
General Principles of
Human and Machine

Learning

Lecture 4: Advances in RL

Dr Charline Tessereau

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

- ‘RL’ -> a more complete modern version of RW

SUMMARY SO FAR

REINFORCEMENT LEARNING: LINK BETWEEN STATES
AND ACTION

VIA INTERACTION WITH THE ENVIRONMENT

States Rewards Actions

Agent

Environment

st

st+dt

rt+dt

rt

at

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

SUMMARY SO FAR

Conditional Probability and Markov property

Conditional probability is a way to measure the likelihood of an event
happening, given that another event has already occurred. It helps us
understand how the probability of one event changes when we have
additional information.

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

SUMMARY SO FAR

Markov property

represents the
probability of the next
event given the current
event and all the
previous events.

represents the
probability of the next
event given only the
current event, without
considering any of the
previous events.

The future states of a stochastic process depends
only on the current state and is independent of the
past states, given the present state.

SUMMARY SO FAR

TD update for Q value

SUMMARY SO FAR

Q value : fails to scale up to large action spaces

POLICY GRADIENT

• directly learn how to act
• not via learning the Q function

POLICY GRADIENT

• ∆θ : update to the policy parameters.
• α learning rate
• ∇π (s, θ) : gradient of the policy with respect to the parameters

(how the policy changes as the parameters θ change)
• J(s, θ) is the performance or objective function (i.e. expected return)

= how good the policy is in state s under the parameter setting θ.

PROBLEM: POLICY GRADIENT DOES NOT
DIFFERENTIATE THE STATE

But wait - this doesn’t allow us to learn to behave differently
based on the state … not ideal - maybe one action is only not
good at one state

ACTOR-CRITIC

States

Rewards

Actions

Policy

Environment

Value function

TD errorCritic

Actor

ACTOR-CRITIC

• Basically two agents: one that learns the policy (via policy gradient) and
one that learns the value (using TD errors)

• ‘The best of both worlds’
• Contrary to standard TD learning, can scale to large action

spaces
• Contrary to policy gradient, still provides a policy that depends

on the state

Q-LEARNING VS ACTOR-CRITIC

• Q-learning:
• Well suited for situations w discrete action spaces and known

state transitions
• ‘Off-policy’: can use any value function to learn the optimal

policy
• Actor-critic:

• Well suited for situations in a continuous action and/or state
space

• ‘On policy’: the learnings are directly dependent on the behavior
that is currently produced

SUMMARY SO FAR

Really good source of explanation - links to code etc:
 https://mpatacchiola.github.io/blog/2017/02/11/dissecting-
reinforcement-learning-4.html

https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html
https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html
https://mpatacchiola.github.io/blog/2017/02/11/dissecting-reinforcement-learning-4.html

FROM Q VALUE TO ACTION SELECTION:

 - greedy policy:

•

• Random

 with probability 1-

 with probability

FROM Q VALUE TO ACTION SELECTION:

The effect of is straightforward: the higher the value the more
random is the policy - the effect of is actually the same.
Here are example trajectories (top) and corresponding policies
(bottom) for different values of the inverse temperature:

=0.01 =0.2 =0.6

DEEP Q LEARNING
Instead of a Q-table (find the states and actions and read out the
table), a neural network will approximate the Q value of every
action from a state

State -> network -> Q values per actions (output dim number of actions)

Algorithm :
Init
Choosing action
Updating weights using Bellman equation

DEEP Q LEARNING

Alpha Go

DEEP Q LEARNING

DEEP Q LEARNING

DEEP Q LEARNING

AlphaGo has both a value network and a policy network to address
different aspects of the game:
• The value network predicts the outcome of the game state,

providing an estimate of the winning probabilities.
• The policy network, on the other hand, suggests the best move by

assigning probabilities to different actions, aiding in the exploration
and decision-making process.

By combining the two networks, AlphaGo can effectively evaluate
game states and make informed strategic moves, enhancing its
gameplay performance.

DEEP Q LEARNING

AlphaGo: combination of deep neural networks and Monte Carlo Tree
Search (MCTS):
• It first trains a value network on expert human moves to estimate

the outcome of game states.
• Then, it trains a policy network using reinforcement learning to

suggest moves.
• During gameplay, AlphaGo performs MCTS simulations to explore

possible moves and their outcomes, using the value and policy
networks to guide the search.

 The combination of deep learning and search algorithms is the
strength

DEEP Q LEARNING

• Advantages:
• Can handle high-dimensional state spaces
• Generalization and Transfer Learning: has the ability to

generalize learned knowledge to unseen or similar states. By
capturing and representing the underlying structure of the
environment in the neural network weights, it can facilitate
transfer learning, where knowledge acquired in one task can be
transferred to related tasks or domains.

• Shortcomings:
• Sample Efficiency and Data Requirements: Deep Q-learning

often requires a large amount of training data to effectively learn
the action-value function

• Lack of temporal abstraction: Deep Q Learning operates in one
single timescale

OPTION FRAMEWORK

• Hierarchical representation of actions
• An ‘option’ is basically a sequence of actions.

Botvinick, Niv and Barto. Cognition. (20109)

OPTION FRAMEWORK

Botvinick, Niv and Barto. Cognition. (20109)

OPTION FRAMEWORK

• Shortcomings:
• Option Discovery: challenge of effectively discovering

meaningful and useful options for a given task or environment.
• Hierarchical Structure: Designing an optimal hierarchical

structure of options that balances granularity and complexity can
be difficult and may require domain expertise

• Credit Assignment: Assigning credit to the options within the
framework and properly attributing rewards or penalties to the
appropriate levels of the hierarchy can be nontrivial and may
require careful design and implementation.

OPTION FRAMEWORK

• Advantages:
• enables the representation of temporally extended actions or

behaviors, allowing agents to perform more complex and
efficient actions in a hierarchical manner.

• Reusability: Options can be learned and reused across different
states and tasks, promoting faster learning and improved
performance by leveraging previously acquired sub-policies or
skills

• Efficient Exploration: Hierarchical architectures, such as the
option framework, provide higher-level exploration strategies,
guiding the agent to explore in a more purposeful and efficient
manner, leading to more effective exploration and learning.

SUMMARY MODEL-FREE RL

• For ‘small’ tasks:
• Value or Q-learning: basically quick and dirty - there is a

table that tells you what is the best action to perform in
that state - still needs comparison between all action values
- so not scalable to big action and state spaces

• Policy gradient: basically repeating previously successful
actions in that states

• Actor-critic: 2 cooperating agents: one learns the value of
states, the other one the policy

• For ‘bigger-scaled’ problems:
• Deep Q-learning: better transfer learning across states - so

good for large states and action spaces than traditional Q-
learning because the network can make generalization
between states

• Hierarchical RL: enables extended action sequences +
reusing options across tasks

