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THIS WEEK:

SUMMARY PAST MATERIAL COVERED + FINISHING LAST
SESSION’S MATERIAL
RL TO UNDERSTAND COGNITIVE PROCESSES
MANIFOLD TO UNDERSTAND NEURAL POPULATION
DYNAMICS
RSA TO UNDERSTAND NEURAL REPRESENTATIONS



RL RESULTS:
INVESTIGATING MECHANISMS OF DECISION MAKING
AND LEARNING

Value /Q-learning: formalizes operant and pavlovian
conditioning

Policy gradient: formalizes ‘repeat bias’ /“win-stay’
behaviors

Actor-critic: investigates boundary between values and
actions

Hierarchical RL: investigates how we break-out tasks
Model-based: how we plan ahead



MODEL-BASED

The transitions between states and the reward vector over the states are known.

Learning the optimal policy using simulated experience
=graph search

Value update
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MODEL-BASED

Requires full knowledge of the model
Can be very expensive - especially in large state spaces



MODEL-BASED

Requires full knowledge of the model
Can be very expensive - especially in large state spaces

Some intermediary exists: DYNA
D - Dynamic

Y - Immediate

N - Neighbourhood

A - Approximation



DYNA

Policy / Value
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DYNA

Initialize the model, initialize the Q-values

Policy learning;:
Select an action based on the current policy and observe the
resulting reward and next state
Update the Q-values using Q learning
Store the previous state, the action, reward and next state in the
‘model’

Planning phase: ‘simulate’ offline the model to learn the Q-values.

-> Replay

Enables to save ‘real experience’ to have an estimate of the Q function



REPLAY AS ANEURAL MECHANISM

Hippocampal place cells fire more around their preferred location:

Marozzi and Jeftery, Curr. Biol., 2012.



REPLAY AS A NEURAL MECHANISM

Hippocampal place cells activities display ‘replay” patterns:

Forward replay PO Reverse replay
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Carr, Jadhav, and Frank. Nat. Neuro. (2018)
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Initialize the model, initialize the Q-values
Policy learning;:
Select an action based on the current policy and observe the
resulting reward and next state
Update the Q-values using Q learning
Store the previous state, the action, reward and next state in the
‘model’
Planning phase: ‘simulate’ offline the model to learn the Q-values.
Enables to save ‘real experience’ to have an estimate of the Q function
Problem: really dependent on your model!



REPLAY AS A NEURAL MECHANISM

Hippocampal place cells activities display ‘replay” patterns:

Forward replay PO Reverse replay
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+ Scaled with performance
 Influenced by new rewards, novelty

Carr, Jadhav, and Frank. Nat. Neuro. (2018)



DYNA

Initialize the model, initialize the Q-values
Policy learning;:
Select an action based on the current policy and observe the
resulting reward and next state
Update the Q-values using Q learning
Store the previous state, the action, reward and next state in the
‘model’
Planning phase: ‘simulate’ offline the model to learn the Q-values.
Enables to save ‘real experience’ to have an estimate of the Q function
Problem: really dependent on your model!



DYNA

"Simulating the model” requires a good model!
Important (ongoing) questions about:
how, what and when storing events
how, what and when retrieving /learning from past



DYNA

Examples of models:
(s,a,1,8") - random selection among past experiences
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DYNA

Examples of models:
(s,a,1,8") - random selection among past experiences
Importance sampling: based on the probability distribution of the
target policy compared to the behavior policy
Prioritized replay: assigns priorities to the experiences based on
their importance or learning potential - typically based on the TD
error



DYNA

Prioritised replay: assigns priorities to the experiences based on their
importance or learning potential.

Open field Linear track
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DYNA

Prioritised replay: assigns priorities to the experiences based on their
importance or learning potential.
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Prioritised replay: assigns priorities to the experiences based on their
importance or learning potential.
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DYNA

Prioritised replay: assigns priorities to the experiences based on their
importance or learning potential.
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SUMMARIZED SUMMARY

Model-based

- Planning - Model inaccuracy
- Sample Efficiency - Computational
- Robustness to sparse Complexity
rewards - Model bias
Model-free
>

Efficiency
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SUMMARIZED SUMMARY
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using Deep QL
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Flexibility

SUMMARIZED SUMMARY

Model-based
_ Slmph.c?ty . - Exploration problems
- Versatility, especially Lack of generalization
using Deep QL

. - Suboptimal policies
- Sample etficiency

Model-free

Efficiency



Flexibility
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SUMMARIZED SUMMARY

Model-based

Model-free

Efficiency



THERE IS SOMETHING IN BETWEEN

A
Model-based

Successor representation

Flexibility

Model-free

Efficiency



SUCCESSOR REPRESENTATION: PREDICTED DISCOUNTED
SUM OF STATE OCCUPANCY
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PLANNING WITH THE SR IS MORE EFFICIENT

Model-based k=0 Suceessor ,
Representation
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PLANNING WITH THE SR IS MORE EFFICIENT

Model-based k=0 successor .
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- Link one state to another according to “how many discounted
times the agent can expect to visit state 2 from its current state”



PLANNING WITH THE SR IS MORE EFFICIENT

Model-based k=0 successor .
Representation
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Link one state to another according to “how many discounted
times the agent can expect to visit state 2 from its current state”
More efficient, as in this example: the agent already can access
informations from sz while being in s;.



INTERMEDIARY :
EIGENVECTORS

- Eigenvectors: vectors that do not change direction when applying a linear
transtformation

A-v=)\ v

(A=X-1)-v=0
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INTERMEDIARY :
EIGENVECTORS

- v s an “eigenvector”

- Lambda is an “eigenvalue”

- Eigenvectors capture direction of main actions A-v=)\-v

of the multiplication by A .

- FEigenvalues capture how much this direction (A —A-1)-v =0
gets extended (if lambda >1)

- or squeezed (if lambda <1)
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SR: A DESCRIPTION OF THE STATE OCCUPANCY AT
DIFFERENT TIMESCALES

The numerical rank of P* (=the “dimension of the number of directions” that it
represents) decreases with time:

A A A - —
20 40 oo 80 100 120 140 160 180 200

Spectral decomposition of the SR= eigenvalues

Pt represents the states occupancy description at time t = after t timesteps in the Markov
chain



SR: A DESCRIPTION OF THE STATE OCCUPANCY AT
DIFFERENT TIMESCALES
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As time evolve, the graph of points progressively converges to the limit of state-occupancy



SR: THE EIGENVECTORS PROVIDE A FORM OF
‘FREQUENCY” DISTRIBUTION OF THE STATE OCCUPANCY
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One can cut the dimension with minimal predictive harms.



SR AND GAUSSIAN KERNEL:
GENERALISATION MECHANISMS

- Gaussian kernels link two states according to how far away they
are.

- Usually, this distance is defined from the Euclidean distance

- In the SR representation, it is similar but it is about “accessible

distance’:
- Depends on the transition in the environment and the policy
of the agent



SR: CAN REPRODUCE PLACE CELLS ‘REMAPPING’

Data- place field SR- place field
(Alvernhe et al., Eur. J. Neurosci.,2011)
Near | Near
2 — 1

=
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- When a new barrier is introduced, the transition probability changes

- Both hippocampal place cells and SR column vectors adjust to that change
in a similar way

- This lead to a new model of the hippocampus as a “predictive map’

Stachenfeld, Botvinick and Gershman, Nat. Neurosci., 2017



SUMMARY SR

Links state, space and time
Can be learned using TD error:

5t(8) - I(Sta S) * ’YM(St+17 8) i M(Sta 8)

Can explain the evolution of neural coding based on environmental
changes

[s more flexible than model-free but more efficient than model-based
approaches.
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NON-RL APPROACHES TO DECIPHERING THE NEURAL
CODE



MANIFOLD:
TOPOLOGICAL SPACE THAT LOCALLY RESEMBLES AN
EUCLIDEAN SPACE

Example: Sphere
Allow more complicated structures to be expressed
and understood in terms of simpler spaces



MANIFOLD ANALYSIS: TOOL FOR DIMENSIONALITY
REDUCTION

Characterizing manifolds and their
local euclidean approximation: e e mbedcing
gives information on behavior of SUCLEL S
objects in that space 1

- Enables dimensionality reduction 8

2

Jazayeri, and Ostojic. Current Opinion in Neurobiology. 2021.



MANIFOLD ANALYSIS EXAMPLE:
PRINCIPAL COMPONENT ANALYSIS (PCA)

- Project data point into transformed dimensions
- Those dimensions are such that they maximise the variance of the dataset

X2

x1

x0



MANIFOLD ANALYSIS EXAMPLE:
PRINCIPAL COMPONENT ANALYSIS

The axis correspond to eigenvectors of the covariance matrix of the data
points:
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MANIFOLD ANALYSIS EXAMPLE:
PRINCIPAL COMPONENT ANALYSIS (PCA)

- Eigenvectors take home message: “dimension of highest spread” of your

data

- PCA take home message: “dimension of highest spread of the variance”

Step 4 Eigenvector matrix
—@l7—0I7
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PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY
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- Neural computations can be hidden at the level of single-neuron firing
rates.

Urai, et al. Nat. Neuro.. 2022.



PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY
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- Neural computations can be hidden at the level of single-neuron firing
rates.

- Task-specific dynamics can be highlighted using PCA reduction.

Urai, et al. Nat. Neuro.. 2022.



PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:

- each loop is once around a repeating cycle

- blue is slowest.

Urai, et al. Nat. Neuro.. 2022.



PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:
- each loop is once around a repeating cycle
- blue is slowest.
- The 2D manifold PC1,PC2 clearly represents the cyclic motion

Urai, et al. Nat. Neuro.. 2022.



PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY

- Motor cortex recordings during cycling at different speed
- Picture shows neural responses:
- each loop is once around a repeating cycle
- blue is slowest.
- The 2D manifold PC1,PC2 clearly represents the cyclic motion
- The third dimension adds separability in the speed domain

Urai, et al. Nat. Neuro.. 2022.



PCA TO INVESTIGATE THE MANIFOLDS OF NEURAL
ACTIVITY

Firing rate 3

Behaviorally relevant variables in a sensory decision making task:
Neural activities can be embedded in a 2D manifold:
A stimulus-axis
A choice-axis
Behaviorally relevant neural variance is often explained by a small
number of dimensions (blue, red axes).

Urai, et al. Nat. Neuro.. 2022.



REPRESENTATION SIMILARITY ANALYSIS TO INFER
NETWORKS SPECIFICITY AND CONNECTIVITY

Dissimilarity between 2 stimuli/
conditions is:
1-C, C = Correlation between activity
elicited by 2 stimuli/conditions
Ranges between 0 and 2:
0 for perfect correlation
1 for no correlation
2 for pertfect anticorrelation

1

brain or model

Kriegeskorte, Mur and Bandettini, Front. Syst. Neurosci. 2008



REPRESENTATION SIMILARITY ANALYSIS TO INFER
NETWORKS SPECIFICITY AND CONNECTIVITY

dissimilarity matrix

- Dissimilarity between 2 stimuli/
conditions is:
- 1-C, C = Correlation between activity
elicited by 2 stimuli/conditions
- Ranges between 0 and 2:
- 0 for pertect correlation

compute dissimilarity

. 1 for no Correlation (1-correlation across space)
- 2 for perfect anticorrelation I* “ activty pattems
1 i
- These dissimilarities for all pairs of sl

conditions are assembled in the
Representation Dissimilarity Matrix.

- Each cell of the RDM compares the
response patterns elicited by two
images.

experimental conditions

Kriegeskorte, Mur and Bandettini, Front. Syst. Neurosci. 2008



REPRESENTATION SIMILARITY ANALYSIS TO INFER
ENCODING SPECIFICITY

stimulus image grayscale low-pass grayscale high-pass grayscale

- RDMs can be compared too
- e.g.toamodel’s RDM in
response to a similar condition

silhouette isoluminant V1 simple cell V1 complex cell

0 50 100 150 200 250
RGB intensity

- Example here: the authors
transform the image according to _—
different algorithm or processing
models

—
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Kriegeskorte, Mur and Bandettini, Front. Syst. Neurosci. 2008



REPRESENTATION SIMILARITY ANALYSIS TO INFER
ENCODING SPECIFICITY

silhouette image

luminance image
(high-pass

luminance image
(low-pass) (Lab

- They produce RDMs for different
models and brain regions

(obtained from fMRI data)

color set
(joint Lab histogram)

face-animate-
face-nonface prototype pattern left FFA

right PPA

100

dissimilarity
[percentile]

Kriegeskorte, Mur and Bandettini, Front. Syst. Neurosci. 2008




REPRESENTATION SIMILARITY ANALYSIS TO INFER
ENCODING SPECIFICITY EVC

(dissimilarity SNR=0.61)
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deviation from early-visual-cortex dissimilarity matrix
(1-Spearman correlation)
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Kriegeskorte, Mur and Bandettini, Front. Syst. Neurosci. 2008



- SUMMARY -
RL AND NON-RL METHODS TO DECIPHERING BRAINS
AND NEURAL NETWORKS

RL:
The specificity of the design of the agent chosen enable to shed light on
how humans or animals perform in tasks:
[ts performance related to model design indicates what basic elements
are needed to perform a task
The different components can help formulate hypothesis on a specific
brain region’s role in a task



- SUMMARY -
RL AND NON-RL METHODS TO DECIPHERING BRAINS
AND NEURAL NETWORKS

RL: Some direction of comparison of the approaches covered:
Dyna: to study replay processes
SR: to study prediction
Model-free / Model-Based: to investigate their interplay
Actor-critic VS policy gradient: to study value representation and
action selection



- SUMMARY -
RL AND NON-RL METHODS TO DECIPHERING BRAINS
AND NEURAL NETWORKS

RL: Some direction of comparison of the approaches covered:
Dyna: to study replay processes
SR: to study prediction
Model-free / Model-Based: to investigate their interplay
Actor-critic VS policy gradient: to study value representation and
action selection

all of those approaches enable to study behaviors
they also improve from neurosciences advances
in particular, we need more flexible agents!



- SUMMARY -
RL AND NON-RL METHODS TO DECIPHERING BRAINS
AND NEURAL NETWORKS

Manifold:
Can capture task-relevant dimensions of neural activities - practical for
dimension reduction
Comparing those dimension and the stability of the dynamics using
modeling enables to shed light on neural computations
Embedding useful task-related dynamics within neural network can help
perform tasks



- SUMMARY -
RL AND NON-RL METHODS TO DECIPHERING BRAINS
AND NEURAL NETWORKS

RSA:

Can capture representational and functional marker of a brain region/

model by looking at its pattern of activity correlations

RDMs capture how different do their react to stimuli/experimental

conditions

Can be used to compare to models and or other brain regions:
With models, it gives information on the encoding of the region
With brain regions, it can be used to infer connectivity between brain
regions



