

