General Principles of Human and Machine Learning

Dr Charline Tessereau

https://hmc-lab.com/GPHML.html

THIS WEEK:

- SUMMARY PAST MATERIAL COVERED + FINISHING LAST SESSION'S MATERIAL RL TO UNDERSTAND COGNITIVE PROCESSES
 - MANIFOLD TO UNDERSTAND NEURAL POPULATION DYNAMICS
 - RSA TO UNDERSTAND NEURAL REPRESENTATIONS

RL RESULTS: INVESTIGATING MECHANISMS OF DECISION MAKING AND LEARNING

- Value/Q-learning: formalizes operant and pavlovian conditioning
- Policy gradient: formalizes 'repeat bias' / 'win-stay' behaviors
- Actor-critic: investigates boundary between values and actions
- Hierarchical RL: investigates how we break-out tasks
- Model-based: how we plan ahead

MODEL-BASED

The transitions between states and the reward vector over the states are known.

Learning the optimal policy using simulated experience

=graph search

MODEL-BASED

- Requires full knowledge of the model
- · Can be very expensive especially in large state spaces

MODEL-BASED

- Requires full knowledge of the model
- · Can be very expensive especially in large state spaces
- Some intermediary exists: DYNA
 - D Dynamic
 - Y Immediate
 - N Neighbourhood
 - A Approximation

• Initialize the model, initialize the Q-values

- · Initialize the model, initialize the Q-values
- Policy learning:

- Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning
 - Store the previous state, the action, reward and next state in the 'model'

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning
 - Store the previous state, the action, reward and next state in the 'model'
- Planning phase: 'simulate' offline the model to learn the Q-values.

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning
 - Store the previous state, the action, reward and next state in the 'model'
- · Planning phase: 'simulate' offline the model to learn the Q-values.
- -> Replay

• Enables to save 'real experience' to have an estimate of the Q function

REPLAY AS A NEURAL MECHANISM

Hippocampal place cells fire more around their preferred location:

REPLAY AS A NEURAL MECHANISM

Hippocampal place cells activities display 'replay' patterns:

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning
 - Store the previous state, the action, reward and next state in the 'model'
- Planning phase: 'simulate' offline the model to learn the Q-values.
- · Enables to save 'real experience' to have an estimate of the Q function
- Problem: really dependent on your model!

REPLAY AS A NEURAL MECHANISM

Hippocampal place cells activities display 'replay' patterns:

- Scaled with performance
- Influenced by new rewards, novelty

- · Initialize the model, initialize the Q-values
- Policy learning:
 - Select an action based on the current policy and observe the resulting reward and next state
 - Update the Q-values using Q learning
 - Store the previous state, the action, reward and next state in the 'model'
- Planning phase: 'simulate' offline the model to learn the Q-values.
- · Enables to save 'real experience' to have an estimate of the Q function
- Problem: really dependent on your model!

- "Simulating the model" requires a good model!
 - · Important (ongoing) questions about:
 - how, what and when storing events
 - how, what and when retrieving/learning from past

- Examples of models:
 - (s,a,r,s') random selection among past experiences

- Examples of models:
 - (s,a,r,s') random selection among past experiences
 - Importance sampling: based on the probability distribution of the target policy compared to the behavior policy

- Examples of models:
 - (s,a,r,s') random selection among past experiences
 - Importance sampling: based on the probability distribution of the target policy compared to the behavior policy
 - Prioritized replay: assigns priorities to the experiences based on their importance or learning potential - typically based on the TD error

Prioritised replay: assigns priorities to the experiences based on their importance or learning potential.

Prioritised replay: assigns priorities to the experiences based on their importance or learning potential.

Prioritised replay: assigns priorities to the experiences based on their importance or learning potential.

Mattar and Daw. Nature. (2018)

Prioritised replay: assigns priorities to the experiences based on their importance or learning potential.

Mattar and Daw. Nature. (2018)

Flexibility

Model-based

- Planning
- Sample Efficiency
- Robustness to sparse rewards

Model-free

Efficiency

Flexibility

Model-based

- Planning
- Sample Efficiency Computational
- Robustness to sparse rewards
- Model inaccuracy
- - Complexity
 - Model bias

Model-free

Efficiency

THERE IS SOMETHING IN BETWEEN

SUCCESSOR REPRESENTATION: PREDICTED DISCOUNTED SUM OF STATE OCCUPANCY

$$V_P(s) = \sum_{t=0}^{\infty} \gamma^t P_{\pi}(s|s_t) r(s_t)$$

$$V_P = \sum_{t=0}^{\infty} \gamma^t P_{\pi}^t r = (\mathbb{1}_N - \gamma P_{\pi})^{-1} r.$$

$$M = \sum_{k=0}^{\infty} \gamma^k P^k$$

k=0 M: Successor representation

$$M = (\mathbb{1}_N - \gamma P_\pi)^{-1}$$

PLANNING WITH THE SR IS MORE EFFICIENT

PLANNING WITH THE SR IS MORE EFFICIENT

- Link one state to another according to "how many discounted times the agent can expect to visit state 2 from its current state"

PLANNING WITH THE SR IS MORE EFFICIENT

- Link one state to another according to "how many discounted times the agent can expect to visit state 2 from its current state"
- More efficient, as in this example: the agent already can access informations from s₃ while being in s₁.

INTERMEDIARY: EIGENVECTORS

Eigenvectors: vectors that do not change direction when applying a linear transformation

$$\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$$

$$(\boldsymbol{A} - \lambda \cdot I) \cdot \boldsymbol{v} = \vec{0}$$

$$I = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

INTERMEDIARY: EIGENVECTORS

- v is an "eigenvector"
- Lambda is an "eigenvalue"
- Eigenvectors capture direction of main actions of the multiplication by A
- Eigenvalues capture how much this direction $(\mathbf{A} \lambda \cdot I) \cdot \mathbf{v} = \vec{0}$
 - gets extended (if lambda >1)
 - or squeezed (if lambda <1)

$$A \cdot v = \lambda \cdot v$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

SR: A DESCRIPTION OF THE STATE OCCUPANCY AT DIFFERENT TIMESCALES

The numerical rank of P^k (=the "dimension of the number of directions" that it represents) decreases with time:

 P^t represents the states occupancy description at time $t = after\ t$ timesteps in the Markov chain

SR: A DESCRIPTION OF THE STATE OCCUPANCY AT DIFFERENT TIMESCALES

As time evolve, the graph of points progressively converges to the limit of state-occupancy

SR: THE EIGENVECTORS PROVIDE A FORM OF 'FREQUENCY' DISTRIBUTION OF THE STATE OCCUPANCY

One can cut the dimension with minimal predictive harms.

SR AND GAUSSIAN KERNEL: GENERALISATION MECHANISMS

- Gaussian kernels link two states according to how far away they are.
 - Usually, this distance is defined from the Euclidean distance
- In the SR representation, it is similar but it is about 'accessible distance':
 - Depends on the transition in the environment and the policy of the agent

SR: CAN REPRODUCE PLACE CELLS 'REMAPPING'

Data- place field

(Alvernhe et al., Eur. J. Neurosci., 2011)

SR- place field

- When a new barrier is introduced, the transition probability changes
- Both hippocampal place cells and SR column vectors adjust to that change in a similar way
- This lead to a new model of the hippocampus as a 'predictive map'

SUMMARY SR

- Links state, space and time
- Can be learned using TD error:

$$\delta_t(s) = \mathcal{I}(s_t, s) + \gamma \hat{M}(s_{t+1}, s) - \hat{M}(s_t, s)$$

- Can explain the evolution of neural coding based on environmental changes
- Is more flexible than model-free but more efficient than model-based approaches.

NON-RL APPROACHES TO DECIPHERING THE NEURAL CODE

MANIFOLD: TOPOLOGICAL SPACE THAT LOCALLY RESEMBLES AN EUCLIDEAN SPACE

- Example: Sphere
- Allow more complicated structures to be expressed and understood in terms of simpler spaces

MANIFOLD ANALYSIS: TOOL FOR DIMENSIONALITY REDUCTION

Characterizing manifolds and their local euclidean approximation:

- gives information on behavior of objects in that space
- Enables dimensionality reduction

MANIFOLD ANALYSIS EXAMPLE: PRINCIPAL COMPONENT ANALYSIS (PCA)

- Project data point into transformed dimensions
- Those dimensions are such that they maximise the variance of the dataset

MANIFOLD ANALYSIS EXAMPLE: PRINCIPAL COMPONENT ANALYSIS

The axis correspond to eigenvectors of the covariance matrix of the data points:

$$C = \frac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{X}_i - \bar{\boldsymbol{X}})^T (\boldsymbol{X}_i - \bar{\boldsymbol{X}})$$

MANIFOLD ANALYSIS EXAMPLE: PRINCIPAL COMPONENT ANALYSIS (PCA)

- Eigenvectors take home message: "dimension of highest spread" of your data
- PCA take home message: "dimension of highest spread of the variance"

- Neural computations can be hidden at the level of single-neuron firing rates.

- Neural computations can be hidden at the level of single-neuron firing rates.
- Task-specific dynamics can be highlighted using PCA reduction.

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:
 - each loop is once around a repeating cycle
 - blue is slowest.

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:
 - each loop is once around a repeating cycle
 - blue is slowest.
- The 2D manifold PC1,PC2 clearly represents the cyclic motion

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:
 - each loop is once around a repeating cycle
 - blue is slowest.
- The 2D manifold PC1,PC2 clearly represents the cyclic motion
- The third dimension adds separability in the speed domain

- Behaviorally relevant variables in a sensory decision making task:
 - Neural activities can be embedded in a 2D manifold:
 - A stimulus-axis
 - A choice-axis
- Behaviorally relevant neural variance is often explained by a small number of dimensions (blue, red axes).

REPRESENTATION SIMILARITY ANALYSIS TO INFER NETWORKS SPECIFICITY AND CONNECTIVITY

- Dissimilarity between 2 stimuli/conditions is:
 - 1-C, C = Correlation between activity elicited by 2 stimuli/conditions
 - Ranges between 0 and 2:
 - 0 for perfect correlation
 - 1 for no correlation
 - 2 for perfect anticorrelation

REPRESENTATION SIMILARITY ANALYSIS TO INFER NETWORKS SPECIFICITY AND CONNECTIVITY

- Dissimilarity between 2 stimuli/conditions is:
 - 1-C, C = Correlation between activity elicited by 2 stimuli/conditions
 - Ranges between 0 and 2:
 - 0 for perfect correlation
 - 1 for no correlation
 - 2 for perfect anticorrelation
- These dissimilarities for all pairs of conditions are assembled in the Representation Dissimilarity Matrix.
- Each cell of the RDM compares the response patterns elicited by two images.

REPRESENTATION SIMILARITY ANALYSIS TO INFER ENCODING SPECIFICITY

- RDMs can be compared too
- e.g. to a model's RDM in response to a similar condition
- Example here: the authors transform the image according to different algorithm or processing models

REPRESENTATION SIMILARITY ANALYSIS TO INFER ENCODING SPECIFICITY

They produce RDMs for different models and brain regions (obtained from fMRI data)

REPRESENTATION SIMILARITY ANALYSIS TO INFER ENCODING SPECIFICITY EVC

- The correlation between the RDMs can help match:
- region-to-region functional specificity
- region-to-model functional specificity

- SUMMARY -

RL AND NON-RL METHODS TO DECIPHERING BRAINS AND NEURAL NETWORKS

RL:

- The specificity of the design of the agent chosen enable to shed light on how humans or animals perform in tasks:
 - Its performance related to model design indicates what basic elements are needed to perform a task
 - The different components can help formulate hypothesis on a specific brain region's role in a task

- SUMMARY -RL AND NON-RL METHODS TO DECIPHERING BRAINS AND NEURAL NETWORKS

- RL: Some direction of comparison of the approaches covered:
 - Dyna: to study replay processes
 - SR: to study prediction
 - Model-free/Model-Based: to investigate their interplay
 - Actor-critic VS policy gradient: to study value representation and action selection

- SUMMARY -RL AND NON-RL METHODS TO DECIPHERING BRAINS

AND NON-REMETHODS TO DECIPHERING BRAINS AND NEURAL NETWORKS

- RL: Some direction of comparison of the approaches covered:
 - Dyna: to study replay processes
 - SR: to study prediction
 - Model-free/Model-Based: to investigate their interplay
 - Actor-critic VS policy gradient: to study value representation and action selection
- all of those approaches enable to study behaviors
- they also improve from neurosciences advances
 - in particular, we need more flexible agents!

- SUMMARY -RL AND NON-RL METHODS TO DECIPHERING BRAINS AND NEURAL NETWORKS

Manifold:

- Can capture task-relevant dimensions of neural activities practical for dimension reduction
- Comparing those dimension and the stability of the dynamics using modeling enables to shed light on neural computations
- Embedding useful task-related dynamics within neural network can help perform tasks

- SUMMARY -

RL AND NON-RL METHODS TO DECIPHERING BRAINS AND NEURAL NETWORKS

RSA:

- Can capture representational and functional marker of a brain region/model by looking at its pattern of activity correlations
- RDMs capture how different do their react to stimuli/experimental conditions
- Can be used to compare to models and or other brain regions:
 - With models, it gives information on the encoding of the region
 - With brain regions, it can be used to infer connectivity between brain regions