General Principles of Human and Machine Learning

Lecture 8: Function Learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html

Concept learning as classification

Previous Experiences

Wu, Meder & Schulz (AnnRevPsych forthcoming)

The story so far ... **Concept learning as** classification **Rule-based** X Sandwich

Bread Enclosure

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Concept learning as classification

Bread Enclosure

Wu, Meder & Schulz (AnnRevPsych forthcoming)

The story so far ... **Concept learning as** classification **Rule-based** X Sandwich Previous Experiences **0** Not sandwich Sandwich! X **?** Query - Rule X Flatness ? X 0 X Sandwich? 0 0 0

Bread Enclosure

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Concept learning as classification

Bread Enclosure

X

X

Rule-based

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Concept learning as classification

Previous Experiences

X Sandwich **0** Not sandwich X **?** Query - Rule X Flatness ? X 0 X 0 0 0

Rule-based

Bread Enclosure

THE CUBE RULE OF FOOD IDENTIFICATION

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Concept learning as classification

Previous Experiences

X Sandwich **0** Not sandwich X **?** Query - Rule X Flatness ? X 0 X 0 0 0

Rule-based

Bread Enclosure

THE CUBE RULE OF FOOD IDENTIFICATION

Bread Enclosure

Concept learning as classification

Previous Experiences

X Sandwich **0** Not sandwich X **?** Query - Rule X Flatness ? X 0 X 0 0 0

Rule-based

Bread Enclosure

THE CUBE RULE OF FOOD IDENTIFICATION

CALZONE

CAKE

Concept learning as classification

Previous Experiences

X Sandwich **0** Not sandwich X **?** Query - Rule X Flatness ? X 0 X 0 0 0

Rule-based

Bread Enclosure

THE CUBE RULE OF FOOD IDENTIFICATION

CALZONE

Supervised

Unsupervised

Variable 2

Supervised

MLPs Decision trees and random forests

SVMs

Unsupervised

Variable 2

Supervised

Unsupervised

Variable 2

Supervised

Variable 2

Unsupervised

Today's agenda

- From categories to functions
 - Early Psychological research on how people learn explicit functions
 - Rule-based
 - Similarity-based
 - Hybrid using Bayesian function learning
 - Implicit function learning as a key part of generalization in RL
- Modeling human generalization and exploration in RL
 - Spatially correlated bandit (Wu et al, 2018)
 - Generalization to abstract (Wu et al., 2020) and graph-structured domains (Wu et al,. 2021)
 - Open challenges

Function learning as regression

- Regression is that other branch of supervised learning problems we previously skipped over
- Rather than predicting *discrete* categories, we want to learn to predict a *continuous* real-valued variable
- We do so by learning a function mapping the input space X to the target variable Y $f: X \to Y \text{ where } y = f(x)$
- To make a prediction about so new situation x_* , we simply evaluate the function:

 $y_* = f(x_*)$

• But how do we learn this function? For any set of datapoints, there are an infinite number of functions that pass through them

Previous Experiences

Theories of Function Learning

Regression task

Enjoyment

?

• • •

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Theories of Function Learning

• *Rules* describe an explicit parametric family of candidate functions (e.g., linear or polynomial) (Carroll, 1963; Brehmer, 1976)

Wu, Meder & Schulz (AnnRevPsych forthcoming)

Theories of Function Learning

- *Rules* describe an explicit parametric family of candidate functions (e.g., linear or polynomial) (Carroll, 1963; Brehmer, 1976)
- the basis of generalization (McClelland et al., 1986; Busemeyer et al., 1997)

• Similarity uses the generic principle that similar inputs produce similar outputs (often learned using ANNs) as

- (Carroll, 1963; Brehmer, 1976)
- the basis of generalization (McClelland et al., 1986; Busemeyer et al., 1997)
- Hybrids combine elements of both: Gaussian process (GP) regression uses kernel similarity to learn a (Rasmussen & Williams, 2005; Mercer, PhilTransRoySoc 1909; Lucas et al., PBR 2015)

distribution over functions, and can compositionally combine kernels like we can combine multiple rules

- and responses
 - Rather than learning discrete S-R associations, people learn functions
 - interpolation and extrapolation
- Experiment using relationships such as y = 1.22x + 1.0 or $y = -5.1x + 0.2x^2 + 32.60$

• Carroll (1963) was one of the first to study how people learned continuous mappings between stimuli

- and responses
 - Rather than learning discrete S-R associations, people learn functions
 - interpolation and extrapolation
- Experiment using relationships such as y = 1.22x + 1.0 or $y = -5.1x + 0.2x^2 + 32.60$

stimuli

V

• Carroll (1963) was one of the first to study how people learned continuous mappings between stimuli

- and responses
 - Rather than learning discrete S-R associations, people learn functions
 - interpolation and extrapolation
- Experiment using relationships such as y = 1.22x + 1.0 or $y = -5.1x + 0.2x^2 + 32.60$

stimuli

V

• Carroll (1963) was one of the first to study how people learned continuous mappings between stimuli

response

- and responses
 - Rather than learning discrete S-R associations, people learn functions
 - interpolation and extrapolation
- Experiment using relationships such as y = 1.22x + 1.0 or $y = -5.1x + 0.2x^2 + 32.60$

stimuli

• Carroll (1963) was one of the first to study how people learned continuous mappings between stimuli

Results and interpretation

- Participants are learning functions rather than just discrete associations because they can interprolate and extrapolate from training data
- Participants learned simpler functions better than more complex ones and displayed inductive biases for simpler functions even when shown arbitrary relationships between x and y (no more than 4th degree polynomials)
- Carroll (1967) along with later work (Brehmer 1974; Koh & Meyer, 1991) believed that people learn functions by estimating the parameters for a class of functions (e.g., polynomials) using a process equivalent to regression
 - The class of function corresponds to a hypothesized **rule** about the relationship between variables (e.g., law of gravity: $F = G \frac{m_1 m_2}{m_1}$)

- Standard formulation assuming noisy observations $\mathbf{y} = f(\mathbf{X}) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. noise
- Linear assumption we can model the function as features x weights: f(X) = X^Tw
 (this simplified notations appends a 1 to each x so that one of the weights in w is the intercept)

Maximum Likelihood Estimation (MLE)

 MLE of weights can be found by minimizing the Residual Sum of Squares (RSS):

$$RSS(\mathbf{w}) = \sum_{i}^{n} (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{w}\|$$

- An analytic solution is available through the Moore-Penrose psuedoinverse (Penrose, 1955): $\mathbf{\hat{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- $||^{2}$

- Standard formulation assuming noisy observations $\mathbf{y} = f(\mathbf{X}) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. noise
- Linear assumption we can model the function as features x weights: $f(\mathbf{X}) = \mathbf{X}^{\mathsf{T}}\mathbf{w}$ (this simplified notations appends a 1 to each **x** so that one of the weights in **W** is the intercept)

Maximum Likelihood Estimation (MLE)

 MLE of weights can be found by minimizing the Residual Sum of Squares (RSS):

$$RSS(\mathbf{w}) = \sum_{i}^{n} (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{w}\|$$

 An analytic solution is available through the Moore-Penrose psuedoinverse (Penrose, 1955): $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

 $||^{2}$

- Standard formulation assuming noisy observations $\mathbf{y} = f(\mathbf{X}) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. noise
- Linear assumption we can model the function as features x weights: $f(\mathbf{X}) = \mathbf{X}^{\mathsf{T}}\mathbf{w}$ (this simplified notations appends a 1 to each \mathbf{X} so that one of the weights in **w** is the intercept)

Maximum Likelihood Estimation (MLE)

 MLE of weights can be found by minimizing the Residual Sum of Squares (RSS):

$$RSS(\mathbf{w}) = \sum_{i}^{n} (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{w}\|$$

 An analytic solution is available through the Moore-Penrose psuedoinverse (Penrose, 1955): $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

(n, 1)

 $(\boldsymbol{m}, \boldsymbol{n})$

(m, 1)

 $\parallel 2$

- Standard formulation assuming noisy observations $\mathbf{y} = f(\mathbf{X}) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. noise
- Linear assumption we can model the function as features x weights: $f(\mathbf{X}) = \mathbf{X}^{\mathsf{T}} \mathbf{w}$ (this simplified notations appends a 1 to each \mathbf{X} so that one of the weights in **W** is the intercept)
- Maximum Likelihood Estimation (MLE)
 - MLE of weights can be found by minimizing the Residual Sum of Squares (RSS): estimate $RSS(\mathbf{w}) = \sum (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{w}\|^2$
 - An analytic solution is available through the Moore-Penrose psuedoinverse (Penrose, 1955): $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

(n, 1)

(m, 1)

 $(\boldsymbol{m}, \boldsymbol{n})$

- Standard formulation assuming noisy observations $\mathbf{y} = f(\mathbf{X}) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ is i.i.d. noise
- Linear assumption we can model the function as features x weights: $f(\mathbf{X}) = \mathbf{X}^{\mathsf{T}}\mathbf{W}$ (this simplified notations appends a 1 to each **x** so that one of the weights in **w** is the intercept)
- Maximum Likelihood Estimation (MLE)
 - MLE of weights can be found by minimizing the Residual Sum of Squares (RSS): estimate $RSS(\mathbf{w}) = \sum (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{w}\|^2$
 - An analytic solution is available through the Moore-Penrose psuedoinverse (Penrose, 1955): $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Linear assumptions don't always work

Parametric regression

- Rather than assuming a linear relationship, assume a different functional form
 - Exponential: $f(\mathbf{x}) = \mathbf{w}^{\mathbf{x}}$
 - Logarithmic: $f(\mathbf{x}) = \mathbf{w} \log(\mathbf{x})$
 - Power: $f(\mathbf{x}) = \mathbf{x}^{\mathbf{w}}$
 - Polynomial: $f(x) = w_i x^i + w_{i-1} x^{i-1}$ (switching to univariate x for simplicity

$$(-1 + \ldots + w_i x)$$

Gigerener & Brighton (*TopiCS*, 2009)

Similarity-based theories of function learning

- Associative learning model (ALM; Buseymeyer et al., 1997) used neural networks to encode the generic principle that similar inputs produce similar outputs
 - When stimuli x_* is presented, it activates all input nodes according to their similarity: $a_i(x_*) = \exp\left[-\gamma(x_* x_i)^2\right]$ where γ is a sensitivity parameter
 - Output node y_j is activated according to learned weights: $y_j(x_*) = \sum_{i}^{M} w_{ji} \cdot a_i(x_*)$
 - Weights are updated using the delta-rule based on feedback signal z: $w_{ji} \leftarrow w_{ji} + \alpha \left[f_j(z) - y_j(x_*) \right] a_i(x_*)$ where $f_j(z) = \exp \left[-\gamma (z - y_j)^2 \right]$
 - \bullet Limitation: fails to capture human extrapolation patterns —>
- Extrapolation-Association Model (**EXAM**; Delosh et al,. 1997) extends ALM by adding a linear approximation of ALM outputs to account for more linear extrapolation patterns in humans
 - But humans also sometimes extrapolate in a non-linear fashion (Bott & Heit, 2004)

Neural networks as Universal Function Approximators

- arbitrarily closely by an MLP with just a single hidden layer
 - capacity of the network
- But fitting is not the same as predicting
- As we see from ALM, extrapolation patterns of NNs don't always match the inductive biases of humans learners

Recall Cybenko (1989): Every continuous function can be approximated

adding more nodes in the hidden layer increases the representational

Gaussian Process (GP) regression as a hybrid model

- Bayesian framework for function learning
- Assumes a distribution over functions, where each function corresponds to a hypothesis about the relationship between x and y
- After conditioning on observations, we can make predictions (with uncertainty) about any point along the input space
- Called Gaussian process, because we make Gaussian assumptions
 - the posterior at each point is defined by a mean and variance (details on the next slide)
- GPs are a *non-parametric* model, meaning the complexity is defined by the data not the number of parameters in the chosen functional class (i.e., parametric models)

> 0.0

-0.5

-1.0

-1.5

0

2

15

8

6

X °
- Prior over functions (i.e., hypotheses) is a multivariate Gaussian: $P(f) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$
 - prior mean $m(\mathbf{x})$ is typically set to 0 without loss of generalization
 - Covariance $k(\mathbf{x}, \mathbf{x'})$ is defined by a choice of kernel e.g., RBF kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right)$$

where λ defines the expected smoothness of the function

• Once we acqire some data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$, we can compute a posterior prediction about any new datapoint \mathbf{X}_* that is also Gaussian with mean and variance defined as

$$m(\mathbf{x}_* | \mathscr{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$
$$v(\mathbf{x}_* | \mathscr{D}) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$$

- Prior over functions (i.e., hypotheses) is a multivariate Gaussian: $P(f) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$
 - prior mean $m(\mathbf{x})$ is typically set to 0 without loss of generalization
 - Covariance $k(\mathbf{x}, \mathbf{x'})$ is defined by a choice of kernel e.g., RBF kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right)$$

where λ defines the expected smoothness of the function

• Once we acqire some data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$, we can compute a posterior prediction about any new datapoint \mathbf{X}_* that is also Gaussian with mean and variance defined as

$$m(\mathbf{x}_* | \mathscr{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$
$$v(\mathbf{x}_* | \mathscr{D}) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$$

>

16

Prior

Χ

- Prior over functions (i.e., hypotheses) is a multivariate Gaussian: $P(f) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$
 - prior mean $m(\mathbf{x})$ is typically set to 0 without loss of generalization
 - Covariance $k(\mathbf{x}, \mathbf{x'})$ is defined by a choice of kernel e.g., RBF kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right)$$

where λ defines the expected smoothness of the function

• Once we acqire some data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$, we can compute a posterior prediction about any new datapoint \mathbf{X}_* that is also Gaussian with mean and variance defined as

$$m(\mathbf{x}_* | \mathscr{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$
$$v(\mathbf{x}_* | \mathscr{D}) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$$

16

Prior

Х

- Prior over functions (i.e., hypotheses) is a multivariate Gaussian: $P(f) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$
 - prior mean $m(\mathbf{x})$ is typically set to 0 without loss of generalization
 - Covariance $k(\mathbf{x}, \mathbf{x'})$ is defined by a choice of kernel e.g., RBF kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right)$$

where λ defines the expected smoothness of the function

• Once we acqire some data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$, we can compute a posterior prediction about any new datapoint \mathbf{X}_* that is also Gaussian with mean and variance defined as

$$- m(\mathbf{x}_* | \mathcal{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$v(\mathbf{x}_* | \mathcal{D}) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$$

1.00

0.75

- Prior over functions (i.e., hypotheses) is a multivariate Gaussian: $P(f) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$
 - prior mean $m(\mathbf{x})$ is typically set to 0 without loss of generalization
 - Covariance $k(\mathbf{x}, \mathbf{x'})$ is defined by a choice of kernel e.g., RBF kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right)$$

where λ defines the expected smoothness of the function

• Once we acqire some data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$, we can compute a posterior prediction about any new datapoint \mathbf{X}_* that is also Gaussian with mean and variance defined as

$$- m(\mathbf{x}_* | \mathcal{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$v(\mathbf{x}_* | \mathcal{D}) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$$

1.00

0.75

Generalization

*Don't worry too much about what these equations mean for now; I will provide some intuitions later

GPs provide the best predictions for human function learning

Extrapolation

Griffiths, Lucas, & Williams, (Neurips 2008)

Schulz et al., (CogPsych 2017)¹⁷

Duality of GP function learning

Kernel provides an explicit similarity metric

Kernels can be compositionally combined, similar to how we can combine rules to create new ones

Connection to RL

Connection to RL

- Episodic RL for generalization in new settings (Gershman & Daw, AnnRevPsych 2017; Bottvinick et al., TICS 2019)
 - Store a memory for each previously encountered stimuli **x** and it's reward y
 - Predict the value of new stimuli based on a similarityweighted sum of past episodes

Connection to RL

- Episodic RL for generalization in new settings (Gershman & Daw, AnnRevPsych 2017; Bottvinick et al., TICS 2019)
 - Store a memory for each previously encountered stimuli **x** and it's reward y
 - Predict the value of new stimuli based on a similarityweighted sum of past episodes
- GPs provide a Bayesian analogue of Episodic RL
 - Using an RBF kernel as the similarity metric, Episodic RL is equivalent to the GP posterior mean (Poggio & Bizzi, Nature 2004; Sutton & Barto, 2018; Jäkel, Schölkopf, & Wichman, J.MathPsych, 2008)
 - Yet GPs provide uncertainty estimates, which is essential for defining which states to explore!

GP posterior mean $m(\mathbf{x}_* | \mathcal{D}) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$ $= \sum w_i k(\mathbf{x}, \mathbf{x}')$ i=1where $\mathbf{w} = [\mathbf{K} + \sigma^2 \mathbf{I}]^{-1} \mathbf{v}$

Value function approximation in RL

- Classic function learning is typically a supervised learning problem.
 - Given stimulus \mathbf{X}_* predict $f(\mathbf{X}_*)$
- Value function approximation is a key method for generalization in RL.
 - Use function learning mechanisms for inferring *implicit* value of novel states: V(s') = f(s')
 - Implement a policy on the basis of value: $\pi(s') \propto \exp(V(s'))$
- AlphaGo uses a deep neural network for value function approximation
 - DNNs are simply a universal function approximator (Cybenko, 1989).
 - But for understanding human behavior, GPs offer better interpretability due to psychologically meaningful parameters
 - GPs are equivalent to an infinitely wide deep neural network (Neal, 1996)
- After the break, I will present some of my research using GPs to model human generalization in RL

Silver et al., (*Nature* 2016)

Value function approximation in RL

- Classic function learning is typically a supervised learning problem
 - Given stimulus \mathbf{X}_* predict $f(\mathbf{X}_*)$
- Value function approximation is a key method for generalization in RL.
 - Use function learning mechanisms for inferring *implicit* value of novel states: V(s') = f(s')
 - Implement a policy on the basis of value: $\pi(s') \propto \exp(V(s'))$
- AlphaGo uses a deep neural network for value function approximation
 - DNNs are simply a universal function approximator (Cybenko, 1989).
 - But for understanding human behavior, GPs offer better interpretability due to psychologically meaningful parameters
 - GPs are equivalent to an infinitely wide deep neural network (Neal, 1996)
- After the break, I will present some of my research using GPs to model human generalization in RL

Value network

Silver et al., (*Nature* 2016)

- Function learning is a regression problem
- Early rule-based theories assumed humans learn functions by picking specific class of functions and then optimizing the weights (as in linear or parametric regression) -> Brittle and lacked flexibility
- Similarity-based methods used ANNs to encode the generic principle that similar inputs produce similar outputs -> failed to capture systematic biases in how humans extrapolate
- Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and rule-like compositionality of kernels

- Function learning is a regression problem
- Early rule-based theories assumed humans learn functions by picking specific class of functions and then optimizing the weights (as in linear or parametric regression) -> Brittle and lacked flexibility
- Similarity-based methods used ANNs to encode the generic principle that similar inputs produce similar outputs -> failed to capture systematic biases in how humans extrapolate
- Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and rule-like compositionality of kernels

Spiciness

- Function learning is a regression problem
- Early rule-based theories assumed humans learn functions by picking specific class of functions and then optimizing the weights (as in linear or parametric regression) -> Brittle and lacked flexibility
- Similarity-based methods used ANNs to encode the generic principle that similar inputs produce similar outputs -> failed to capture systematic biases in how humans extrapolate
- Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and rule-like compositionality of kernels

- Function learning is a regression problem
- Early rule-based theories assumed humans learn functions by picking specific class of functions and then optimizing the weights (as in linear or parametric regression) -> Brittle and lacked flexibility
- Similarity-based methods used ANNs to encode the generic principle that similar inputs produce similar outputs -> failed to capture systematic biases in how humans extrapolate
- Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and rule-like compositionality of kernels

5 minute break

Human learning in the lab

Human learning in the lab

Human learning in the lab

Real life problems

Finding a place to live

Picking what to eat

Choosing a research topic

Oder nähle eine Super Bonl

Exploration-Exploitation Dilemma

Herzfeld & Shadmehr (Nat Neuro 2014)

Exploration

Let's explore!

C

But where?

How do people navigate vast environments when we cannot explore all possibilities?

Let's explore!

But where?

Spatially Correlated Bandit

Wu et al., (Nature Human Behaviour 2018)

Click tiles on the grid maximize reward

Leach tile has normally distributed rewards

(The limited search horizon

nearby tiles have similar rewards

Spatially Correlated Bandit

Wu et al., (Nature Human Behaviour 2018)

Click tiles on the grid maximize reward

Leach tile has normally distributed rewards

(The limited search horizon

nearby tiles have similar rewards

Spatially Correlated Bandit

7	5	10	22	32	32	28	24	22	26	33		39	42 Im	54	50	44	70	72	72	57	35	12
6	11	19	29	38	41	42	40	37	36	40		31 9	J	CA9 (ck∕r ′	tile	S44C	1 71	he	gr	i€Þ	27
22	27	30	35	43	50	53	53	51	49	46	ļ	51	O)	30 m	29	26	24 C 39	31	48	45	33	25
45	44	38	36	40	46	47	49	54	55	48	(64	55	59	43	36	39	5 v 32	26	30	27	28
61	55	46	40	37	32	27	31	44	52	44	ļ	58	62	4 e a		4 31	đ	âs	ric	pr r	all	$\sqrt{2}$
62	59	57	54	44	27	14	17	33	46	45	(65 (lis	rið							17	25
53	59	68	71	59	36	17	15	28	45	51		38		35	24	17	17	16	33	48	33	45
46	57	71	77	67	47	26	18	27	45	56	4	45		24r	Bi t	eg	Şę	<u>a</u> 60	29	ngr	iz ₂ O	13
45	56	65	67	60	46	29	20	27	42	55	4	49		13	23	38	38	38	34	47	63	4(
51	57	58	53	47	40	30	23	28	40	49	ļ	55 c		ne ifa	ark 24 r re		ard	22 S	av 26	40	64	66
60	62	58	47	39	38	35	31	35	41	46		64	53	41	50	59	42	19	29	28	29	49

Wu et al., (*Nature Human Behaviour* 2018)

$$UCB(\mathbf{x}) = \mu(\mathbf{x}) + \beta\sigma(\mathbf{x})$$

Bonusrunde! Verbleibende Kacheln: 4 Wie viele punkte kriegst

du wenn du hier klickst? Was glaubst du?

$$UCB(\mathbf{x}) = \mu(\mathbf{x}) + \beta\sigma(\mathbf{x})$$

 $P(\mathbf{x}) \propto \exp(UCB(\mathbf{x})/\tau)$

Bonusrunde! Verbleibende Kacheln: 4 Wie viele punkte kriegst

du wenn du hier klickst? Was glaubst du?

$$UCB(\mathbf{x}) = \mu(\mathbf{x}) + \beta\sigma(\mathbf{x})$$

 $P(\mathbf{x}) \propto \exp(UCB(\mathbf{x})/\tau)$

GP-UCB provides the best account of behavior from the ages of 5 to 55 (*n*=281)

- GP-UCB provides the best account of behavior from the ages of 5 to 55 (n=281)
- We can lesion out each component to show that all are necessary
 - λ lesion replaces GP with a Bayesian RL model (i.e., Kalman filter) that learns the value of each option independently without generalization
 - β lesion removes uncertainty-directed exploration by setting $\beta = 0$
 - τ lesion swaps softmax for an ϵ -greedy policy •

Bayesian Model Selection

- GP-UCB provides the best account of behavior from the ages of 5 to 55 (n=281)
- We can lesion out each component to show that all are necessary
 - λ lesion replaces GP with a Bayesian RL model (i.e., Kalman filter) that learns the value of each option independently without generalization
 - β lesion removes uncertainty-directed exploration by setting $\beta = 0$
 - τ lesion swaps softmax for an ϵ -greedy policy ullet

- GP-UCB provides the best account of behavior from the ages of 5 to 55 (n=281)
- We can lesion out each component to show that all are necessary
 - λ lesion replaces GP with a Bayesian RL model (i.e., Kalman filter) that learns the value of each option independently without generalization
 - β lesion removes uncertainty-directed exploration by setting $\beta = 0$
 - τ lesion swaps softmax for an ϵ -greedy policy

- GP-UCB provides the best account of behavior from the ages of 5 to 55 (n=281)
- We can lesion out each component to show that all are necessary
 - λ lesion replaces GP with a Bayesian RL model (i.e., Kalman filter) that learns the value of each option independently without generalization
 - β lesion removes by setting $\beta = 0$

- The **full model** reproduces the same age-related differences in learning curves
 - β -lesion is also g same decaying le and generally lea

Human development resembles an optimization process in GP parameter space

SA fast cooling

Human development resembles an optimization process in GP parameter space

General principles of human exploration

Generalization

- assume similar stimuli will yield similar rewards.
 - RBF kernel is analogous to Shepard's Law of Generalization
- use Bayesian function learning to learn a value function
 - Distribution over functions is analogous to Bayesian Concept Learning
- extrapolation/interpolation to make predictions about novel stimuli

Uncertainty-directed exploration

- rather than only random exploration, people direct their exploration towards regions of the search space they are most uncertain about
- can also be viewed as an optimism bias:
 - inflating reward expectations by their uncertainty is akin to assuming the most optimistic outcome
 - this optimism pays off because, because it corresponds to also valuing information gain

General principles of human exploration

Generalization

- assume similar stimuli will yield similar rewards.
 - RBF kernel is analogous to Shepard's Law of Generalization
- use Bayesian function learning to learn a value function
 - Distribution over functions is analogous to Bayesian Concept Learning
- extrapolation/interpolation to make predictions about novel stimuli

Uncertainty-directed exploration

- rather than only random exploration, people direct their exploration towards regions of the search space they are most uncertain about
- can also be viewed as an optimism bias:
 - inflating reward expectations by their uncertainty is akin to assuming the most optimistic outcome
 - this optimism pays off because, because it corresponds to also valuing information gain

THE DRIVE FOR KNOWLEDGE

The Science of Human Information-Seeking

https://charleywu.github.io/ downloads/driveforknowledge.pdf pwd is "knowledge"

1. Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

2. Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (*PsychSci* 2019) Meder, Wu, Schulz & Ruggeri (*DevSci* 2021) Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (*NHB* in press)

1. Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (*Nature Human Behaviour* 2018)

2. Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (*PsychSci* 2019) Meder, Wu, Schulz & Ruggeri (*DevSci 2021*) Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

3. Search in abstract conceptual spaces

Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

1. Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

2. Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (*PsychSci* 2019) Meder, Wu, Schulz & Ruggeri (*DevSci 2021*) Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

3. Search in abstract conceptual spaces

Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

4. Graph-structured generalization

Wu, Schulz & Gershman (Comput Brain Behav 2021)

(PLOS Comp Bio 2020)

1. Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (*Nature Human Behaviour* 2018)

2. Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (PsychSci 2019) Meder, Wu, Schulz & Ruggeri (*DevSci 2021*) Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

3. Search in abstract conceptual spaces Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

4. Graph-structured generalization

Wu, Schulz & Gershman (Comput Brain Behav 2021)

5. Safe exploration in risky environments

Schulz, Wu, Huys, Krause & Speekenbrink (Cognitive Science 2018)

Wu, Schulz & Gershman (CBB 2021)

(PLOS Comp Bio 2020)

Schulz, Wu, Huys, Krause & Speekenbrink (Cognitive Science 2018)

1. Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (*Nature Human Behaviour* 2018)

2. Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (PsychSci 2019) Meder, Wu, Schulz & Ruggeri (*DevSci 2021*) Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

3. Search in abstract conceptual spaces Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

4. Graph-structured generalization Wu, Schulz & Gershman (Comput Brain Behav 2021)

5. Safe exploration in risky environments

Schulz, Wu, Huys, Krause & Speekenbrink (Cognitive Science 2018)

6. Forgetful generalization with limited memory

Breit, Ten, Sakaki, Murayama, & Wu (in prep)

7. Social generalization Wu, Deffner, Kahl, Meder, Ho & Kurvers (bioRxiv 2023) Wu, Ho, Kahl, Leuker, Meder, & Kurvers (CogSci 2021)

8. Neural basis for generalization and exploration

Liebe*, Ciranka*, Spies, Lanzenburger, & Wu (in prep)

Witt, Toyokawa, Gaissmaier, Laland, & Wu (Cogsci in press)

Wu, Schulz & Gershman (CBB 2021)

Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

G	am	е	Ор	tior	าร	Н	elp	
	X	8		()		8	R
I	٠	٠	2			1		
U	۰	٠	3	1		1	۲	
ш	2	3	۰	1		1	1	1
ш		1	1	1				
ш	1	2		2	1	1		
ш	۰	з	۰		۰	1		
ш	1	з	۲	з	1	1		
		1	1	1				

Schulz, Wu, Huys, Krause & Speekenbrink (Cognitive Science 2018)

V

alidation on judgments
How many points do you think will be observed at the selected node?
How confident are you?
Least confident Most confident Submit

Wu, Schulz & Gershman (CBB 2021); see also Wu et al,. (PlosCompBio 2022)

Validation on judgments

57	
How many points do you	think will be observed at the selec
Few	N
Ho	ow confident are you?
Least confident	Most
	Submit

Wu, Schulz & Gershman (CBB 2021); see also Wu et al,. (PlosCompBio 2022)

Wu, Schulz & Gershman (CBB 2021); see also Wu et al,. (PlosCompBio 2022)

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain

Wu et al., (CBB 2021)

Feature 1

Pearson Correlation

0

s'

S

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain

Wu et al., (CBB 2021)

Feature 1

Pearson Correlation

0

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain

Wu et al., (CBB 2021)

Feature 1

Pearson Correlation

0

67

44

25

25

43

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain N lture
- A diffusion kernel rep based on the connec

s'

Dearson Correlation

67

44

25

25

43

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain N Iture
- A diffusion kernel rep based on the connec

Pearson Correlation

67

44

25

25

43

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - Learns smooth functions in continuous domain N lture
- A diffusion kernel rep based on the connec

s'

Dearson Correlation

- The RBF kernel, like most classic accounts, represent similarity as distance in feature space
 - continuous domain N
- A diffusion kernel rep based on the connec

Pearson Correlation

Open challenges

Selective Attention

- Were known (Nosoftsky, *JEP:G* 1986; Love et al., *PsychRev* 2004)
- Recently, theories of selective attention describe the learning process whereby irrelevant features are gradually filtered out over the **COURSE OF learning** (Radulescu et al., *AnnuRevNeuro* 2021)
 - (Gottlieb et al., *CurrOpBehavSci* 2020; Dayan et al., *NatNeuro* 2000)
- features) we can't simply attend to all visual features in a scene and then learn to ignore irrelevant ones
- Open Question: How do we learn to attend to relevant features in real-world problems, when we cannot consider all of them?

• Early models included attentional weights to prioritize similarity comparisons along relevant feature dimensions, but assumed weights

• These theories largely align with rational theories of attention, which balance cost of control vs. benefits of increased performance

• While this provides a means to convert raw features into some "psychological space", it fails in natural settings (e.g., with rich visual

Selective Attention

- Were known (Nosoftsky, *JEP:G* 1986; Love et al., *PsychRev* 2004)
- Recently, theories of selective attention describe the learning process whereby irrelevant features are gradually filtered out over the **COURSE OF learning** (Radulescu et al., *AnnuRevNeuro* 2021)
 - (Gottlieb et al., *CurrOpBehavSci* 2020; Dayan et al., *NatNeuro* 2000)
- features) we can't simply attend to all visual features in a scene and then learn to ignore irrelevant ones
- **Open Question:** How do we learn to attend to relevant features in real-world problems, when we cannot consider all of them?

Feature RL model (Niv et al., *J.Neuro* 2015)

assumes value is a sum of feature weights

$$V(\mathbf{x}) = \sum_{\phi_i \in \Phi} \phi_i$$

Weights are updated using the delta rule $\phi_i^{new} = \phi_i^{old} + \eta [R_t - V(\mathbf{x}_{chosen})], \quad \forall \phi_i \in \Phi$

• Early models included attentional weights to prioritize similarity comparisons along relevant feature dimensions, but assumed weights

• These theories largely align with rational theories of attention, which balance cost of control vs. benefits of increased performance

• While this provides a means to convert raw features into some "psychological space", it fails in natural settings (e.g., with rich visual

Contextual Clustering

- Different features are relevant in different contexts, which was already built into classic models of concept learning (Nosoftsky, JEP:G 1986)
 - How do we infer which context or "event" we are in from continous streams of data?

Contextual Clustering

- Different features are relevant in different contexts, which was already built into classic models of concept learning (Nosoftsky, JEP:G 1986)
 - How do we infer which context or "event" we are in from continous streams of data?
- We can frame this as a unsupervised clustering problem, and group related experiences into clusters (Franklin et al., PsychRev 2020; Gershman et al., PsychRev 2010)
 - Different event clusters can thus correspond to different attentional weights or different kernels
- **Open Question**: How do we transfer learned representations from one context to another?

Chinese Restaurant Process (CRP)

- Similar to seating banquet guests
- We first try to seat the *i*th guest (i.e., stimulus) at one of the k existing table (i.e., event), otherwise we open a new table

$$p(\mathbf{x}_i = E_k) = \begin{cases} \frac{n_k}{n - 1 + \alpha} & \text{if k is an occupied table} \\ \frac{\alpha}{n - 1 + \alpha} & \text{otherwise (i.e., open a new} \end{cases}$$

- extrapolation
- Early rule-based approaches lacked flexibility, while similarity-based approaches didn't capture human inductive biases
- GP regression is a hybrid model, using the principles of Bayesian inference to compute a distribution over candidate hypotheses
- with large search spaces
 - structured environments (Wu et al., 2021)

• Functions represent candidate hypotheses about the world allowing us to evaluate an infinite range of possibilities through interpolation and

• GPs not only capture how humans explicitly learn functions, but also how we implicitly learn a value function to guide our exploration in RL tasks

• Originally tested in spatial environments (Wu et al, 2018), but can also be applied to any arbitrary features (Wu et al, 2020), or even graph-

Next week

COSMOS Konstanz

The Computational Summer school on Modeling Social and collective behavior (COSMOS) - Konstanz, DE

https://cosmos-konstanz.github.io/

paramCombs <- expand.grid(alpha = seq(0,1, length.out=20), beta = seq(0,</pre>

nLLs <- sapply(1:nrow(paramCombs), FUN=function(i) likelihood(as.numeric</pre> paramCombs\$nLL <- nLLs #add to dataframe</pre>

bestFit <- paramCombs[paramCombs\$nLL == min(nLLs),] #best fitting combi</pre>

#plot data

ggplot(paramCombs)+

geom_tile(aes(x = alpha, y = beta, fill = nLL)) + geom_contour(aes(x = alpha, y = beta, z = nLL), color = 'white')+ geom_point(data=data.frame(alpha=alpha, beta=beta, type = 'true'), aes geom_point(data=data.frame(alpha=bestFit\$alpha, beta=bestFit\$beta, type scale_fill_viridis_c('nLL', direction = -1)+ labs(title = "Loss landscape", x = expression(alpha),y = expression(beta))+ scale_shape_manual(values= c(4, 0), name = '')+ theme_classic()+ scale_x_continuous(expand = c(0, 0))+ scale_y_continuous(expand = c(0, 0))

,	0			1	~		~	+
	p	a	r	a	m	c	0	m
7	а	t		0	n			
(a	ι =	p	h	a M	í	b E	e
		nl		7	'5(0		
					100 150			
		>	<	n	л.	E		
		_		Ð	nux	Ð		

Next week

Common tools for understanding brains and neural networks

- Manifold Analysis
- Representational Similarity Analysis

When things go wrong...

• Link to computational psychiatry

Task and stimulus

Brain

Artificial

ing

Representation similarity

