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Today’s agenda

® From categories to functions

® arly Psychological research on how people learn explicit functions
® Rule-pased
e Similarity-based

® Hyorid using Bayesian function leaming

® |mplicit function leaming as a key part of generalization in RL

e \lodeling human generalization and exploration in KL
e Spatially correlated bandit (Wu et al,. 2018)

® (Generalization to abstract (Wu et al., 2020) and graph-structured domains (Wu et al,.
2021)

® Open challenges



Function learning as regression

® Regression Is

® Rather than p
want to leam
variable

® \/\'e do so by

that other branch of supervised

earmning problems we previously skipped over

redicting discrete categories, we

to predict a continuous real-valued

learning a function mapping the

input space X to the target variable Y
f: X —> Ywherey = f(x)

® [0 make a prediction about so new situation X,
we simply evaluate the function:

Vi = fXx)

® Sut how do we learmn this function’” For any set of

datapoints, th
functions that

ere are an infinite nuMmber of
pass through them

s

.
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Theories of Function Learning

Regression task Rule-based
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* Rules describe an explicit parametric family of candidate functions (e.g., linear or polynomial)
(Carroll, 1963; Brehmer, 1976)
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Theories of Function Learning
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* Rules describe an explicit parametric family of candidate functions (e.g., linear or polynomial)
(Carroll, 1963; Brehmer, 1976)

* Similarity uses the generic principle that similar inputs produce similar outputs (often learned using ANNSs) as

the basis of generalization
(McClelland et al., 1986; Busemeyer et al., 1997)
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Theories of Function Learning

Regression task Rule-based Similarity-based Hybrid
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* Rules describe an explicit parametric family of candidate functions (e.g., linear or polynomial)
(Carroll, 1963; Brehmer, 1976)

* Similarity uses the generic principle that similar inputs produce similar outputs (often learned using ANNSs) as

the basis of generalization
(McClelland et al., 1986; Busemeyer et al., 1997)

* Hybrids combine elements of both: Gaussian process (GP) regression uses kernel similarity to learn a

distribution over functions, and can compositionally combine kernels like we can combine multiple rules
(Rasmussen & Williams, 2005; Mercer, PhilTransRoySoc 1909; Lucas et al., PBR 2015)



Rule-based theories of function learning

e Carroll (1963) was one of the first to stuady how people learned continuous Mmappings between stimuli
and responses

e Rather than leaming discrete S-R associations, people learm functions

® Unctions are not just a response, but correspond to a set of rules or programs, allowing for
iNterpolation and extrapolation

® —xperiment using relationships suchasy = 1.22x + 1.0 ory =-5.1x + 0.2x2 + 32.60
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Results and interpretation

® Participants are learmning functions rather than just

riva Ropgron Ragion

discrete associations because they can interprolate abe
and extrapolate from training data /

® Participants leamed simpler functions better than L/
more complex ones and displayed inductive biases b [
for simpler functions even when shown arbitrary

relationships between x and y (no more than 4th y

degree polynomials) .

e Carroll (1967) along with later work (Brehmer 1974,
<oh & Mevyer, 1991) believed that people leam
functions by estimating the parameters for a class of

TV
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functions (e.g., polynomials) using a process -
eguivalent to regression s
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® [he class of function corresponds to a ST, S
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Linear regression

® Standard formulation

assuming Noisy observations

y =f(X)+e where €~ N (0,6°) isiid. noise

e Linear assumption — we can model the function as features x

weights: AX) = X'w

(this simplified notatio

welghts In W IS the I

NS appends a 1 to each X so that one of the

ercept)

e Maximum Likelihood Estimation (MLE)
e MLE of weights can be found by minimizing the Residual Sum of

squares (RSS):

n

RSS(wW) = Y (=57 = lly = X"w]]’

® An analytic solution is avallable through the Moore-Penrose
A _1
psuedoinverse (Penrose, 1955) w = (XTX) XTy
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Extension to Bayesian framework (not on the exam!)
e  Gaussian prior on weights: P(w) ~ 4(0,%)
n

Li n ear reg reSS i O n . Gaussianlikelhood: P(y | X, W):/ET; Ivzi;:;l))

o Apply Bayes theorem to estimate the weights:

e Standard formulation assuming noisy observations POWIX.y) o Py | X, w)B(W)
~ N (W|—A"Xy, A7)

y =f(X)+e where €~ N (0,6°) isiid. noise 0

n
where A = ¢, 2XX" + 27!

e Linear assumption — we can model the function as features x
weights: AX) = X'w
(this simplified notations appends a 1 1o each X so that one of the
welghts in W is the intercept)

e Maximum Likelihood Estimation (MLE)

e MLE of weights can be found by minimizing the Residual Sum of
squares (RSS):

n

RSS(wW) = Y (=57 = lly = X"w]]’

features

J(X)
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=

® An analytic solution is avallable through the Moore-Penrose
A _1
psuedoinverse (Penrose, 1955) w = (XTX) XTy
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e Standard formulation assuming Noisy observati
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e MLE of weights can be found by minimizing the Residual Sum of

Squares RSS)' -
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NOISE
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® An analytic solution is available through the Moore-
A _1
psuedoinverse (Penrose, 1955) w = (XTX) XTy

Penrose

Extension to Bayesian framework (not on the exam!)

Gaussian prior on weights: P(w) ~ A4/(0,%)
Gaussian likelihood: P(y | X, w) = HP(yl- | X;, W)

= N (y|X"w,0,T)
Apply Bayes theorem to estimate the weights:
P(w[X,y) & P(y| X, w)P(w)

~ i -1 -1
~ N(W| A" Xy, A7)

Gl’l
where A = ¢, 2XX" + 27!
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Extension to Bayesian framework (not on the exam!)
e  Gaussian prior on weights: P(w) ~ 4(0,%)
n
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Linear assumptions don’t always work
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Parametric regression

different

—xponential

Rather than assuming a linear relationsnip, assume a
functional form

(X)) =w

e | ogarithmic: f(x) = wlog(x)

Power: f(X) = x"

Polynomial: f(x) = wax' + w,_ x4+ ...+ wx

l

(switching to univariate x for simplicity)

i

® Coffee sales

= == linear model | |

s DOlynomial

Time of day (in hours)

Exponential ILogarithmic Power
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Bias-Variance trade-off

London’s daily temperature in 2000

— degree 12 polynomial
- = degree 3 polynomial
-
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Days since 1st January, 2000

Gigerener & Brighton (TopiCS, 2009)
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Similarity-based theories of function learning

L . Stimuli Response Feedback
e Assoclative learning model (ALM; Buseymeyer et al., 1997) used neural networks 1o ) py z
encode the generic principle that similar inputs produce similar outputs 3 .
e \/\nen stimuli x« is presented, it activates all input nodes according to their ;:;L\\ : o
similarity: a;(x«) = exp [—y(x* — xl-)z] where vy is a sensitivity parameter 3 |
| | | | Bt 57 e WS DY . \\
e Output node y; s activated according to learmed weights: ::/ b T (Y S
M s Sy pd /"/
_ | IBRIONERG™, f
= Yy ae - 1
i 3 | 3
, , , ) 4 2 4
e \/Veights are upadated using the delta-rule based on feedback signal . yos
Wi — wii + a |f(2) =y | a(x)
J Ji J J l o i
i - T T |} :
0 2 1ol : -
where f(z) = exp |—y(z — y)) el o »
J i J i g 1BF o \-. b
;;b{ é \ é
e | imitation: fails to capture human extrapolation patterns —> g o -
\ \ : . Q. 75 ; H
® Extrapolation-Association Model (EXAM; Delosh et al,. 1997) extends ALM by adding S sl IS I J IRt
a linear approximation of ALM outputs to account for more linear extrapolation pattems wf N F == Mo
- S DUUEUTEY BT B SUUE DTS DU
I humans 00 20 40 ©0 80 10 O 20 40 60 80 100

10 30 50 70 80 10 30 50 70 90

e But humans also sometimes extrapolate in a non-linear fashion (Bott & Heit, 2004) Stimulus Magnitude 13



Neural networks as Universal Function Approximators

e Recall Cybenko (1989): Bvery continuous function can e approximateo

aroitrarly closely by an ML

2 with just a single hidden layer

® odding more nodes in the hidden layer increases the representational

capacity of the network

hidden=2 hidden=3 hidden=4

® Byt fitting Is Not the same as

predicting
® As we see from ALM,

extrapolation patterns of NNs

hidden=5 hidden=10 hidden=200

don't always match the inductive

blases of humans leamers

14



Gaussian Process (GP) regression as a hybrid model

Posterior

2.0

® Bayesian framework for function leaming

X Observation

15[ X

® Assumes a distribution over functions, where

~

each tunction corresponds to a hypothesis apout

1.0F

0.5V

the relationship between x and vy >
0.0}
® After conditioning on observations, we can make ol
predictions (with uncertainty) apout any point 10]
along the Input space S A —
e (Called Gaussian process, because we make X X
GaUSSiaﬂ aSSLJmDJ[iOﬂS 1 5 Prediction with Uncertainty
® the posterior at each point Is defined by a Lo}
mean and variance (details on the next slide) 0.5
® (5Ps are a non-parametrnc model, meaning the > 00F
complexity 1s defined by the data not the number -0.5}
of parameters in the chosen functional class (i.e., 1.0}
parametric models) 15

15



see Rasmussen & Williams (2005) for further details

Gaussian Process (GP) regression in detall

® Prior over functions (I.e., hypotheses) is a multivariate Gaussian:
P(f) ~ £P (m(x), k(x, X))
e prior mean m(X) is typically set to O without loss of generalization

e Covariance k(X, X) is defined by a choice of kemel
e.g., RBF kemel;

Lx e — —||x=x'||?
(X,X') = exp P

where A defines the expected smoothness of the function

e Once we acqire some data & = {X,y}, we can compute a

posterior prediction about any new datapoint Xx that is also
(Gaussian with mean and variance defined as

m(x:| D) =k (K+ D7y
V(X>x< ‘ @) = k(X*, X>x<) — k;l_(K + 021)_1k>x<

| | |
w N = o [ N w
| 1 1 1

16



see Rasmussen & Williams (2005) for further details

Gaussian Process (GP) regression in detall

® Prior over functions (i.e., hypotheses) Is a multivariate Gaussian:
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where A defines the expected smoothness of the function
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see Rasmussen & Williams (2005) for further details

Gaussian Process (GP) regression in detall

® Prior over functions (I.e., hypotheses) is a multivariate Gaussian:
P(f) ~ £P (m(x), k(x, X))

RBF Kernel
e prior mean m(X) is typically set to O without loss of generalization Feature Space

e Covariance k(X, X) is defined by a choice of kemel
e.g., RBF kemel;

2 \
k(x,X") = exp — X — x| LS ‘
’ 212 R e
Squared Euclidean Distance
where A defines the expected smoothness of the function

e Once we acqire some data & = {X,y}, we can compute a

posterior prediction about any new datapoint Xx that is also
(Gaussian with mean and variance defined as

m(x:| D) =k (K+ D7y
V(X>x< ‘ @) = k(X*, X>x<) — k;l_(K + 021)_1k>x<

1.001

Generalization




see Rasmussen & Williams (2005) for further details

Gaussian Process (GP) regression in detall

® Prior over functions (I.e., hypotheses) is a multivariate Gaussian:
P(f) ~ P (m(x). k(x.x)) S
RBF Kernel X

- ' : : ' ' 1.00 Feature Space
e prior mean m(X) is typically set to O without loss of generalization | P 0

0751 3

e Covariance k(X, X) is defined by a choice of kemel
e.g., RBF kemel;

0.50{ -

Generalization

TRV 0.5
k(x,X') = exp —lx =Xl - 1
’ e Bt I |
Squared Euclidean Distance GP postenor
where A defines the expected smoothness of the function * Observation Query
— Hypothesis :

— Expectation
Uncertainty

e Once we acqire some data & = {X,y}, we can compute a

posterior prediction about any new datapoint Xx that is also
Gaussian with mean and variance defined as

— m(x«| D) = k(K + ¢’ )7y
V(X>x< ‘ @) = k(X*, X>x<) — k;l_(K + 021)_1k>x<
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see Rasmussen & Williams (2005) for further details

Gaussian Process (GP) regression in detall

® Prior over functions (i.e., hypotheses) Is a multivariate Gaussian:

P(f) ~ £P (m(x), k(x, X))

RBF Kernel

. . . . . . X

e prior mean m(X) is typically set to O without loss of generalization bl
e Covariance k(X, X’) is defined by a choice of kemel . |

e.g., RBF kemel: 2 | .

2 O o025 . os
, —|[[x—=x']]| -\
k(x,X’) = exp Y% b0l o Sem—=
OSquasred E1:clide1a5n Dié?ance25 GP posterior
where 4 defines the expected smoothness of the function * Observation Query

— Hypothesis

— Expectation
Uncertainty

e Once we acqire some data & = {X,y}, we can compute a

posterior prediction about any new datapoint Xx that is also
(Gaussian with mean and variance defined as

Enjoyment

“Don’t worry too much

— m(Xx ‘ @) — k;l:(K + GZI)_ly about what these equations
mean for now; | will provide

V(X | D) = k(Xi, X)) — kI(K + 521)_1k>x< some intuitions later

Spiciness  Xx 16



GPs provide the best predictions for human function learning

Extrapolation
Compositional functions

human Linear Exponential Quadratic
/ RBF | LIN PER
/ / /\\\-\ N /\/\/“/\/ / W
// PER+LIN RBFxPER
Function /\f\/\/‘\ MA\/
Human / Model
GP,

/ |~

Wrm 2l

17
Griffiths, Lucas, & Williams, (Neurips 2008) Schulz et al., (CogPsych 2017)




Duality of GP function learning

Kernel provides an explicit
similarity metric

1.00 -

0.759 .

Generalization

0.00 1

0.504 -

0.251 .

RBF Kernel

Feature Space

k(x, X"
1

n ow PR m e gm e gm g g g— — 2

10 15 20 25

Squared Euclidean Distance

Wu et al,. (AnnRevPsych forthcoming)

Kernels can be compositionally
combined, similar to how we can
combine rules to create new ones

RBF

() /\f/V\/

LIN PER

PER+LIN RBFXPER

training
jjjn\/w

ﬂ\ﬂ

Schulz et al., (CogPsych 2017)



Connection to RL



Wu, Meder & Schulz (AnnRevPsych forthcoming)

Previous Episodes

Connection to RL Episodic AL . TLB
L
 Episodic RL for generalization in new settings Similarity Reward |

(Gershman & Daw, AnnRevPsych 2017; Bottvinick et al., TICS 2019)

S’{\ilrcr)l\lljiljs ( I ) \Iﬁ Gen;/rzlllijzeation
e Store a memory for each previously encountered stimul W @

X and it’s reward y X« |0 — k(g )y wm
_
e Predict the value of new stimuli based on a similarity- vk 1 Wt
weighted sum of past episodes (- )7 gt o reware
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Wu, Meder & Schulz (AnnRevPsych forthcoming)

Previous Episodes

Connection to RL Episodio R N B
Stimuli II
[
* Episodic RL for generalization in new settings Smianty rover W
(Gershman & Daw, AnnRevPsych 2017; Bottvinick et al., TICS 2019) Nove k( ) \ Value
Stimulus I Iﬁ Generalization
e Store a memory for each previously encountered stimul W
X and it’s reward y X« [0 — k(g , )y w, @

I
* Predict the value of new stimuli based on a similarity- \ 3 Wt
' ' k ( ° ) Weights o Reward
weighted sum of past episodes L

* (GPs provide a Bayesian analogue of Episodic RL

GP posterior mean

* Using an RBF kernel as the similarity metric, x| D) = kT(K + 62D)!
Episodic RL is equivalent to the GP posterior mean S Y
(Poggio & Bizzi, Nature 2004; Sutton & Barto, 2018; Jakel, Schélkopf, & Wichman, J.MathPsych, 2008) N

= Z wik(X, X')
=1

* Yet GPs provide uncertainty estimates, which is
essential for defining which states to explore! where w = [K + ¢°I]"ly



Value function approximation in RL

® (Classic function leaming is typically a supervised learning problem

e Given stimulus X predict f(Xx)
® \/alue function approximation is a key method for generalization in RL

® [Jse function learning mechanisms for inferring implicit value of novel states:

V(s) = f(s')
e Implement a policy on the basis of value: m(s’) «x exp(V(s’))
e AlphaGo uses a deep neural network for value function approximation
e DNNs are simply a universal function approximator (Cybenko, 1989)

e But for understanding human behavior, GPs offer better interpretability due to
posychologically meaningful parameters

e (5Ps are equivalent to an infinitely wide deep neural network (Neal, 1996)

e After the break, | will present some of my research using GPs to model human
generalization in KL

Silver et al., (Nature 2016)
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Value function approximation in RL

® (Classic function leaming is typically a supervised learning problem

Value network

e (5iven stimulus ), ¢ prediCJ[f(X*) V() (S/)
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generalization in KL

Silver et al., (Nature 2016)
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Interim summary

® —UNction leaming Is a regression problem

e arly rule-based theories assumed humans learn functions by picking specific class of functions and
then optimizing the weights (as in linear or parametric regression) —> Brittle and lacked flexibility

e Similarity-based methods used ANNSs to encode the generic principle that similar inputs produce
similar outputs — > falled to capture systematic biases in how humans extrapolate

e Hybrid approaches using GP regression offer a Bayesian framework, compining kernel similarity and
rule-like compositionality of kemels

Regression task
Spiciness Enjoyment
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Interim summary

® —UNction leaming Is a regression problem

e arly rule-based theories assumed humans learn functions by picking specific class of functions and

then optimizing the weights (as in linear or parametric regression) —> Brittle and lacked flexibility

e Similarity-based methods used ANNSs to encode the generic principle that similar inputs produce

similar outputs — > failed to ca

e Hybrid approaches using G
rule-like compositionality ot ker

oture systematic biases In how humans extrapolate

-~ regression offer a Bayesian framework, combining kemel similarity and
Nels

Regression task Rule-based Similarity-based Hybrid
Spiciness Enjoyment ® Observation ? ® Observation ” * Observation ? Query 2
— Linear prediction — Prediction - — Hypothesis )
= Polynomial prediction «» Similarity . — Expectation
N ? Query - ? Query - Uncertainty
C : . C : T C
) )] )
- - -
> > >
9 9 9
- - -
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Exploration-Exploitation Dilemma

Herzfeld & Shadmehr (Nat Neuro 2014) Exploration Exploitation
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How do people nawgate vast
enwronments when we. cannot
explore aII possmllltles’? 3

e But where? ]




Spatially Correlated Bandit

33

Wu et al., (Nature Human Behaviour 2018)

{bclick tiles on the grid
maximize reward

Ij_\ each tile has normally
distributed rewards

m limited search horizon

, nearby tiles have
similar rewards
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Spatlally Correlated Bandit

44 | 38

Wu et al.,
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GP-UCB Model
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Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

GP-UCB across the lifespan

- GP-UCB provides the best account of behavior from
the ages of 5 to 55 (n=281)
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- GP-UCB provides the best account of behavior from
the ages of 5 to 55 (n=281)

» We can lesion out each component to show that all
are necessary

- A lesion replaces GP with a Bayesian RL model
(i.e., Kalman filter) that learns the value of each
option independently without generalization

- [7 lesion removes uncertainty-directed exploration
by setting f = 0

« 7 lesion swaps softmax for an e-greedy policy
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Giron*, Ciranka™, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

- GP-UCB provides the best account of behavior from
the ages of 5 to 55 (n=281)

» We can lesion out each component to show that all
are necessary

A lesion replaces GP with a Bayesian RL model
(i.e., Kalman filter) that learns the value of each
option independently without generalization

- [7 lesion removes uncertainty-directed exploration
by setting f = 0

« 7 lesion swaps softmax for an e-greedy policy

The full model reproduces the same age-related
differences in learning curves
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Giron*, Ciranka™, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

Human development resembles an optimization process in GP parameter space

Stochastic Hill

Simulated Annealing (SA) Climbing (SHC)
25-55 yr olds 95% CI
0.8 -
O
(qv)
=
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0
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1000 1500 O 500 1000 1500
lteration

Cooling Schedule — fast exponential — linear
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Giron*, Ciranka™, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)

Human development resembles an optimization process in GP parameter space

Simulated Annealing (SA) Csl;tr?]%r:ﬁgtlgﬂg Human o \/S, SHC-faSt —
25-55 yr olds 95% CI
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0.8 ©
(&
(7)) 5 =
-e 8) I;:E"—'l.-_“
qv] —
c% . Q
0T S
4‘3 4
0.7' Q . -
o - N
X .
n
R
0 500 1000 1500 O 1000 1500 =
lteration 0.1 0.3 1.0 3.0

Generalization A [logscale]
Cooling Schedule — fast exponential — linear

30



General principles of human exploration

e Generalization
® assume similar stmuli will yield similar rewards
o RBF kemel is analogous to shepard's Law of Ge

Nneralization

® (/se Bayesian function learning to learn a value function

® Distribution over functions is analogous to Bayesian Concept Learming

® cxirapolation/interpolation to make predictions abou
¢ Uncertainty-directed exploration

' novel stimull

® rather than only random exploration, people direct thelr exploration towards
regions of the search space they are most uncertain about

® Can also be viewed as an optimism pias:

® nflating reward expectations by their uncertainty Is akin to assuming the

Most optimistic outcome

® this optimism pays off because, because it corresponds to also valuing

INformation gain

31



General principles of human exploration

e Generalization THE DRIVE FOR KNOWLEDGE

The Science of Human Information-Seeking

® assume similar stimull will yield similar rewards BE CAMBRIDGE

o RBF kemel is analogous to shepard’'s Law of Generalization
® (/se Bayesian function learning to learn a value function

® Distribution over functions is analogous to Bayesian Concept Learming

® cxtrapolation/interpolation to make predictions about novel stimuli
¢ Uncertainty-directed exploration

® rather than only random exploration, people direct thelr exploration towards
regions of the search space they are most uncertain about

® Can also be viewed as an optimism pias:

Irene Cogliali Dezza,
(0 "\’ Eric Schulz, &
Charley M. Wu

N

® nflating reward expectations by their uncertainty Is akin to assuming the
mMost optimistic outcome

. - | | https://charleywu.github.io/
® this optimism pays off because, because it corresponds 1o also valuing  downloads/driveforknowledge.pdf

INformation gain pwd is “knowledge”

31
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1.

2.

GP-UCB across domains

Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

Reward

1.0~ 0.8

Developmental trajectory of learning 3 o
3 .
Schulz, Wu, Ruggeri & Meder (PsychSci 2019) 8 05
Meder, Wu, Schulz & Ruggeri (DevSci 2021) @
Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press) § 03-
5
&
0178 @@ Humans (5-55 yrs) £9-55
=== Stochastic Optimization
o1 03 10 3.0

Generalization A [logscale]
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GP-UCB across domains

Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

Developmental trajectory of learning
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Meder, Wu, Schulz & Ruggeri (DevSci 2021)
Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)
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GP-UCB across domains

Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

Developmental trajectory of learning

Schulz, Wu, Ruggeri & Meder (PsychSci 2019)
Meder, Wu, Schulz & Ruggeri (DevSci 2021)
Giron*, Ciranka*, Schulz, van den Bos, Ruggeri, Meder & Wu (NHB in press)
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GP-UCB across domains

Generalization guides exploration
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GP-UCB across domains

Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

Developmental trajectory of learning
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Validation on judgments

How many points do you think will be observed at the selected node?

Many

How confident are you?

r O :
Least confident Most confident

Wu, Schulz & Gershman (CBB 2021); see also Wu et al,. (PlosCompBio 2022)
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Similarity can also capture relational structure

e The RBF kernel, like most classic

accounts, represent similarity as

distance in feature space

Generalization
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Wu et al., (CBB 2021)
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Similarity can also capture relational structure

e The RBF kernel, like most classic
accounts, represent similarity as
distance in feature space

e |Learns smooth functions in a
continuous domain

* A diffusion kernel represents similarity
based on the connectivity of a graph

* |Learns functions on discrete graph
representations

Wu et al., (CBB 2021)
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Similarity can also capture relational structure

RBF Kernel
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Open challenges



Selective Attention

Early models included attentional weights to prioritize similarity comparisons along relevant feature dimensions, but assumed weights
were known (Nosoftsky, JEP:G 1986; Love et al., PsychRev 2004)

Recently, theories of selective attention describe the learning process whereby irrelevant features are gradually filtered out over the
course of learning (Radulescu et al., AnnuRevNeuro 2021)

* These theories largely align with rational theories of attention, which balance cost of control vs. benefits of increased performance
(Gottlieb et al., CurrOpBehavSci 2020; Dayan et al., NatNeuro 2000)

While this provides a means to convert raw features into some “psychological space”, it fails in natural settings (e.g., with rich visual
features) —> we can’t simply attend to all visual features in a scene and then learn to ignore irrelevant ones

Open Question: How do we learn to attend to relevant features in real-world problems, when we cannot consider all of them?

Natural features Attention-weighted
A A features
Taco Taco
- |
S I Learning I'
C =
s o —
T s L.V
5(5\(5\(\6"""“ filtering/warping
E ““““‘ Hotdog E“ ”"Hotdog
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Selective Attention

Early models included attentional weights to prioritize similarity comparisons along relevant feature dimensions, but assumed weights

were known (Nosoftsky, JEP:G 1986; Love et al., PsychRev 2004)

Recently, theories of selective attention describe the learning process whereby irrelevant features are gradually filtered out over the

course of learning (Radulescu et al., AnnuRevNeuro 2021)

* These theories largely align with rational theories of attention, which balance cost of control vs. benefits of increased performance

(Gottlieb et al., CurrOpBehavSci 2020; Dayan et al., NatNeuro 2000)

While this provides a means to convert raw features into some “psychological space”, it fails in natural settings (e.g., with rich visual
features) —> we can’t simply attend to all visual features in a scene and then learn to ignore irrelevant ones

Open Question: How do we learn to attend to relevant features in real-world problems, when we cannot consider all of them?

Feature RL model (v et al., u.Neuro 2015)

* assumes value is a sum of feature weights

Vx) = Y ¢,

P;ED
* Weights are updated using the delta rule

qbinew — ¢i01d + 7 [Rt o V(Xchosen)L V¢z cd

Natural features Attention-weighted
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I I Learning I !
- >
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N e filtering/warping
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Contextual Clustering

* Different features are relevant in different contexts, which was already built into classic
models of concept learning (Nosoftsky, JEP:G 1986)

e How do we infer which context or “event” we are in from continous streams of data?

37



Contextual Clustering

* Different features are relevant in different contexts, which was already built into classic
models of concept learning (Nosoftsky, JEP:G 1986)

e How do we infer which context or “event” we are in from continous streams of data?

* \We can frame this as a unsupervised clustering problem, and group related experiences into clusters (Frankiin et al., PsychRev 2020; Gershman et al.,
PsychRev 2010)

» Different event clusters can thus correspond to different attentional weights or different kernels

 Open Question: How do we transfer learned representations from one context to another?

Chinese Restaurant Process (CRP) stimutus [l -

» Similar to seating banquet guests

* We first try to seat the ith guest (i.e., stimulus) at one of the , v ‘
K existing table (i.e., event), otherwise we open a new table

" _

n—1+a If kK is an occupied table

p(X; =Ep) = o

n—1+a

otherwise (i.e., open a new table) .
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Function Learning Summary

Regression task Rule-based Similarity-based Hybrid
Spiciness Enjoyment ® Observation ? ® Observation 2 e Observation ? Query 2
— Linear prediction . — Prediction . — Hypothesis )
=— Polynomial prediction «» Similarity . — Expectation
- ? Query ? Query Uncertainty
- ' ° -IE ' g 'E
D @ @
& - &
> > >
0 O 0
c = c
LL] LL] LL]
£ £ A
gy Iy ?
Spiciness Spiciness Spiciness

Functions represent candidate hypotheses about the world allowing us to evaluate an infinite range of possibilities through interpolation and
extrapolation

Early rule-based approaches lacked flexibility, while similarity-based approaches didn’t capture human inductive biases
GP regression is a hybrid model, using the principles of Bayesian inference to compute a distribution over candidate hypotheses

GPs not only capture how humans explicitly learn functions, but also how we implicitly learn a value function to guide our exploration in RL tasks
with large search spaces

* Originally tested in spatial environments (Wu et al,. 2018), but can also be applied to any arbitrary features (Wu et al,. 2020), or even graph-
structured environments (Wu et al., 2021)
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https://cosmos-konstanz.github.io/
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