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Neuro-dynamic programing
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems




Reinforcement Learning

The Agent:

« lteratively selects actions a, based on a policy &

e Receives feedback from the environment in
terms of new states s, ; and rewards R(a,, s,)

>
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Environment
The Environment: NI

e governs the transition between states S, = S0

» provides rewards R(a,, s,) Sutton and Barto (2018 [1998])
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Reinforcement Learning
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Dopamine RPE Signal
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Model-free vs. model-based
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2-step task

Model-free vs. model-based
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2-step task
Model-free vs. model-based
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Symbolic vs. Subsymbolic Al
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Symbolic vs. Subsymbolic Al

Subsymbolic Al

2=l *Gradient descent is
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delta-rule




Symbolic vs. Subsymbolic Al

Symbolic Al Subsymbolic Al
DEEP NETS *Gradient descent is
analogous to the
Knowledge Inference
—_— base engine Q delta-rule
Question Answer

Answer:
Dog

Image

Human
input




Symbolic vs. Subsymbolic Al

Symbolic Al Subsymbolic Al
Physical symbol DEEP NETS *Gradient descent is
system hypothesis: - analogous to the
manipulating . oL delta-rule
sym bOl s and Question Answer AL ®—
relations Image ggzwer:

Human
input




Symbolic vs. Subsymbolic Al

Symbolic Al Subsymbolic Al

Physical symbol DEEP NETS *Gradient descent is
S: analogous to the
SyS te_m hy ,0 othesis Knowledge Inference V//“\\ N/ J
manipulating - base e XA @S delta-rule
symbols and Question Answer XXL @ Xk o N\
: BT OSKLS
relations mage g A0\ g::.gg" gnswerz
2N a2\ °

Hybrid systems

Input A g
(perceiving e S Knog;;eedge
the world) OO

Inference

engine Answer
Human guestion A @ |
(natural language e Symbolic
question) liathe o) query




Symbolic vs. Subsymbolic Al

Symbolic Al Subsymbolic Al

Physical symbol DEEP NETS *Gradient descent is
S: analogous to the
Sy Ste_m hy pOtheSIS Knowledge Inference V//“\\ // J
manipulating - hasa e XA @I delta-rule
symbols and Question Answer XK @ XK
: SRR OSKKT
relations image o A g S8 Answer:
N\ W LN\ D
RO/ o=
Hybrid systems
Input
(perceiving Knobwledge
the world) —
Inference Answer

engine

Human question
(natural language A S
question) liathe o) query

Symbolic




Agenda for today

1. What is a concept?
2. Rule-based theories
3. Similarity-based theories

4. Hybrid approaches



What is a concept?



What is a concept?

Conceptual art

Maurizio Cattelan Y Marcel Duchamp Shutterstock




What is a “Sandwich?”



What is a “Sandwich?”

Is a hotdog a sandwich?



Concept learning is at the heart of many key aspects of intelligence

One-shot generalization Creative composition Rapid transfer

)

U
-
-
-

Frostbite Score

Lake et al., (2()15); Lake et al., (2017) =0 160 260 300 400 566 660 766 800 900

Amount of game experience (in hours)
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The study of categories and concepts

® A cateqgory is a set of objects in the world and a concept is a menta
representation of a category

e \\/e will use the two interchangeably

e Classical view (Bruneretal., 1967);

1. Concepts can be defined based on necessary and sufficient conditions for
category membership

2. Membership is all-or-nothing. All members are egually good

® [Nis perspective dates to Aristotelian "forms” and Logical positivist philosophy
(e.q., Quine, Popper, etc...)

e \\hat are the necessary and sufficient conditions for something to be a sandwich’
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Different approaches to defining concepts

& -

SALAD TORST SANDWICH

THE CUEBE RULE
OF FO0D
IDENTIFICATION

TRCO SUSHI

1 &

QUICHE CALZONE CAKC




Different approaches to defining concepts

STRUCTURE PURIST

(A sandwich must have a classic
sandwich shape: two pieces of
bread/baked product, with
toppings in between)

STRUCTURE NEUTRAL

(The container must be on
either side of the toppings, but
not necessarily two
separate pieces)

STRUCTURE REBEL

(Can contain any food
enveloped in any way by a
containing food)

INGREDIENT PURIST

(Must have classic sandwich toppings:

meat, cheese, lettuce, condiments, etc.)

HARDLINE
TRADITIONALISTS

“A BLT is a sandwich.”

STRUCTURAL NEUTRAL,
INGREDIENT PURIST

“A sub is a sandwich.”

STRUCTURAL REBEL,
INGREDIENT PURIST

“A chicken wrap is a sandwich.”

INGREDIENT NEUTRAL  INGREDIENT REBEL

(Can contain a broader scope of = (Can contain literally any food
savoury ingredients) products sandwiched together)

STRUCTURAL PURIST,  STRUCTURAL PURIST,

INGREDIENT NEUTRAL A
< |

o _ . “Ice cream between
A chip butty is a sandwich. waffles Is'a sandwich”

TRUE NEUTRAL  STRUCTURAL NEUTRAL,
INGREDIENT REBEL

“A hot dog is a sandwich.” “An ice cream taco is a sandwich.”

STRUCTURAL REBEL, RADICAL
INGREDIENT NEUTRAL SANDWICH ANARCHY

“A burrito is a sandwich.” “A Pop-Tart is a sandwich.”

12



Different approaches to defining concepts

Rule-based approaches

INGREDIENT PURIST ' INGREDIENT NEUTRAL = INGREDIENT REBEL

(Must have classic sandwich toppings: ~ (Can contain a broader scope of (Can contain literally any food
meat, cheese, lettuce, condiments, etc.) savoury ingredients) products sandwiched together)

HARDLINE STRUCTURAL PURIST,  STRUCTURAL PURISI,
UL AL TRADITIONALISTS  INGREDIENT NEUTRAL

(A sandwich must have a classic ~ &
EEi u’ : (.!‘.

sandwich shape: two pieces of
bread/baked product, with
“Ice cream between

toppings in between)

“p BIT is a sandwich.” “n Chip bUtty i'S a sandwich.” waffles is a sandwich.”
STRUCTURAL NEUTRAL,  TRUE NEUTRAL  STRUCTURAL NEUTRAL,
STRUCTURE NEUTRAL TRL LA AL INGREDIENT REBEL

(The container must be on
either side of the toppings, but
not necessarily two
separate pieces)

“A sub is a sandwich.” “A hot dog is a sandwich.” “An ice cream taco is a sandwich.”

STRUCTURAL REBEL, STRUCTURAL REBEL, RADICAL
INGREDIENT PURIST INGREDIENT NEUTRAL SANDWICH ANARCHY

s \
b B
r

“A chicken wrap is a sandwich.” “A burrito is a sandwich.” “A Pop-Tart is a sandwich.”

STRUCTURE REBEL

(Can contain any food
enveloped in any way by a
containing food)
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Different approaches to defining concepts

Rule-based approaches

i

INGREDIENT PURIST ' INGREDIENT NEUTRAL = INGREDIENT REBEL

(Must have classic sandwich toppings: ~ (Can contain a broader scope of (Can contain literally any food
meat, cheese, lettuce, condiments, etc.) savoury ingredients) products sandwiched together)

HARDLINE STRUCTURAL PURIST,  STRUCTURAL PURISI,

bl AR il TRADITIONALISTS  INGREDIENT NEUTRAL ~ INGREDIENT REBEL

(A sandwich must have a classic S

e~
Zext I i)

e A . “Ice cream between
A chip butty is a sandwich. watfles 158 <andwich”

sandwich shape: two pieces of
bread/baked product, with
toppings in between)

“A BLT is a sandwich.”

STRUCTURAL NEUTRAL,
STRUCTURE NEUTRAL IRRASSDLIR G

(The container must be on
either side of the toppings, but
not necessarily two
separate pieces)

STRUCTURAL NEUTRAL,
INGREDIENT REBEL

TRUE NEUTRAL

“A sub is a sandwich.”

STRUCTURAL REBEL, STRUCTURAL REBEL, RADICAL
INGREDIENT PURIST INGREDIENT NEUTRAL SANDWICH ANARCHY

,

“A chicken wrap is a sandwich.” “A burrito is a sandwich.”

STRUCTURE REBEL

(Can contain any food
enveloped in any way by a
containing food)

“A Pop-Tart is a sandwich.”

Previous Experiences

“A hot dog is a sandwich.” “An ice cream taco is a sandwich.”

Similarity-bases approaches

Sandwich!

y \\:—f'

\ Sandwich?
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Different approaches to defining concepts

Rule-based approaches

INGREDIENT REBEL

(Can contain literally any food
products sandwiched together)

HARDLINE STRUCTURAL PURIST,  STRUCTURAL PURIST,
v hesdl  TRADITIONALISTS  INGREDIENT NEUTRAL  INGREDIENT REBEL

(A sandwich must have a classic " ey

g 3 F o Gy S
sandwich shape: two pieces of 20> 2 N et

&‘ o’ I - : ""

1" ;_’ 4{.‘ *( y

bread/baked product, with
. = . “Ice cream between
“A chip butty is a sandwich.”

INGREDIENT NEUTRAL

(Can contain a broader scope of
savoury ingredients)

INGREDIENT PURIST

(Must have classic sandwich toppings:
meat, cheese, lettuce, condiments, etc.)

“A BLT is a sandwich.”

STRUCTURAL NEUTRAL,
INGREDIENT PURIST

toppings in between)
waffles is a sandwich.”

STRUCTURAL NEUTRAL,
INGREDIENT REBEL

TRUE NEUTRAL
STRUCTURE NEUTRAL

(The container must be on
either side of the toppings, but
not necessarily two
separate pieces)

“A hot dog is a sandwich.” “An ice cream taco is a sandwich.”

“A sub is a sandwich.”

STRUCTURAL REBEL,
INGREDIENT PURIST

STRUCTURAL REBEL,
INGREDIENT NEUTRAL

“A burrito is a sandwich.”

RADICAL

STRUCTURE REBEL SANDWICH ARCHY

(Can contain any food
enveloped in any way by a
containing food)

“A chicken wrap is a sandwich.” “A Pop-Tart is a sandwich.”

Previous Experiences

Similarity-bases approaches

Sandwich!

Wi

Va e S

\ Sandwich?

Not hotdog!
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Rule-based theories

® xplicit boundaries of category membership
(Ashby & Gott, 1988)

® Specificity tacllitates rapid generalization

. . , o Furthermore, we wish to emphasize that in future in all
® Symbolic compositionality makes them infinitely  cities, market-towns and in the country, the only

oroductive (Goodman et al., 2008) ingredients used for the brewing of beer must be
Barley, Hops and Water. - Reinheitsgebot (1516)

e Rigidity makes them inflexible

e \\/nhat about root beer? Or open-tfaced
sandwiches”

® ven when accounting for exceptions 1o rules
(Nosofsky et al,. 1994), they perform best
when paired with other learning mechanisms

(Erickson & Krushke, 1998; Ashby et al,. 1998;

Love et al., 2004)

13
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oroductive (Goodman et al., 2008)

Rigidity makes them inflexible

e \\/nhat about root beer? Or open-tfaced

sandwiches”

(Nosofsky et al,.

—ven when accounting for exceptions to rules

1994), they perform best

when paired with other learning mechanisms

(Erickson & Krushke, 1998; Ashby et al,. 1998;
Love et al., 2004

Furthermore, we wish to emphasize that in future in all
cities, market-towns and in the country, the only
Ingredients used for the brewing of beer must be
Barley, Hops and Water. - Reinheitsgebot (1516)

INGREDIENT PURIST ' INGREDIENT NEUTRAL  INGREDIENT REBEL

(Must have classic sandwich toppings: ~ (Can contain a broader scope of (Can contain literally any food
meat, cheese, lettuce, condiments, etc.) savoury ingredients) products sandwiched together)

HARDLINE STRUCTURAL PURIST,  STRUCTURAL PURIST,
TRADITIONALISTS  INGREDIENT NEUTRAL  INGREDIENT REBEL

STRUCTURE PURIST

(A sandwich must have a classic B

sandwich shape: two pieces of Ty R < —:
bread/baked product, with et v Vg RS
toppings in between) - i S & P

“Ice cream between

LM “A chip butty i; a sandwich.” waffles is a sandwich.”
STRUCTURAL NEUTRAL, TRUE NEUTRAL STRUCTURAL NEUTRAL,
STRUCTURE NEUTRAL INGREDIENT PURIST INGREDIENT REBEL

(The container must be on P —— W
either side of the toppings, but v e J
not necessarily two [ = s

separate pieces) “A sub is a sandwich.” “A hot dog is a sandwich.” “An ice cream taco is a sandwich.”

STRUCTURAL REBEL, STRUCTURAL REBEL, RADICAL
INGREDIENT PURIST INGREDIENT NEUTRAL  SANDWICH ANARCHY

STRUCTURE REBEL .
(Can contain any food caxs = o e
enveloped in any way by a B = NG Sl
containing food) s : : .
ich.”

“A burrito ich.” 13



Hotdogs as a borderline item
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® (Category boundaries seem to be fuzzy, can shift over time, and can also be
sensitive 1o context
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Typicality

® SOoMme objects seem 1o fit better into categories than others

® Some are more typical than others

® Freguency of ex

important variable (

perience has some effect, but not the most

Rosch, Simpson, & Miller 1976)

® amily resemblance theory (Rosch & Mervis, 1975);

® [tems are ty
a) have feat

9

U

cal

T they

‘es frequent in the category

D) don't have features frequent in other categories

® [hus, rather than hard & fast rules, similarity to typica

tems matters

900%° oduck

%hicken

oanimal | pigeon
® cparrot
! o parakeet

R

bird ,robin
o
o Sparrow

o .
bluejoy° cardinal

o hawk

oeagle

—— - e S TS * -

Multi-dimensional scaling of similarity
ratings from Rips, Shoben, & Smith (1973)

Armstrong, Gleitman, & Gleitman (1983) '°
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Similarity-based theories

® Rather than hard and fast rules, another
approach to concept leaming proposes that we
Jse similarity comparisons to make on the fly
generalizations apout new objects

o Stimull with similar features are more likely to
pelong to the same category

® Jistance In feature s
guantification of sim

® (Category membership

Dace provides a simple

arty

S based on comparisor

of any stimuli to previously leamed prototypes

or exemplars

® .
Wolf similar @ Lion

Elephant

L ]
L]

Giraffe
R

Ferocity

Hedgehog  Pig
® L

Size

Prototype Approach Exemplar Approach

Levering & Kurtz (2019)
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Which is the most prototypical chair?

Prototype theory

® Prototypes are summary representations
of a category (Rosch, 1973)

® [ypical can be explained by items peing
closer to our learmed prototype

® Prototypes can be constructed based
welghted features (omith & Medin, 1981)

® Some features are more iImportant:
Sirds have wings (1.0), usually fly (0.8),
some sing songs (0.3), and a few eat
worms (0. 1)

® (Categories are thus defined by similarity to
the prototype

ﬁj

Brenden Lake
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Exemplar theory

e NO summary representation

® \\\/e remmember each example of a concept, ano

we compa

‘e new Instances to these past

memories (Medin & Schaffer, 1978)

® Close similarity to well-
strong effect on classificat

eIme

O

mbered stmull has a

1.

® Participants were either told about the rule or not

® During test, participants were often fooled by the

negative

and legs o

dn’'t matcn

atch (with spots), even when pody

e (Categories are thus defined by similarity to past

exemplars

RULE: A1 LEAST TWO OF (LONG LEGS,
ANGULAR BODY, SPOTS) —— BUILDER

TRAINING

T Y ST
POSITIVE MATGH'

(BUILDER)
A A D

POS. OLD POS. MATCH NEG. OLD NEG. MATCH

CONDITION
Bl RuLE NO RULE

Allen & Brooks (1991)
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Prototype or

Still an open debate

* Prototype was
dominant during the
final test

 But neural
signatures of both
throughout

exemplar?

Lareral panzial eorex
rPoster or Tppocampus
Vertroma:cial prafronkzl cortsx

A B . Artesor ipposarpus
\ / E I | | I \ Inferior frontzl oyrae
A 04 : :
‘ Learning phase: 15t half
= 02
E -
g o
£
Category A Category B Category A Category B 5 H
\_ representation representalion / \ representation representalion A S 1
02
VMFFC AHIP FHIP G Lat. Par.
C D E B Learning hase: 2 n3 half
Category A Category B Observational study Interim generalization test  Final generalization test 03 eI IQIRRIoR. = B
(2 runs) (1 run) (4 runs) _ 02
Y ( Al T i
e 0 , +‘
o 0.1
=
B o2
U3
Prototype A Prototype B Febble or Badoon? Febble or Badoon? VMPFC  AHIP  PHIP LO IFG  Lat Par,
| Lo 4 ) e \ / 4\ / C
Distance from category A prototype X 0.3 Learning ohase: combined
= 02
4]
e h e "
A Learning phase: 1% half B Learning phase: 2™ half C Final test g 0 ,i F* ’
S -0.1
30 30 30 = !
exemplar 0.2
- better . - - VMPFC AHIP PHIF LO IFG Lal Pa
1 <0 ® <0 § D o3 Final tesl
g g g
o1 o 10 © 10 T o1
& 0 prototype & a Q
better &S ! 4‘- ] -
£ 01
0 0 9 :
0 10 20 30 = 02
E Exemplar fit 03 -
exemplar fit Exemplar fit - VMFFC  AHIP PHIP G  Lat Par.
* " Prototype Exemplar
lower is better B Prowyp - P

Bowman, lwashita, & Zeithamova (2020)

. Latcral occipital corex

19



Prototype or exemplar?
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How do we define similarity?

Euclidean

Manhattan

Chebychev

Minkowski
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Generalization as a method to test different forms of similarity

Experience

... Generalization o similarity

® How do we generalize limited
experience to novel situations”

® [he degree of generalization should
be a function of our latent similarity .
computations " Novel situation

® [he pbest similarity metric for
oredicting generalization should also
eveal something about how we
represent Concepts Possibilities




Two main approaches: Metric vs. Set

Metric

\4

Embed data in some vector space and compute
similarity as the inverse of distance

Set

Compare which features are jointly
shared vs. unique (i.e., disjoint)

22



Shepard’s (1987) Law
of Generalization

STIMULUS + RESPONSE = LEARNING

o0

\
Illustration. Skinner box as adapted for the pigeon.
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Empirical measure of generalization, 9j

A Sizes
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B Lightnesses &
saturations
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[pigeon data]

H Spectra! hues
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Spectiral hues
[human datal

C Positions (in
linear array)

F Consonant
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| Vowel
phonemes

| Morse caode
signals

Distance, d"l' In psychological space
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Generalization in Psychological Space

Shepard (1987) believed that representations about
categories or natural kinds correspond to a
consequential region in psychological space

Generalization arises from uncertainty about the
extent of these regions

As representational distance between stimuli X and X’
iIncreases (i.e., become less similar), they are less
likely to belong to the same region, and thus produce
less similar outcomes

This produces the smooth gradient of generalization

Psychologic:aA Space

/

X

.0 '
&
*

.Distance

Consequential
Region

Generalization gradient
1.00 -

0.75 1

Generalization
o
Ol
o

0.25+

0.00 -

Psychological Distance
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We generalize from one situation to another not because we
cannot tell the difference between the two situations but because we
judge that they are likely to belong to a set of situations having the
same consequence. Generalization, which stems from uncertainty
about the distribution of consequential stimuli in psychological
space, 1s thus to be distinguished from failure of discrimination,
which stems from uncertainty about the relative locations of individ-
ual sumuli 1n that space.

Shepard (Science, 1987) ..



Measurement invariance explains the universal law of

generalization for psychological perception

Steven A. Frank®'

*Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 82697-2525

Edited by GUnter P. Wagner, Yale University, New Haven, CT, and approved August 15, 2018 (reccived for review June 7, 2018)

The universal law of generalization describes hoaw animals dis-
criminate between alternative sensory stimuli. On an appropriate
perceptual scale, the probability that an organism perceives two
stimuli as similar typically declines exponentially with the differ-
ence on the perceptual scale. Exceptions often follow a Gaussian
probability pattern rather than an exponential pattern. Previous
explanations have been based on underlying theoretical frame-
works such as information theory, Kolmogorov complexity, or
empirical multidimensional scaling. This article shows that the
few inevitable invariances that must apply to any reasonable
perceptual scale provide a sufficient explanation for the univer-
sal exponential law of generalization. In particular, reasonable
measurement scales of perception must be invariant to shift by
a constant value, which by itself leads to the exponential form.
Similarly, reasonable measurement scales of perception must be
invariant to multiplication, or stretch, by a constant value, which
leads to the conservation of the slope of discrimination with per-
ceptual difference. In some cases, an additional assumption about
exchangeability or rotation of underlying perceptual dimensions
leads to a Gaussian pattern of discrimination, which can be under-
stood as a special case of the more general exponential form. The
three measurement invariances of shift, stretch, and rotation pro-
vide a sufficient explanation for the universally observed patterns
of perceptual generalization. All of the additional assumptions
and language associated with information, complexity, and empir-
ical scaling are superfluous with regard to the broad patterns of
perception.

scaling patterns | categorization | sensory information | animal behavior |
probability theory

Shift
x—’

Stretch

xq

x_.

A JPCG Cncoding
= T B

Rotation

COGNITIVE PSYCHOLOGY

Efficient coding explains the
universal law of generalization
in human perception

Perceptual generalization and discrimination are fundamental cognitive abilities. For
example, if a bird eats a poisonous butterfly, it will learn to avoid preying on that species
again by generalizing its past experience to new perceptual stimuli. In cognitive science,
the “universal law of generalization” seeks to explain this ability and states that
generalization between stimuli will follow an exponential function of their distance in
“psychological space.” Here, | challenge existing theoretical explanations for the universal
law and offer an alternative account based on the principle of efficient coding. | show
that the universal law emerges inevitably from any information processing system
(whether biological or artificial) that minimizes the cost of perceptual error subject to
constraints on the ability to process or transmit information.
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Limitations of metric similarity

* [wo definitive properties are symmetry and triangle inequality

 But they are often violated in human judgments of similarity (Tversky, 1977)

Symmetry Triangle Inequality

A BC+AB>AC
AC+BC>AB
AB+AC>BC

d(x,x") = dX/, X)
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Limitations of metric similarity

* [wo definitive properties are symmetry and triangle inequality

 But they are often violated in human judgments of similarity (Tversky, 1977)

Triangle Inequality

Symmetry

BC+AB>AC
AC+BC>AB
AB+AC>BC

>4

d(x,x") = dX/, X)

d(==. 00 #a(h b, ==

=



Contrast model

sim(A, B) = Of(A N B) — af(A — B) — Bf(B — A)

e 0, a, f} are free parameters

® [0 translate into Shepard’s language, rather than conseguential regions in
psychological space, concepts are defined based on sets of features

e Similar to family resemblance theory (Rosch & Mervis, 1975)
e Common and disjoint features may be weighted differently

® A more refined similarity theory that allows for asymmetric similarity judgments that can
also violate triangle inequality




Bayesian concept learning as a hybrid approach

e \uch of modern cognitive science IS
dominated by Bayesian inference

® Josh Tenenbaum and Tom Griffit
iNndividuals who are largely responsible for it's

popularity

NS are two

® [Ne same basic concept can explain a huge
host of problems, from language acquisition, to
structure learming, to program induction

e But it all started wit

PND thesis

N alr

model of probablis

C ru

C

Umber gar

earning

ne and a

from Josn's
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1 random "'yes' example:

Number concepts

yd
® X |S an even number m— 2
® X IS petween 30 and 45
(square #s2
® | | even #'s?
X IS a prime number o | orens o 22
N\ \numbers <207
® A computer generates a random number from a Gow : /
chosen concept, and you need to guess another 32 —» \,9_ S
numbber that is likely to fit 3] —» \| \ __ » .05
4 —» // \ — S
17 —>(/ = 2
87 —» e .0l

Tenenbaum (PhD thesis 1999) ..



4 random "yes" examples:

Number concepts

A 16
® -xamples: ,_\] . 8
| | 2
® X |S an even number  — 64
=
® X s petween 30 and 456
® X is a prime number O(powers of2a
@
® A computer generates a random number from a (’”O o )
chosen concept, and you need 1o guess another 32 —» \\\c, / —» YES
numbper that is likely to fit 3] > \l | _» No
\
4 —» /,// \\\ —» Yes
17 —>(/ \\) __» No
R7 » — No

Tenenbaum (PhD thesis 1999) ..



4 random "yes" examples:

Number concepts

/ / 16
® -xamples: ,_\] . 8
| 2
e X is an even number " 64
=
® X IS petween 30 and 45
® X Is a prime number . O(powers ofza
® A computer generates a random number from a (’;";\ )
chosen concept, and you need to guess another 32— A\ ¢ / —» Yes
numbper that is likely to fit 3] > \\l | __ » No
\
" 4 —» _/ .. —» Yes
® [~\ven restricting the game to natural numbers between / N
1 and 100, there are more than a billion billion billion 17 —»( \) —» No
subsets of numbers that such a program could Q7 - o No

DOSSIbly have picked out and which are consistent with
the observed "yes' examples of 16, 8, 2, and 64

Tenenbaum (PhD thesis 1999) ..



Bayesian Concept Learning

 Example: The concept of healthy person

 Problem: Given a set of examples (x’s in the plot), what
is the probablity that some new example y will fall within
conseqguential region C defining a healthy person?

 Each h is a hypothesis (illustrated as rectangles) about
the category boundary

Sum over hypotheses that
yeC\x z P h‘x include y
h:yeh

Blood Pressure

p(h|x) — P(x|h>p(h) likelihood * prior /

P ( x) evidence

(XVO (h) BMI

’ 7\ Tenenbaum (NIPS 1999)
Zh'ej—[p xlh ) (h ) Tenenbaum & Griffiths (BBS 2001)

Bayes’ rule

X Data point
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Bayesian Concept Learning

Likelihood:
1 ifxEh . -
|/ ={ . | X Data point
p(x|h) 0 otherwise [weak sampling]
l .
vl ifx€h . x| h
p(x|h) { o erice [strong sampling], P ( ‘1 )
% _ _
Bayesian size principle: under strong sampling, o
smaller h (consistent with the data) are more likely -
O
o
Multiple x’s with multiple features: N

p(X|h) = Hp(xilh)

BMI

_ | g ifxy,...,x, Eh Tenenbaum (NIPS 1999)
0 otherwise Tenenbaum & Giriffiths (BBS 2001)

1
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Bayesian Concept Learning

* The probability of y being in the same
category of x is thus based on summing

over all hypotheses consistent with the data X Data point
plyeClx)= Y, p(hlx). p(x|h)
h:yeh o o - 1
£
 Where narrower hypotheses are favored g
under strong sampling 0

p(hlx) = pl|h)p(h)

p(x)
[l ifxEh . BMI
p(x|h) —{'8' herwice | Lstrong sampling], Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)
34



Hypotheses can capture structured and arbitrary

subsets of the data

\

\

A

M

A

|

/

J\

\

VA

1

M

/

J

piye Clx)
0
0 10

100

Figure 5. Bayesian generalization in the number game, given one example x = 60. The hypothesis space includes 33 mathematically
consequential subsets (with equal prior probabilities): even numbers, odd numbers, primes, perfect squares, perfect cubes, multiples of
a small number (3—10), powers of a small number (2—10), numbers ending in the same digit (1-9), numbers with both digits equal, and

all numbers less than 100.
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Bayesian Concept Learning Subsumes Tversky’s
Contrast Model

X Data point

p(h)

i 1
0

Blood Pressure

Contrast model Bayesian concept learning
Syx) =6 (Y N X) = af (Y = X) = BfF(X = V), plyeClx)= ) p(hlx).
h:yeh

Ratio model (alternative form)

h,
Sly,x)=1 /[1 n of (Y - X) +Bf (X - l/)] (equivalent when a=0 and [/=1) =1 /[1+ zh”xehﬁ/@”p( ) .

fYynx)
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Bayesian Concept Learning Extends Shepard’s
Law of Generalization to Multiple Examples

1.001
T Shepard’s
g 075 Generalization
piye ClX) ® Gradient
® 050+
0 . —_—— . 1 . . L 1 L == g
0 10 20 30 40 50 60 70 80 90 100 O )2s-
r .
J.00 4
plye C1X) Psychological Distance
0 —T— 1 L@ ® 1 T —
0 10 20 30 40 50 60 70 80 90 100
1
p(ye ClX)) ’JL
0 1 | s 1 | J
0 10 20 30 40 S0 60 70 80 90 100
1r
0 | i | | 1 ._.‘ 1 1 | J
0 10 20 30 40 50 60 70 80 90 100

Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, . = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples. 37



Bayesian Concept Learning Extends Shepard’s
Law of Generalization to Multiple Examples

Shepard’s
0754 Generalization
Gradient

ply € ClX)
0 { I W - 1 i & L ] - ——
0 10 20 30 40 50 60 70 80 90 100
1r .
piye Cl1X) / \
0 ] ———— T 1 L ’ ‘ L L e ——
0 10 20 30 40 50 60 70 80 90 100
1
piye Cl X)) ’j—\\‘
0 1 | | 1 | J
0 10 20 30 40 50 60 70 80 90 100
1 —
o J k
0 | | | 1 1 ..‘ 1 | | J
0 10 20 30 40 50 60 70 80 90 100

Psychological Distance

Range of generalization
decreases with more
examples

more examples = less
uncertainty about the
extent of consequential
region

Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, . = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples.
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Causal learning

Graph 0 Graph 1

T

Griffiths & Tenenbaum (2005)

Program Induction

Lake, Salakhutdinov, & Tenenbaum (2015)

Word learning Structure learning

Dalmatian goldhsh robin
Samon  Trout Alligator
ﬁzzn{ trout tlue jay Eag I eP .
. enguin
Labrador salmen sparrow RO bln g
Ilguana
Finch
dog ||+ fish [[* bird | animal //Whale\ Ant
Chicken — / RN
. Dolphin
Ostrich . P N\ KL—— Cockroach
ping rose apple Seal
oak violet ” crange _’/ \ Butterﬂy
s = Rhino Wolf Bee
orse
Elephantﬂ Cow | Dog
tree " flower || T fruit plant Deer Cat
living thing :
Glraffecame| Lion
Xu & Tenenbaum (2007 Gorilla - .. Tiger
( ) Chimp _ Squirrel S
use
Kemp & Tenenbaum (2008)
Initial Learned Library of Concepts
Primitives
map concept 13
fold concept_4 /1AUJ(car (concept 4 L )
. \/()\(; P) (fold | ml}/‘ (A(y) (nil? (concept_4 | (OHLCDtﬁlD
(A(z u) (if (P‘z) \jk(z) (> zy)))»))) \\l (A (L N)(concept 13 (concept 4
cons \(cons Z u) w))) [maximum)] [L (A (L)(> N (Llength( n wtwr 4
> [ﬁ'ter] L ()\ (W)(>z u))))))))

[nth largest element]

... and many more

(A (x) (map (A (y) (car (fold (fold x nil (A (z u) (if (gt? (+ y 1) (length (fold x nil (A (v
w) (if (gt? z v) (cons v w) wW))))) (cons z u) w))) nil (A (a b) (if (nil? (fold (fold x nil

(M (cd) (if (gt? (+ y 1) (length (fold x nil (A (e f) (if (gt? c e) (cons e f) f))))) (cons
cd) d))) nil (A (g h) (if (gt? g a) (cons g h) h)))) (cons a b) b))))) (range (length x))))

Dreamcoder: Ellis et al,. (2020)
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Theories of Concept Learning

Classification task

Previous Experiences

Sandwich!

g
/

\ Sandwich?

= 4

Wu, Meder & Schulz (in prep)
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Theories of Concept Learning

Classification task Rule-based
: : X Sandwich
Previous Experiences - 0 Not sandwich
Sandwich! 2 Query X
' — Rule
X
R
N <~ 9
Vs =3 o ? X
\ = :
Sandwich? L 0 0
— o

Bread Enclosure

* Rules describe the explicit boundaries of category boundaries

(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)

Wu, Meder & Schulz (in prep)
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* Similarity uses a comparison to previously encountered exemplars or a learned prototype

(aggregated over multiple experiences) as the basis of generalization

(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)
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Bread Enclosure

* Similarity uses a comparison to previously encountered exemplars or a learned prototype

(aggregated over multiple experiences) as the basis of generalization

(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)

* Hybrids combine elements of both: Bayesian concept learning uses a distribution over rules,
while reproducing predictions of two influential similarity-based approaches

(Tenenbaum & Giriffiths, BBS 2001; Shepard, Science 1987; Tversky, PsychRev 1977)
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General principles

® Again, hybrid theories combining competiting mechanisms seem to
orovide the best answer

® Rules have a symbolic flavor, offering rapid generalization and tflexiple

CcoOMPOosItion

® Similarity has a subsymbolic flavor, where previously encountereo
example exert influence on generalization based on similarity-weights

® A nyord using

Sayesian inference combines the best of both worlds

® Concepts are not just passively leamed associations (model-free RL), but

seem to point towards generative representations about the structure of
the world (Model-based RL)
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