
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 7: Supervised and Unsupervised Learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Last week …
• Concepts are mental representations of categories in the world

• Classical view used rules to describe the necessary and sufficient
conditions for category membership

• More psychological approaches used similarity, compared to a learned
prototypes or past exemplars

• Bayesian concept learning is a hybrid approach, that uses distributions over
rules, and recreating patterns consistent with similarity-based approaches

2

Rules

Similarity

Today’s agenda

3

Supervised learning (for classification)

• Multilayer Perceptrons

• Decision trees and random forests

• Support vector machines

• Naïve Bayes

Unsupervised Learning

• k-Means

• Gaussian Mixture models

Supervised vs. unsupervised learning
• Classification problems*: classify data

points into one of n different categories
• Supervised learning:

• Training data provides category labels
• Classifiers usually try to learn a

decision-boundary
• Unsupervised learning:

• Training data lacks category labels
• Classifiers usually try to learn clusters

*Note that regression is another class of ML
problems, which we will discuss next week

4

Supervised Unsupervised

Supervised learning

5

• Two general classes:

• Discriminitive directly map features to class labels, often by learning
a decision-boundary (rule-like)

• Generative approaches learn the probability distribution of the data
(similarity-like)

• Example problem: Spam detector

• Data

• each are the features of an email (e.g., length, date, sender,
content, etc…)

• each is the label (1 if spam, 0 otherwise)

• multiple labels are also possible:

• Some classifiers inherently handle n classes

• Some train multiple classifiers for each one vs all setting

𝒟 = {X, y}
x ∈ X

y ∈ y

 
 scalar 
 constant 

a
A

 vector 
 Matrix

a
A

Notation:
 set 𝒜

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons

(MLPs) can learn any abitrary decision
boundary (i.e., non-linear) by adding more
hidden layers

• Training via backpropogation

6

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons

(MLPs) can learn any abitrary decision
boundary (i.e., non-linear) by adding more
hidden layers

• Training via backpropogation

6

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons

(MLPs) can learn any abitrary decision
boundary (i.e., non-linear) by adding more
hidden layers

• Training via backpropogation

6

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction learning rate

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons

(MLPs) can learn any abitrary decision
boundary (i.e., non-linear) by adding more
hidden layers

• Training via backpropogation

6

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction learning rate Chain rule is used to pass
derivatives over layers

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons

(MLPs) can learn any abitrary decision
boundary (i.e., non-linear) by adding more
hidden layers

• Training via backpropogation

6

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

u
w

where

prediction learning rate Chain rule is used to pass
derivatives over layers

Decision boundaries
• Decision boundaries can correspond to logical rules, even when

non-linear
• But most decision-boundaries are certainly not easily explainable

using symbolic operations
• Rather, the feature space is carved up based on similarity to

trained exemplars

7

Decision-trees
• Decision Trees are the quintessential rule-based clasifier

• Easy to interpret, but can be prone to bias and overfitting
• ID3 algorithm:

• Calculate the Information gain (IG) of each feature

• Shannon (1948) Entropy:

•
How much does feature reduce entropy? The more the
feature can even split the data (across labels), the greater the
reduction
• If not naturally a binary feature, define a threshold that

maximizes Entropy (i.e., split half)
• Make a decision node using the feature with max(IG)
• Repeat until we run out of features

H(X) = − ∑ P(x)log P(x)

IG(X, f) = H(X) − H(X | f)
f

8

H

P(x)

siblings/spouses

Nelson et al., (Cognition 2014)

Random forests
• Random forests are an ensemble method combining

random, uncorrelated decision trees
• Each tree uses “feature bagging” to sample a random

subset of features, ensuring low correlation among
trees

• Voting or averaging to make the final decision
• Ensemble methods are common in ML

• Do brains also combine “opinions” from multiple
decision-making systems?

• Aggregation over multiple trees is similar to how Bayesian
concept learning operates over a distribution of rules,
producing generalization patterns consistent with similarity-
based theories 9

Support Vector Machines
• Learn a decision boundary that best separates the data

• Hard-margin: with , we want

• (i.e., all data classified correctly)

• And to maximize the margin between classes , which we do by minimizing

• This gives us a constrained optimization problem:
 subject to

• The solution is completely determined by the closest to the decision-boundary
(i.e., support vectors)

• Soft-margin: Since data might not be linearly separable, use a soft-constraint to
weight how much we care about the margin vs. errors:

• is a penalty term definining how much we care about errors

• is the distance of a datapoint from the decision-boundary (i.e., slack variable)

w⊤x − b = 0
yi ∈ [−1,1]

yi(w⊤x − b) ≥ 1
2

∥w∥
∥w∥

ℒ(w, b) = ∥w∥ yi(w⊤x − b) ≥ 1
xi

C
ζi

10

ℒ(w, b) = ∥w∥ − C
N

∑
i

ζi yi(w⊤x − b) ≥ 1 − ζi, ζi ≥ 0 ∀i ∈ {i, N}

Kernel SVMs
• What about problems with non-linear decision boundaries?
• Kernel trick “projects” the data to a higher dimension, such that

we can still learn a linear decision boundary

• Rather than learning , we use a kernel to map
 onto a feature space

e.g., polynomial kernel

• We then substitute for and use all the same equations,
e.g., decision boundary becomes

• There are many types of kernels, in fact, every neural network
learned by gradient descent is approximately a kernel machine
(i.e., ; Domingos, 2020)

w⊤x − b = 0
X Φ = ϕ(X)

ϕ(x) = (1,x, x2, x3, …)
ϕ(x) x

w⊤ϕ(x) − b = 0

y = f (ϕ(x))

11

Naïve Bayes classifier
• First generative model: rather than learning a decision boundary, learns the distribution of the each

category (which can be used to generate new data)
• Called naïve because we assume all features are independent

• Easy and fast to learn
• Can generalize to new feature values outside the data, although naïve assumption may be unrealistic

• We use Bayes’ theorem to compute the posterior probability of an datapoint belonging to some class
given it’s features :

ck
x

12

denominator removed,
because it is the same
for all data

P(ck |x) =
P(x |ck)P(ck)

P(x)
posterior =

likelihood * class prior
evidence

=
P(x1 |ck)P(x2 |ck)…P(xn |ck)P(ck)

P(x1)P(x2)…P(xn)
∝ P(ck)

n

∏
j

P(xj |ck)

y = arg max
k

P(ck)
n

∏
i

P(xi |ck)Decision although we can use the posterior to make
probabilistic predictions

Naïve Bayes classifier

13

• Computing the prior and likelihood

• Prior is just how frequent the category is in the data
• Likelihood:

• When the data is continous, we can assume a Gaussian distribution*

where and are the mean vector and covariance matrix of the k-th category
and is the dimensionality of the data

• For text classification (e.g., spam filters), use a “bag of words” representation

• Vocabulary , where each represents the counts for each
possible word

• Likelihood with Laplacian (add 1) smoothing:

P(ck) = count(ck)/N

P(xj |ck) =
1

(2π)d |Σk |
exp (−

1
2

(xj − μk)⊤Σ−1
k (xj − μk))

μk Σk
d

V xi = (x1, x2, …xV)

P(xj |ck) =
count(xj, ck) + 1

∑x∈V count(x, ck) + |V |

P(ck |x) ∝ P(ck)
n

∏
j

P(xj |ck)

* Don’t need to memorize this for quizzes/exam

Supervised learning summary
• Supervised learning is a classification problem
• Each method yields a corresponding decision

boundary (rule-based interpretation)
• However, only decision trees operate on explicit

rules
• Most discriminative approaches use similarity-

based mechanisms (e.g., NNs and SVMs) to
arrive at a decision-boundaries based on carving
up self-similar regions based on labeled
exemplars

• However, generative methods learn explicit
representations of each category
• Naïve Bayes learns distributions for each

category (prototype interpretation)
14

5 min break

15

Unsupervised learning
• Without supervised labels, the goal is to

learn clusters based on similarity
• Types of clustering algorithms:

• Centroid-based clustering
• e.g., k-means

• Distribution-based clustering
• e.g., Gaussian mixture models

• Hierarchical clustering
• e.g., Agglomerative

16

Centroid

Distribution

Hierarchical

k-means clustering
• Learn k centroids that minimize within-cluster variance
1. Pick the number of clusters k
2. Randomly select the centroid for each cluster
3. Assign all points to the closest centroid
4. Recompute centroid based on assigned points (i.e., mean)
5. Repeat until centroids do not change or max number of iterations

reached
• How do we pick the number of clusters?

Elbow method:
• Within-cluster sum of squares (WCSS):

for each cluster compute the squared distance from
each assigned datapoint to the centroid

• Pick the number of clusters where WCSS begins to level off

c ∈ 1,…, k
xi μc

WCSS =
k

∑
c

m

∑
i

(xi − μc)2

17

k-means clustering
• Learn k centroids that minimize within-cluster variance
1. Pick the number of clusters k
2. Randomly select the centroid for each cluster
3. Assign all points to the closest centroid
4. Recompute centroid based on assigned points (i.e., mean)
5. Repeat until centroids do not change or max number of iterations

reached
• How do we pick the number of clusters?

Elbow method:
• Within-cluster sum of squares (WCSS):

for each cluster compute the squared distance from
each assigned datapoint to the centroid

• Pick the number of clusters where WCSS begins to level off

c ∈ 1,…, k
xi μc

WCSS =
k

∑
c

m

∑
i

(xi − μc)2

17

Gaussian mixture models (GMMs)
• Instead of learning a centroid (prototype), where similarity is

equivalent across feature dimensions…
• … learn a distribution for each cluster, where each feature

dimension can have a different variance

• Assume data is generated by a latent variable in the
form of a Gaussian distribution with unknown means and
covariance :

xi zi
μk

Σk

p(xi) = ∑
k

P(xi |zi = k)P(zi = k)

= ∑
k

𝒩(xi |μk, Σk)P(ck)

18

xi

zi

Gaussian likelihood Prior

𝒩(x |μk, Σk) =
1

(2π)d |σ |
exp (−

1
2

(xj − μk)⊤Σ−1
k (xj − μk)) N

μ Σ

P(ck)

Graphical representation

Expectation-Maximization (EM) algorithm
• Iterative method to compute a maximum likelihood when the data depends on latent variables
• Expectation: Compute “expected” classes for all data points, given current parameter values

• Maximization: Re-estimate parameters given current
class assignments

P(xi = ck) =
𝒩(xi |μk, Σk)P(ck)

∑K
j 𝒩(xi |μj, Σj)P(cj)

μnew
k =

1
Nk

N

∑
i

P(xi = ck)xi

Σnew
k =

1
Nk

N

∑
i

P(xi = ck)(xi − μnew
k)(xi − μnew

k)⊤

P(ck)new = Nk /N
19

“Responsibility” of for generating ck xi

Centroid

Prior on classes

Covariance

Bishop (2006)

Summary of unsupervised learning
• Unsupervised learning is a clustering problem
• k-means performs “hard” assignment of data to clusters, with equivariant similarity across

dimensions, and clusters defined by a centroid (prototype)
• Gaussian mixture models perform “soft” assignment, where learned covariance allows for

skewed clusters, which are defined as a mixture of Gaussian densities (not exactly prototype or
exemplar)

20

Hard vs. soft clustering Skewed data

Data wrangling
• Beyond only implementing models, a big part of making ML work is data wrangling

• Feature scaling
• Min-Max normalization so feature values are in the range [0,1]

• Standarization so feature values have mean = 0 and stdev = 1

 where is the mean and is the standard deviation
• Normalization vs. standardization?

• Normalization is useful when the distribution of the data is unknown or not Gaussian, since it retains the shape of the
original distribution. However, it is sensitive to outliers

• Standardization is useful when the data is Gaussian (but with enough data, everything becomes Gaussian) and is
less sensitive to outliers. But may change the shape of the original distribution

• Feature engineering by crafting new features
• e.g., # of siblings/spouses in the titanic dataset combines two separate features
• Requires some domain understanding

μ σ

21

Assessing performance
• How to assess model performance?
• We need to balance both precision and recall 

• Precision is the proportion of items predicted TRUE that were actually true

1 / 1+1 = 50%
• Recall (also known as sensitivity) is the proportion of positives that were

identified correctly
1 / 1 + 8 = 11%

• Precision and recall can be a tug-of-war based on how liberal or
conservative your classification algorithm is

• F1 score is the harmonic mean of precision and recall
 F1 = (2 x .5 x .11)/(.5+.11) = 18%

22

=
TP

TP + FP
=

TP
TP + FN

F1 =
2 × Precision × Recall

Precision + Recall

Generative Adversarial
Networks (GANs)

Discussion
• Both supervised and unsupervised learning methods provide tools for classifying data, with learned categories

corresponding to:
• Explicit category boundaries (decision trees, SVMs)
• Implicit boundaries based on similarity of examples (MLPs)
• Summary statistics of the data, based on a centroid (k-means) or a generative distribution (Naïve Bayes, GMM)

• Discriminative models simply learn to recognize the category labels, whereas generative models (Naïve Bayes, GMM)
learn the data distribution and can be used to generate new datapoints consistent with each category
• Many modern ML methods combine both (e.g., GANs)

• Discriminative models are cheap to learn (e.g., deep neural networks), but require a lot of data
• Generative models are more computationally costly, but can generate additional training data
• Discriminative model provides an additional training signal to generative model

• “Analysis by synthesis” (Yuille & Kersten, 2006) suggests humans do something similar
• Interaction between top-down generative processes and bottom-up recognition

23

Yuille & Kersten (2006)

Bring your laptops for the tutorial on Friday
• We will provide 1 supervised and 1 unsupervised classification dataset
• Given the training data, implement one model of your choice
• We will provide code examples in Python and R for each model covered

today
• Then, test your models on the test set. Best test performance on each

dataset wins a small prize!
• We will use F1 score as the performance metric

24

Next week

25

*Function learning

*Note the change in topic and assigned reading. This is an in prep manuscript and I have sent it via email

