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The story so far…

2



3

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward



3

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward
Reinforcement 

Learning

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 



Reinforcement Learning 

4

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)



Reinforcement Learning 

4

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)

Delta-rule of learning



Reinforcement Learning 

4

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)

Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)



Reinforcement Learning 

4

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)

Schultz et al. (1997)

Dopamine RPE Signal

Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)



Reinforcement Learning 

4

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)

Model
s
a

s′￼

r

Schultz et al. (1997)

Dopamine RPE Signal

Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)



5

Model-free vs. model-based

Niv (2009)



5

Model-free vs. model-based
2-step task

Daw et al., (2011)

Niv (2009)



5

Model-free vs. model-based
2-step task

Daw et al., (2011)

Niv (2009)

S-R learning S-S learning

Tolman (1948)



5

Model-free vs. model-based
2-step task

Daw et al., (2011)

Niv (2009)

S-R learning S-S learning

Tolman (1948)

(Model-free) (Model-based)



5

Model-free vs. model-based
2-step task

Daw et al., (2011)

Niv (2009)

S-R learning S-S learning

Tolman (1948)

(Model-free) (Model-based)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations

Hybrid systems



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations

Hybrid systems



Agenda for today

1. What is a concept?


2. Rule-based theories


3. Similarity-based theories


4. Hybrid approaches
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What is a concept?

Maurizio Cattelan Marcel Duchamp

Conceptual art
Shutterstock
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What is a “Sandwich?” 
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What is a “Sandwich?” 

Is a hotdog a sandwich?



Concept learning is at the heart of many key aspects of intelligence

10

One-shot generalization Creative composition Rapid transfer

Lake et al., (2015); Lake et al., (2017)

Josh Tenenbaum



The study of categories and concepts
• A category is a set of objects in the world and a concept is a mental 

representation of a category

• We will use the two interchangeably


• Classical view (Bruner et al., 1967): 

1. Concepts can be defined based on necessary and sufficient conditions for 

category membership

2. Membership is all-or-nothing. All members are equally good


• This perspective dates to Aristotelian “forms” and Logical positivist philosophy 
(e.g., Quine, Popper, etc…)


• What are the necessary and sufficient conditions for something to be a sandwich?
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Rule-based theories
• Explicit boundaries of category membership 

(Ashby & Gott, 1988)

• Specificity facilitates rapid generalization

• Symbolic compositionality makes them infinitely 

productive (Goodman et al., 2008)

• Rigidity makes them inflexible


• What about root beer? Or open-faced 
sandwiches?


• Even when accounting for exceptions to rules 
(Nosofsky et al,. 1994), they perform best 
when paired with other learning mechanisms 
(Erickson & Krushke, 1998; Ashby et al,. 1998; 
Love et al., 2004)

13

Furthermore, we wish to emphasize that in future in all 
cities, market-towns and in the country, the only 
ingredients used for the brewing of beer must be 
Barley, Hops and Water. - Reinheitsgebot (1516)
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Hotdogs as a borderline item
• Early psychological experiments showed that people didn’t have well-defined 

categories (Hampton, 1979; Rosch & Mervis, 1975) and were even inconsistent 
when labeling the same object twice (McCloskey & Glucksberg, 1978) 


• Category boundaries seem to be fuzzy, can shift over time, and can also be 
sensitive to context
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• Concepts can be defined based on necessary and sufficient 
conditions for category membership



Typicality
• Some objects seem to fit better into categories than others


• Some are more typical than others

• Frequency of experience has some effect, but not the most 

important variable (Rosch, Simpson, & Miller 1976)

• Family resemblance theory (Rosch & Mervis, 1975):


• Items are typical if they  
a) have features frequent in the category 
b) don’t have features frequent in other categories


• Thus, rather than hard & fast rules, similarity to typical 
items matters

15

Multi-dimensional scaling of similarity 
ratings from Rips, Shoben, & Smith (1973)

Armstrong, Gleitman, & Gleitman (1983)
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• Membership is all-or-nothing. All members are equally 
good



Similarity-based theories
• Rather than hard and fast rules, another 

approach to concept learning proposes that we 
use similarity comparisons to make on the fly 
generalizations about new objects


• Stimuli with similar features are more likely to 
belong to the same category

• distance in feature space provides a simple 

quantification of similarity

• Category membership is based on comparison 

of any stimuli to previously learned prototypes 
or exemplars

16

similar

dissimilar

Levering & Kurtz (2019)



Prototype theory
• Prototypes are summary representations 

of a category (Rosch, 1973)

• Typical can be explained by items being 

closer to our learned prototype

• Prototypes can be constructed based 

weighted features (Smith & Medin, 1981)

• Some features are more important: 

Birds have wings (1.0), usually fly (0.8), 
some sing songs (0.3), and a few eat 
worms (0.1) 


• Categories are thus defined by similarity to 
the prototype

17

Which is the most prototypical chair?

Brenden Lake

Constructing a prototype by weighing important features



Exemplar theory
• No summary representation


• We remember each example of a concept, and 
we compare new instances to these past 
memories (Medin & Schaffer, 1978)


• Close similarity to well-remembered stimuli has a 
strong effect on classification:

• Participants were either told about the rule or not

• During test, participants were often fooled by the 

negative match (with spots), even when body 
and legs didn’t match


• Categories are thus defined by similarity to past 
exemplars

18Allen & Brooks (1991)



Prototype or exemplar?

19Bowman, Iwashita, & Zeithamova (2020)

• Still an open debate


• Prototype was 
dominant during the 
final test


• But neural 
signatures of both 
throughout

*lower is better

prototype  
better

exemplar  
better



Prototype or exemplar?

19Bowman, Iwashita, & Zeithamova (2020)

• Still an open debate


• Prototype was 
dominant during the 
final test


• But neural 
signatures of both 
throughout

*lower is better

prototype  
better

exemplar  
better



Prototype or exemplar?

19Bowman, Iwashita, & Zeithamova (2020)

• Still an open debate


• Prototype was 
dominant during the 
final test


• But neural 
signatures of both 
throughout

*lower is better

prototype  
better

exemplar  
better



How do we define similarity?

20



Generalization as a method to test different forms of similarity

• How do we generalize limited 
experience to novel situations?

• The degree of generalization should 

be a function of our latent similarity 
computations


• The best similarity metric for 
predicting generalization should also 
reveal something about how we 
represent concepts

21

Possibilities

Experience

Generalization  similarity∝

Novel situation



Two main approaches: Metric vs. Set

22

A ∩ BA − B B − Ax
Distance

x

x′￼

Metric Set

Embed data in some vector space and compute 
similarity as the inverse of distance

Compare which features are jointly 
shared vs. unique (i.e., disjoint)



Shepard’s (1987) Law 
of Generalization
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Generalization in Psychological Space
• Shepard (1987) believed that representations about 

categories or natural kinds correspond to a 
consequential region in psychological space


• Generalization arises from uncertainty about the 
extent of these regions


• As representational distance between stimuli x and x’ 
increases (i.e., become less similar), they are less 
likely to belong to the same region, and thus produce 
less similar outcomes


• This produces the smooth gradient of generalization

24



25Shepard (Science, 1987)
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Shift

Shift

Stretch

Rotation



Limitations of metric similarity

27

Triangle Inequality

A

B C

BC+AB>AC

AC+BC>AB

AB+AC>BC

Symmetry

d(x, x′￼) = d(x′￼, x)

• Two definitive properties are symmetry and triangle inequality


• But they are often violated in human judgments of similarity (Tversky, 1977)
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Contrast model

•  are free parameters


• To translate into Shepard’s language, rather than consequential regions in 
psychological space, concepts are defined based on sets of features


• Similar to family resemblance theory (Rosch & Mervis, 1975)


• Common and disjoint features may be weighted differently


• A more refined similarity theory that allows for asymmetric similarity judgments that can 
also violate triangle inequality

θ, α, β

28

A ∩ BA − B B − Asim(A, B) = θf(A ∩ B) − αf(A − B) − βf(B − A)



Bayesian concept learning as a hybrid approach

• Much of modern cognitive science is 
dominated by Bayesian inference


• Josh Tenenbaum and Tom Griffiths are two 
individuals who are largely responsible for it’s 
popularity


• The same basic concept can explain a huge 
host of problems, from language acquisition, to 
structure learning, to program induction


• But it all started with a number game and a 
model of probablistic rule learning from Josh’s 
PhD thesis

29



5 min break
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Number concepts
• Examples:


• X is an even number


• X is between 30 and 45


• X is a prime number

• A computer generates a random number from a 
chosen concept, and you need to guess another 
number that is likely to fit

31Tenenbaum (PhD thesis 1999)
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Number concepts
• Examples:


• X is an even number


• X is between 30 and 45


• X is a prime number

• A computer generates a random number from a 
chosen concept, and you need to guess another 
number that is likely to fit

• Even restricting the game to natural numbers between 
1 and 100, there are more than a billion billion billion 
subsets of numbers that such a program could 
possibly have picked out and which are consistent with 
the observed “yes" examples of 16, 8, 2, and 64

31Tenenbaum (PhD thesis 1999)



Bayesian Concept Learning
• Example: The concept of healthy person


• Problem: Given a set of examples (x’s in the plot), what 
is the probablity that some new example y will fall within 
consequential region C defining a healthy person?


• Each h is a hypothesis (illustrated as rectangles) about 
the category boundary

32

x x

x x
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Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)

x Data point

BMI

Bl
oo

d 
Pr

es
su

re

y

Sum over hypotheses that 
include y

Bayes’ rule likelihood * prior / 
evidence



Bayesian Concept Learning
Likelihood:

33

p(x |h)
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Bayesian size principle: under strong sampling, 
smaller h (consistent with the data) are more likely


Multiple x’s with multiple features:



Bayesian Concept Learning

34

p(x |h)

0

1

x x

x x

x

Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)

x Data point

BMI

Bl
oo

d 
Pr

es
su

re

y

• The probability of y being in the same 
category of x is thus based on summing 
over all hypotheses consistent with the data 




• Where narrower hypotheses are favored 
under strong sampling 

 



Hypotheses can capture structured and arbitrary 
subsets of the data

35



Bayesian Concept Learning Subsumes Tversky’s 
Contrast Model

36

Ratio model (alternative form)

Contrast model Bayesian concept learning

(equivalent when =0 and =1)α β

𝒳 ∩ 𝒴𝒳 − 𝒴 𝒴 − 𝒳



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

37

Shepard’s 
Generalization 
Gradient



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

37

Range of generalization 
decreases with more 
examples

more examples = less 
uncertainty about the 
extent of consequential 
region

Shepard’s 
Generalization 
Gradient
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Causal learning

Griffiths & Tenenbaum (2005)

Structure learning

Kemp & Tenenbaum (2008)

Word learning

Xu & Tenenbaum (2007)Program Induction

Lake, Salakhutdinov, & Tenenbaum (2015)

… and many more

Dreamcoder: Ellis et al,. (2020)
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Theories of Concept Learning

• Rules describe the explicit boundaries of category boundaries 
(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)

• Similarity uses a comparison to previously encountered exemplars or a learned prototype 
(aggregated over multiple experiences) as the basis of generalization 
(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)
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• Rules describe the explicit boundaries of category boundaries 
(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)

• Similarity uses a comparison to previously encountered exemplars or a learned prototype 
(aggregated over multiple experiences) as the basis of generalization 
(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)

• Hybrids combine elements of both: Bayesian concept learning uses a distribution over rules, 
while reproducing predictions of two influential similarity-based approaches 
(Tenenbaum & Griffiths, BBS 2001; Shepard, Science 1987; Tversky, PsychRev 1977)
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General principles
• Again, hybrid theories combining competiting mechanisms seem to 

provide the best answer

• Rules have a symbolic flavor, offering rapid generalization and flexible 

composition

• Similarity has a subsymbolic flavor, where previously encountered 

example exert influence on generalization based on similarity-weights

• A hybrid using Bayesian inference combines the best of both worlds


• Concepts are not just passively learned associations (model-free RL), but 
seem to point towards generative representations about the structure of 
the world (Model-based RL)
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Supervised and unsupervised learning *Function learning

*Note the change in topic and assigned reading. This is an in prep 
manuscript and I will send it via email


