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Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

- ‘RL’ -> a more complete modern version of RW 

SUMMARY SO FAR 



REINFORCEMENT LEARNING: LINK BETWEEN STATES 
AND ACTION 

VIA INTERACTION WITH THE ENVIRONMENT 
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SUMMARY SO FAR 

Conditional Probability and Markov property 

Conditional probability is a way to measure the likelihood of an event 
happening, given that another event has already occurred. It helps us 
understand how the probability of one event changes when we have 
additional information.
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SUMMARY SO FAR 

Markov property 

represents the 
probability of the next 
event given the current 
event and all the 
previous events.

represents the 
probability of the next 
event given only the 
current event, without 
considering any of the 
previous events.

The future states of a stochastic process depends 
only on the current state and is independent of the 
past states, given the present state. 



SUMMARY SO FAR 

TD update for Q value 



SUMMARY SO FAR 

Q value : fails to scale up to large action spaces 



POLICY GRADIENT 

• directly learn how to act 
• not via learning  the Q function 



POLICY GRADIENT 

• ∆θ :  update to the policy parameters.
• α learning rate
• ∇π (s, θ) : gradient of the policy with respect to the parameters 

(how the policy changes as the parameters θ change)
• J(s, θ) is the performance or objective function (i.e. expected return) 

=  how good the policy is in state s under the parameter setting θ.



PROBLEM: POLICY GRADIENT DOES NOT 
DIFFERENTIATE THE STATE

But wait - this doesn’t allow us to learn to behave differently 
based on the state … not ideal - maybe one action is only not 
good at one state 



ACTOR-CRITIC
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ACTOR-CRITIC

• Basically two agents: one that learns the policy (via policy gradient) and 
one that learns the value (using TD errors) 

• ‘The best of both worlds’
• Contrary to standard TD learning, can scale to large action 

spaces
• Contrary to policy gradient, still provides a policy that depends 

on the state 



Q-LEARNING VS ACTOR-CRITIC 

• Q-learning:
• Well suited for situations w discrete action spaces and known 

state transitions 
• ‘Off-policy’: can use any value function to learn the optimal 

policy  
• Actor-critic: 

• Well suited for situations in a continuous action and/or state 
space 

• ‘On policy’: the learnings are directly dependent on the behavior 
that is currently produced 



SUMMARY SO FAR 

Really good source of explanation - links to code etc:
 https://mpatacchiola.github.io/blog/2017/02/11/dissecting-
reinforcement-learning-4.html 

https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html
https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html
https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html


FROM Q VALUE TO ACTION SELECTION:

    - greedy policy:

• 

•   Random

 with probability 1-

 with probability



FROM Q VALUE TO ACTION SELECTION:

The effect of      is straightforward: the higher the value the more 
random is the policy - the effect of      is actually the same. 
Here are example trajectories (top) and corresponding policies 
(bottom) for different values of the inverse temperature:

=0.01 =0.2 =0.6



DEEP Q LEARNING 
Instead of a Q-table (find the states and actions and read out the 
table), a neural network will approximate the Q value of every 
action from a state  

State -> network -> Q values per actions (output dim number of actions)



Algorithm : 
Init 
Choosing action 
Updating weights using Bellman equation 

DEEP Q LEARNING 



Alpha Go

DEEP Q LEARNING 
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DEEP Q LEARNING 

AlphaGo has both a value network and a policy network to address 
different aspects of the game:
• The value network predicts the outcome of the game state, 

providing an estimate of the winning probabilities. 
• The policy network, on the other hand, suggests the best move by 

assigning probabilities to different actions, aiding in the exploration 
and decision-making process. 

By combining the two networks, AlphaGo can effectively evaluate 
game states and make informed strategic moves, enhancing its 
gameplay performance.



DEEP Q LEARNING 

AlphaGo: combination of deep neural networks and Monte Carlo Tree 
Search (MCTS):
• It first trains a value network on expert human moves to estimate 

the outcome of game states. 
• Then, it trains a policy network using reinforcement learning to 

suggest moves. 
• During gameplay, AlphaGo performs MCTS simulations to explore 

possible moves and their outcomes, using the value and policy 
networks to guide the search. 

 The combination of deep learning and search algorithms is the 
strength 



DEEP Q LEARNING 

• Advantages: 
• Can handle high-dimensional state spaces 
•  Generalization and Transfer Learning: has the ability to 

generalize learned knowledge to unseen or similar states. By 
capturing and representing the underlying structure of the 
environment in the neural network weights, it can facilitate 
transfer learning, where knowledge acquired in one task can be 
transferred to related tasks or domains.

• Shortcomings:  
• Sample Efficiency and Data Requirements: Deep Q-learning 

often requires a large amount of training data to effectively learn 
the action-value function

• Lack of temporal abstraction: Deep Q Learning operates in one 
single timescale



OPTION FRAMEWORK

• Hierarchical representation of actions 
• An ‘option’ is basically a sequence of actions. 

Botvinick, Niv and Barto. Cognition. (20109)
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OPTION FRAMEWORK

• Shortcomings:  
• Option Discovery: challenge of effectively discovering 

meaningful and useful options for a given task or environment.
• Hierarchical Structure: Designing an optimal hierarchical 

structure of options that balances granularity and complexity can 
be difficult and may require domain expertise

• Credit Assignment: Assigning credit to the options within the 
framework and properly attributing rewards or penalties to the 
appropriate levels of the hierarchy can be nontrivial and may 
require careful design and implementation.



OPTION FRAMEWORK

• Advantages: 
• enables the representation of temporally extended actions or 

behaviors, allowing agents to perform more complex and 
efficient actions in a hierarchical manner.

•  Reusability: Options can be learned and reused across different 
states and tasks, promoting faster learning and improved 
performance by leveraging previously acquired sub-policies or 
skills

• Efficient Exploration: Hierarchical architectures, such as the 
option framework, provide higher-level exploration strategies, 
guiding the agent to explore in a more purposeful and efficient 
manner, leading to more effective exploration and learning.



SUMMARY MODEL-FREE RL 

• For ‘small’ tasks: 
• Value or Q-learning: basically quick and dirty - there is a 

table that tells you what is the best action to perform in 
that state - still needs comparison between all action values 
- so not scalable to big action and state spaces

•  Policy gradient: basically repeating previously successful 
actions in that states 

• Actor-critic: 2 cooperating agents: one learns the value of 
states, the other one the policy 

• For ‘bigger-scaled’ problems: 
• Deep Q-learning: better transfer learning across states - so 

good for large states and action spaces than traditional Q-
learning because the network can make generalization 
between states  

• Hierarchical RL: enables extended action sequences + 
reusing options across tasks 


