
General Principles of Human 
and Machine Learning

Tutorial 3: Introduction to RL



RL Framework

● In RL, problems can be described 
using the MDP formality

○ MDP is a 4-tuple (S, A, P, R)
■ S: state space
■ A: action space
■ P: state transition probability 

● P(St+1=st+1|St=st,At=at)
■ R: state transition returns

● R(st,st+1) = rt
○ Markov Decision Process because of the 

Markov property
■ P(St+1|St,...,S1,At) = P(St+1|St,At)

Andrey Markov



Tutorial Questions

Devise three example tasks of your own that fit into the reinforcement learning 
framework, identifying for each its states, actions, and rewards. Make the three 
examples as different from each other as possible. The framework is abstract and 
flexible and can be applied in many different ways. Stretch its limits in some way in 
at least one of your examples. 



Example 1: Chess

● S: board position of the pieces
● S0 = {Black rook: a8, Black knight: 

b8, …., White rook: h1}



Example 1: Chess

● A: all the legal moves (whites) 
given the current board 
configuration

○ For example, on the board to the right:
■ White pawn: e2 →e4



Example 1: Chess

● P: the probability of each board configuration given 
player’s move and the current configuration.

○ For example, on the board to the right:
■ Given White pawn: e2 →e4

● Black pawn: e7 →e5
● But could have also played:

○ Black pawn: d7 →d5
○ Black pawn: e7 →e6
○ Black knight: b8 →c6
○ Etc

● P(S1 = {Black rook: a8, Black knight: b8, …., Black 
pawn: e5,White pawn: e6, …, White rook: h1} | S0 
= {Black rook: a8, Black knight: b8, …., White rook: 
h1}, A0 = White pawn: e2 →e4)  ∈ [0,1]

● Note that the Markov property is preserved:
○ Previous board configurations don’t affect the transitions:

■ All the necessary information is incorporated into 
the current board configuration



Example 1: Chess

● R:
○ Endgame:

■ Win: +1



Example 1: Chess

● R:
○ Endgame:

■ Win: +1
■ Loss: -1



Example 1: Chess

● R:
○ Endgame:

■ Win: +1
■ Loss: -1
■ Draw: 0



Example 1: Chess

● R:
○ Endgame:

■ Win: +1
■ Loss: -1
■ Draw: 0

○ Otherwise:
■ If a move doesn’t lead to an 

endgame situation: 0
● This is a major problem in 

RL called sparsity of reward
● It leads to the credit 

assignment problem



Example 2: OpenAI Gym (Humanoid Standup)

● S: The state space consists of 
positional values of different body 
parts of the Humanoid, followed by 
the velocities of those individual 
parts (their derivatives) with all the 
positions ordered before all the 
velocities.

○ 1: z-coordinate of the torso (centre)
○ 2: x-orientation of the torso (centre)
○ …
○ 45: angular velocity of the angle 

between left upper arm and 
left_lower_arm



Example 2: OpenAI Gym (Humanoid Standup)

● A: The agent take a 17-element 
vector for actions representing the 
numerical torques applied at the 
hinge joints.

○ 0: Torque applied on the hinge in the 
y-coordinate of the abdomen

○ 1: Torque applied on the hinge in the 
z-coordinate of the abdomen

○ …
○ 16: Torque applied on the rotor between 

the left upper arm and left lower arm



Example 2: OpenAI Gym (Humanoid Standup)

● P: the probability of the next 
positional values of different body 
parts given their velocities and 
applied torques at the joints

○ The environment is inherently noisy 
which makes the transitions 
non-deterministic



Example 2: OpenAI Gym (Humanoid Standup)

● R: a reward for moving upward
○ Technically there are other rewards as 

well, but it’s irrelevant for our purposes

https://www.youtube.com/shorts/K-pzg5nw7us

https://www.youtube.com/shorts/K-pzg5nw7us


Example 3: Portfolio management (Finance)

● S: Number of each stock in the 
portfolio and their current value

○ Full Stock FB (Number: 100, Price: 
235.79)

○ Full Stock AMZN (Number: 50, 112.18)
○ …



Example 3: Portfolio management (Finance)

● A: Buy #stocks available in the 
market, Sell #stocks in your 
portfolio:

○ Sell Full Stock FB (Number: 10)
○ Buy Full Stock BABA (Number: 20) 

112.18)
○ etc



Example 3: Portfolio management (Finance)

● P: the probability of the next time 
step values of the stocks in the 
market and the number of stocks 
the agent has in the portfolio

○ The values are inherently stochastic 
because they depend on market forces 
that aren’t fully predictable by the agent



Example 3: Portfolio management (Finance)

● R: the change in portfolio valuation



Tutorial Questions

Is the reinforcement learning framework adequate to usefully represent all goal-directed learning 
tasks? Can you think of any clear exceptions?

REMINDER:

• Goal directed: one has an objective in mind

• Involves planning

• Habitual:

• Actions that are automatic



Partially observable states

● The MDP framework fails when the state cannot be fully observed.
○ Imagine trying to control the temperature of the house

■ States: temperature of the house
■ Actions: controlling the knob of the heater
■ State transitions: given the current temperature of the house and the angle of the knob 

turns, the house temperature will transition to a new state
● It’s Markovian as the the house heating state from >1 prior time steps doesn’t 

affect the current one
● It’s probabilistic due to physics of heat 

■ Reward: The change in distance between the target and current temperature
■ There’s a thermometer in a room that lets you observe that room’s temperature

● However that thermometer reading is not an accurate proxy for the whole house
○ The agent’s state space will correspond to the temperature readings of the 

room as opposed to the actual temperature of the house
○ POMDPs have been introduced to deal with this kind of problems



Non-Markovian Stochastic process

● Not all stochastic processes have the Markov property:
○ P(St+1|St,...,S1,At) = P(St+1|St,At)
○ In these stochastic processes, states do not contain full information needed for transitions

● An urn contains two red balls and one green ball. One ball was drawn 
yesterday, one ball was drawn today, and the final ball will be drawn 
tomorrow. All of the draws are "without replacement".

○ Suppose you know that today's ball was red, but you have no information about yesterday's 
ball. The chance that tomorrow's ball will be red is 1/2. That's because the only two remaining 
outcomes for this random experiment are "r,r,g" and "g,r,r".

○ On the other hand, if you know that both today and yesterday's balls were red, then you are 
guaranteed to get a green ball tomorrow.

○ This discrepancy shows that the probability distribution for tomorrow's color depends not only 
on the present value, but is also affected by information about the past.

○ This stochastic process of observed colors doesn't have the Markov property.

https://math.stackexchange.com/questions/89394/example-of-a-stochastic-process-which-does-not-h
ave-the-markov-property

https://math.stackexchange.com/questions/89394/example-of-a-stochastic-process-which-does-not-have-the-markov-property
https://math.stackexchange.com/questions/89394/example-of-a-stochastic-process-which-does-not-have-the-markov-property


Tutorial Questions

Give an example of situations in which habitual behaviour is enough and will work 
reliably, and give an example of a task in which you really need a goal directed 
approach.



Habitual behavior

● the environment or outcome is stable
○ Tooth brushing
○ making tea
○ Riding a bicycle
○ etc



Goal-directed behavior

● the environment necessitates to go somewhere new, or to reach a location 
when the transitions are constantly changing; planning is necessary

○ Arranging travel (visa, tickets, hotels, etc)
○ Chess playing
○ Planning your education/career path
○ etc



Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan 
like that shown in the following image.

We can characterize this space 
as an MDP, where each state 
represents one room in the 
building (or outside, e.g., room 
5) and where the agent can 
transition between rooms by 
moving either north, south, 
east, or west. The agent cannot 
stay in the same state from 
time step to time step, except 
once it is outside.



Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan 
like that shown in the following image.

Draw a graph with nodes 
corresponding to states and 
edges to - state transitions.



Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan 
like that shown in the following image.

Draw a graph with nodes 
corresponding to states and 
edges to - state transitions.



Tutorial Questions

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4. 
Additionally, the agent continues reaping rewards once it's already outside every time step.

Add the rewards to the 
transitions



Tutorial Questions

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4. 
Additionally, the agent continues reaping rewards once it's already outside every time step.

Add the rewards to the 
transitions



Tutorial Questions

Our robot's goal in this world is to get outside (room 5) from its starting position in room 
2.

Make the necessary changes 
to the previously drawn 
graph



Tutorial Questions

Our robot's goal in this world is to get outside (room 5) from its starting position in room 
2.

Make the necessary changes 
to the previously drawn 
graph



Tutorial Questions

Build a table / matrix to 
represent Q(st,at)

● rows represent the world 
states (rooms)

● columns represent actions 
that the robot can take.

● all valid state-action pairs 
are initialized to 0

● invalid state-action pairs 
are initialized to -1



Tutorial Questions

Your goal in this exercise is to update Q(st,at) according to the 
Q-learning algorithm. In this exercise we will make the following 
assumptions:

● α = 1
● γ =0.8
● Transitions are always successful
● Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 0 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 0 0 -1

rm5 0 0 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 1: west, west, south, north

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 0 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 0 0 -1

rm5 0 0 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 1: west, west, south, north

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 0 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 100 0 -1

rm5 100 0 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 2: west, north, north, south

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 0 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 100 0 -1

rm5 100 0 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 2: west, north, north, south

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 180 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 100 0 -1

rm5 100 180 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 3: west, west, north, south, south

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 0 -1 -1

rm1 180 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 0

rm4 0 100 0 -1

rm5 100 180 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 3: west, west, north, south, south

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 80 -1 -1

rm1 180 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 80

rm4 0 244 0 -1

rm5 100 180 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 4: west, west, east, north, north

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 80 -1 -1

rm1 180 0 -1 -1

rm2 -1 -1 -1 0

rm3 0 -1 0 80

rm4 0 244 0 -1

rm5 100 180 0 0



Tutorial Questions

For each action within each trajectory, update  according to 
the Q-learning algorithm after each trajectory (assume that 
your agent always starts in room 2 at the beginning of each 
trajectory).

● Trajectory 4: west, west, east, north, north

Q(st,at) ← α (rt + γ maxa Q(st+1,a)) = rt + 0.8 maxa Q(st+1,a)

North South East West

rm0 -1 80 -1 -1

rm1 244 0 -1 -1

rm2 -1 -1 -1 64

rm3 144 -1 0 195.2

rm4 0 244 156.16 -1

rm5 100 180 0 0


