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Today’s agenda

Supervised learning (for classification)

 Multilayer Perceptrons

o 3\
o i 4 CLASSIFICATION
* Decision trees and random forests ey / . )
. Develop predictive
» Support vector machines r e ey i \ )
\ ), REGRESSION
N MACHINE LEARNING L )
* Nalve Bayes \ i UNSUPERVISED ) s o5
LEARNING
: : . ﬁ CLUSTERING
Unsupervised Learning gt et oy ! )
on input data

e k-Means

e (Gaussian Mixture models



Supervised vs. unsupervised learning

® (Classification probler

h

poiNts INto one of N d

® Supervised leaming:

S™: classy

Vv data

fferent categories

® [raining data provides category labels

® (lassifiers usually try to leam a
decision-pbounadary

e Unsupervised leaming:

® [raining data lacks category labels

e (Classifiers usually try to leam clusters

*Note that regression is another class of ML
oroplems, which we will discuss next week
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Notation:
] ] a scalar a vector of set
Supervised learning A constant A Matrix
e WO genera| classes: Discriminative Generative
* Discriminitive directly map features to class labels, often by learning . ® ° O
a decision-boundary (rule-like) T .‘.
- o : : : O - ‘\ O " O ® @ @
* Generative approaches learn the probability distribution of the data .‘ N 0. ®
(similarity-like) e 'O 0 g, 0
O .. « 0 9 O O
" o0 o®
» Example problem: Spam detector ' ® @

» Data U = {X,y}

» each X € X are the features of an email (e.g., length, date, sender,
content, etc...)

 eachy € y is the label (1 if spam, O otherwise)
Spam Detector |

 multiple labels are also possible: N

 Some classifiers inherently handle n classes

 Some train multiple classifiers for each one vs all setting




Perceptrons and Neural Networks

“erceptrons were the first ML classifiers

® \\lore generally, Multilayer Perceptrons
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Decision boundaries

Decision boundaries can correspond to logical rules, even when

NoN-linear

ra

SBut most decision-boundaries are certainly not easily explainable
Using symboolic operations

Rather, the feature space Is carved up pased on similarity to
ned exemplars

OR XOR

alpha 1.00

alpha 1.00




Decision-trees

® Decision Trees are the quintessential rule-based clasifier

® |3 algorithm:
® Calculate the Information gain (IG) of each feature

e Shannon (1948)
o /G(X,f) = H(X)

How much does featu

feature can even spilit
reduction

f

1101

il

o

naturally a binary featu

f

NIZES

—asy to interpret, but can be prone 1o bias and overtitting

“ntropy: H(X) = — Z P(x)log P(x)
— H(X|f)

re f reduce entropy? The
the data (across labels), the greater the

more the

e, define a threshold that

—Ntropy (1.e., split

half)

Survival of passengers on the Titanic

\Viake a decision node using the feature with max(lG)

Repeat until we run out of features
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Random forests

® Random forests arc an ensemble method combining
random, uncorrelated decision trees

® —ach tree uses "feature bagging” to sample a random

subset of features, ensuring low correlation among | 1 |
rees 1

FINAL RESULT

® \/oting or averaging to make the final decision

® nsemble methods are common N ML

® Do brains also combine “opinions” from multiple
decision-making systems"

® Aggregation over multiple trees is similar to how Bayesian

concept learning operates over a distribution of rules,
oroducing generalization patterns consistent with similarity-
Dased theories

Random Farest




Support Vector Machines

® | cam a decision boundary that best separates the data w 'x—b=0
e Hard-margin: with y, € [—1,1], we want

e y(W'Xx —b) > 1 (e, al data classified correctly)

I
® [Nis gives us a constrained optimization problem:
ZL(w,b) = ||w|| subjectto y(w'x —b) > 1

® [ne solution is completely determined by the X; closest to the decision-poundary
(l.e., support vectors)

e Soft-margin: Since data might not be linearly separable, use a soft-constraint to
weight how much we care about the margin vs. errors:

e ( is a penalty term definining how much we care about errors

° Cl- s the distance of a datapoint from the decision-boundary (i.e., slack variable) -

Fw,b) =lwll-=CY & wWx=b)21-¢ {20V € (iN)

10



Kernel SVMs

e \\/hat about problems with non-linear decision boundaries'’?

o Kemel trick "projects” the data to a higher dimension, such that
we can still learn a linear decision boundary

e Rather than leaming w'X — b = 0, we use a kemel to map
X onto a feature space @ = ¢p(X)

e.g., polynomial kermnel p(x) = (1,X, X2, X°, o) 2,80 o
e \/\e then substitute @(X) for X and use all the same equations, T TR AT
r o ' o 0 e
e.g., decision boundary becomes w'@(x) — b = 0 23, | | «;‘3.
o
® [here are many types of kernels, in fact, every neural network e .'{.%‘ >
learned by gradient descent is approximately a kernel machine S S ‘4
e,y =f(¢(x)); Domingos, 2020)
Linear 2nd polynomial Radiql basis
v/ S5
NI - 5| -‘..f' P

\ b Y 4 ! . L\ \
vanable 1 variable 1 variable 1 variable 1 variable 1



Naive Bayes classifier

® -rst generative model: rather than learing a decision boundary, leams the distribution of the each
category (which can be used to generate new data)

® Called naive because we assume all features are independent

® a3y and fast to leam
® (Can generalize to new feature values outside the data, although naive assumption may e unrealistic

e \\le use Bayes' theorem to compute the posterior probability of an datapoint belonging to some class ¢

given it's features X; o |
P(x|c)P(c;) likelihood * class prior

eyl = = posterior = ———————

_ P(x;|c)P(x,|c)...P(x,| c;)P(c;)
P(x)P (Iifz)--oP (X,)

denominator removed,

n
X P(Ck) H P(_x] ‘ Ck) because it is the same
J

for all data

i — aro max P(c H P(x.|c although we can use the posterior to make
Decision ) S I (<) | (xi] i) probabilistic predictions
l

12



Naive Bayes classifier

kelihood

e Prior is just how frequent the category is in the data P(c;) = count(c,)/N

e Likelihood:
e \When the data is continous, we can assume a Gaussian distribution”

P(x;|c;) =

e Computing the prior and

1
CXp _E(Xj — ﬂk)Tzlzl(Xj — M)
NP

where p;, and 2, are the mean vector and covariance matrix of the k-th category

and d is the dimensionality of the data
e or text classification (c.g., spam filters), use a “bag of words” representation

P(ci|x) o< P(cy) | | Px; 1 )
J

Naive Bayes Model

e \/ocabulary V, where each X; = (x;, X,, ...Xy) represents the counts for each

p0ossible word
® | kelihood with Laplacian (add 1) smoothing:

count(x;, ¢;) + 1

erv count(x, ¢;) + | V|

P(x;| ¢;) =

* Don’t need to memorize this for quizzes/exam

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. |'ve seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!
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Supervised learning summary

® Supervised leaming is a classification problem - el | Decision Tree J
® —ach method yields a corresponding decision t o sipet
. . L aa =
boundary (rule-based interpretation) N T o
o o = @aSp B
® However, only decision trees operate on explicit S e g

ru | e S —'4 —'3 —'2 —'1 b i '2 5 A ! P _'3 _'2 1 6 1 '2 é ;4
® |\ost discriminative approaches use similarity-
pased mechanisms (e.g., NNs and SVMs) to .-
arrive at a decision-boundaries based on carving -

Jp self-similar regions based on labeleo “1
exemplars

® However, generative methods learm explicit
‘epresentations of each category

e Naive Bayes learns distributions for each
category (prototype interpretation) L T,

14
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. . e . ewee
Unsupervised learning  ®2@ = So3

-

i é 6 r\v.a.o;i’;.l " ¥

® \/\V/ithout supervised labels, the goal Is to

leamn clusters based on similarity Centroid
® [ypes of clustering algorthms: oe S, S
RRST I ST Distribution
e Centroid-based clustering PR B
® c.g., k-means V5

® [istribution-based clustering

® c.g., Gaussian mixture models
® Hicrarcnical clustering

® c.g., Agglomerative

16



K-means clustering

® | cam k centroids that minimize within-cluster variance
Pick the number of clusters Kk

dimension 2

Randomly select the centroid for each cluster
Assign all points to the closest centroid
Recompute centroid based on assigned points (l.e., mean)

Repeat until centroids do not change or max number of iterations
'eacheo

O B~ W o=

1.5

1.0

0.5

0.0

-0.5

|

I I

-1 0

dimension 1

® How do we pick the number of clusters”
Elbow method.

e \\ithin-cluster sum of squares (WCSS): 200000 -
for each cluster ¢ € 1,..., k compute the squared distance from

each assigned datapoint x; to the centroid p..

250000 A

150000 -

WCSS

100000 A

WCSS = i i (Xl- — //tc)z 50000 -

Elbow Point

® Pick the number of clusters where WCSS begins to level off

4

6
Number of clusters

10

17



K-means clustering
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Gaussian mixture models (GMMs)

® [nstead of leamning a centroid (prototype), where similarity 1S
equivalent across feature dimensions...

® .. . |eam a distribution Tor each cluster, where each teature
dimension can have a different variance

® AsSsume data X; IS generated by a latent variable z; In the
form of a Gaussian distribution with unknown means y;, and

covanance Zk: Graphical representation
Gaussian likelihood  Prior ~ ™

p(x) = ) P(x;|z = k)P(z; = k) P(cy @

k
= 2 N (X | py, 2,)P(c;) @
k > <

N (X, Z,) = : ex (—l(x —u)' T (x, — )) :
Hio =k _\/(Zﬂ)d‘g‘ P > Hi) = \ & — Hy




Expectation-Maximization (EM) algorithm

® [terative method to compute a maximum likelihood when the data depends on latent variables

e Expectation: Compute “expected” classes for all data points, given current parameter values

N (X; | g 1) P(cy)
> A | ZHP(e)

“Responsibility” of ¢, for generating X

P(x;=c,) =

e Maximization: Re-estimate parameters given current
class assignments

1
/41? W= — Z P(X; = ¢, )X; Centroid

b2

'y Covariance | -2 : J;m
ZHGV\/ — _ZP(X — Ck)(X _ HGW)(X _Iunevv T | . ./;‘,
oS .
v/
P(c)"®" = Nk/N Prior on classes L
-2 0 (d) 2

Bishop (2006)

h

-2 0 (b) 2 -2 0 (c) 2
2t . ' ] 2t B
L=5 . .‘:éfrg L=2 .j.;éa}
.8 ) .8‘)
.‘ o. \“
0F :. ‘8." . ; 0 :. ..8.‘ .
® T e s, T
sv ’ &
, .-.~ ’ ey
f
DY DY 1




Hard vs. soft clustering

(N

2

Summary of unsupervised learning

e Unsupervised leaming is a clustering problem

® k-means performs "hard” assignment of data to clusters, with equivariant similarity across

dimensions, and clusters defined by a centroid (prototype)

e Gaussian mixture models perform “soft” assignment, where
skewed clusters, which are defined as a mixture of Gaussian de
exemplar)

2t ()

cal

NSIt

Skewed data

ned covariance allows 1or
es (not exactly prototype or

KMeans GaussianMixture

Hard clustering: a

it ,'..' | datapointis
wx‘.“ assigned only one
/ P '%2 | cluster.
| - 0
L=20 ,3}:"’ Soft clustering: z
' data pointis
| J‘

9 0 5 0} B P | assigned multiple
3'»'&'- . Gzaussians
orobzbhilistically.
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Data wrangling

® Beyond only Implementing models, a big part of making ML work is data wrangling
e Feature scaling
e Min-Max normalization so feature values are in the range [0, 1]

b% ¢ _ :-'\ — X n."s'n
~xnu’i.l — ~\.'m'n
® Standarization so feature values have mean = O and stdev = 1
'y _.\— _ !1
X =
a0 where u is the mean and o is the standard deviation

e Nomalization vs. standardization”

e Normalization is useful when the distribution of the data is unknown or not Gaussian, since it retains the shape of the
original distribution. However, it Is sensitive 1o outliers

e Standardization is useful when the data is Gaussian (but with enough data, everything becomes Gaussian) and is
less sensitive to outliers. But may change the shape of the original distribution

® Feature engineering by crafting new features
® c.g., # of siblings/spouses In the titanic dataset combines two separate features
® Requires some domain understanding

21



relevant elements

Assessing performance ——

® How 10 assess model performance”?
® \\/e need to balance both precision and recall

True Positives (TPs): 1

False Negatives (FNs): 8

® Precision Is the proportion of items predicted TRUE that were actually true

1/ 7+71 =50%

® Reca

1/

identrt

(&

S0

SO
CO

rectly

8=11%

® Precision and recall can
conservative your classifl

False Positives (FPs): 1

True Negatives (TNs): 90

retrieved elements

KNOWN as sensitivity) is the proportion of positives that were

Precision = Recall = ——

0e a tug-of-war based on how liberal or

cation algorithm Is TP TP

® F1 score is the harmonic mean of precision and recall “TP+FP TP+FN
F1=2x.5x.11)/(.6+.11) = 18%

o 2 X Precision x Recall
" Precision + Recall

22



Discussion

® Both supervised and unsupervised leaming methods provide tools for classiftying data, with learned categories
corresponding to:

t category boundaries (decision trees, SVMS)

® xplic
e |mplicit boundaries based on similarity of examples (MLPs)
® Summary statistics of the data, based on a centroid (k-means) or a generative distribution (Naive Bayes, GMM)

e Discriminative models simply leam to recognize the category labels, whereas generative models (Naive Bayes, GMM)
learn the data distribution and can be used to generate new datapoints consistent with each category

e N\any modem ML methods combine both (e.g., GANS)
® Discriminative models are cheap to leam (e.g., deep neural networks), but require a ot of data

® (Generative models are more computationally costly, but can generate additional training data
® Discriminative model provides an additional training signal to generative model
® ‘Analysis by synthesis” (Yuille & Kersten, 2000) suggests humans do something similar

® |nteraction between top-down generative processes and bottom-up recognition

A. R g. Yuile {3_( Kersten (2006)

: E Iz
® N

,ln\ .l“‘\ - - -
F |‘_ — | ~(F) _— — F >+ Discriminator
- i / -
- m ‘,"
mage ~ - —
- - z] - sample
/I

Generative Adversarial
Networks (GANS)

Realworld —— sample
images Real

11

® :
z

—
o
=
]

/o —
(=)

—
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Latent random variable

Feature extraction Propasals Synthesis & verification




Bring your laptops for the tutorial on Friday

® \/\le will provide 1 supervised and 1 unsupervised classification dataset

® (Given the training data, iImplement one model of your choice

® \/\/e will provide code examples in Python and R for each model covered

tocay
® [hen, test your moc

dataset wins a smal

els on the test set. Best test performance on each
orize!

® \\Ve will use 1 score as the performance metric

24



Next week

*Function learning

e Regression task
Spiciness Enjoyment

))) 2 8 &

&
S
%+
*

Function Learning

*Note the change in topic and assigned reading. This is an in prep manuscript and | have sent it via email

f Rule-based

Enjoyment

¢ Observation

= LN prdiction
= Folynomial prediction

? Query

Spiciness

g Similarity-based

¢ Ohsanvation

Spiciness

h

Enjoyment

Hybnd
¢ Otservation 7 Cuery
= Hypothesis

Spiciness



