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Clarification from last week’s tutorial

® Rescorla Wagner updates: VWeights are only updated when the stimuli Is
poresent

For i where C§, = 1.
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Clarification from last week’s tutorial

® \/\\nat Is the relationship petween [homdike,
Paviovian condition, and Operant condition’?

B | - Thorndike
® ach are verpal theories, describing a pattern of

Denavioral phnenomenon
® [nomdike: successiul actions get strengtheneo /
® Paviov: resonse to Us get transferred to CS

® Skinner: conditioning not only applies to

responses, but also actions/behavior




Lecture Plan

SYMBOLIC Al
Symbolic Al
e \\hat happened during the Al winter”? Knowledge Inference
—> base engine
® |ntelligence as manipulating symmools through BLIBEET Answer

ules and logical operations
® | caming as search

Cognitive Maps

e Fom Stimulus-Response leaming to Stimulus- ; ;__—1
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The U.S. Defense Advanced Research
Projects Agency (DARPA) funds Al
research with few requirements for
delivering functioning products
throughout the 1960s.

1974-1980

First Al winter

Limited applicability of Al leads to funding
pullback in the U.S. and abroad.

1969: Researchers Marvin Minsky and Seymour
Papert published Perceptrons, an influential
book pointing out the ways early neural
networks failed to live up to expectations.

1970-1974: DARPA cut its funding as enthusiasm
wore thin.

1974: The Lighthill report, compiled by
researcher James Lighthill for the British
Science Research Council, stated: “In no part
of the field [of Al] have the discoveries made
so far produced the major impact that was

. then promised.”

Renewed Al
excitement

Expert systems emerge
representing human
decisions in if-then form.
Funding picks up.

What happened during the Al winter?

First wave of excitement

First neural networks and perceptrons
written, first attempts at machine
translation.

Slow but
steady progress

Computation power
increases, big data

algorithms improve.

1987-1994

Second Al winter

Limitations of if-then reasoning become more
apparent.

1987: Market for Lisp machines (specialty
hardware for running Al applications) collapses.

1987: DARPA again cuts funding for Al research.

1990: Expert systems, an attempt to replicate
human reasoning through a series of if-then
rules, failed. The software proved hard to
maintain and couldn’t handle novel information,
resulting in a cutback in Al development.

1991: Japanese Ministry of International Trade
and Industry’s Fifth Generation Computer
project failed to deliver on goals of holding
conversations, interpreting images and
achieving humanlike reasoning.

provides training data,
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Symbolic Al

e Physical Symbol System hypothesis.

A physical symbol system has the necessary and sutficient means for general intelligent action -
Allen Newell and Herbert Simon (1976)"

e Symbols can represent anything in the world

® cg.,

® Relations canbe ap
interact with other sym

® toasted(Bagel)

e cat(Charley, Bagel)

® 5\ DOPL

Bagels), (ChatGPT), (Charley), etc. ..

redicate that describes a symbol or veros describing how symools

D0IS

ating a knowledge base with symbols and relations, we can use a program to fino

New pro

® (5eneral

NOSItIoNS (inference)

® xpert systems

Croblem Solver (Simon, Shaw, & Newell, 1957)



Expert Systems

® [he first truly successtul forms of Al, widely applied in medicine,
finance, and education

® xpert knowledge is codified in the form of facts and logical rules

Dy a kKnowledge engineer
® [ XthenY
® [ Socrates is a man, then Socrates is mortal

® [Nis forms the basis of an inference engine, which can apply
known rules/facts to generates new facts (adding to the
knowledge base) and resolve rule conflicts

® [\WO modes for solving problems
® Forward chaining: \What happens next”

® Apply rules and facts to arrive at logical conclusions about
outcomes

e Backwards chaining: \Vhy did it happen”

® Starting from a desired outcome, figure out the set of
antecedents that can aid in arriving at that outcome

-------------------------------

User
Interface . o)

Non-expert E Knowledge

User " ' from an
|
............................... Expert

Forward chaining

Fact 1
@ Decision 1
Fact 2 I/'

Fact 3
@ Decision 2
Fact 4

Backward chaining

Fact 1
Fact 2

Fact 3

Decision 4

Decision 2

Fact 4




Strengths and Limitations of Expert Systems

Strengths
e Knowledge is explicit rather than iImplicit (e.g., neural networks), allowing for interpretability
® Applying rules can be very fast and solutions were generated In real-time

® Rules offer rapid generalization, with a single instance

® Decisions are interpretable by following logic
Limitations
® Cannot leam by itself!

® Reqguire knowledge engineers to codity rules, with high maintenance and development
COSIS

® | mited generalization 1o new situations, where existing rules don't apply exactly
® [i-[hen statements cannot capture all relationships without massive scaling problems



Symbolic vs. sub-symbolic Al

A =>B (“A implies B”)

Symbolic models
® Sympols, rules, and structured representations

® ‘| anguage of thought” (Fodor, 19/79)
® | anguage-like system of mental representations

® Compositionality: symbols and rules can bbe combined to produce
new representations

® xtracting symbolic representations and search over compositiona
Nypothesis spaces is difficult

Sub-symbolic models
® Neural networks encoding information through connection weights ®\

® No explicit representation of concepts or knowledge, but
distriouted throughout the network

e Knowledge can be implicitly learned by capturing statistical patterns

® [he rise of deep leaming takes advantage of the scalability of
supsymbolic learning mechanisms
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Hybrid systems: Neurosymbolic Al

® Symbolic and subsymbolic
approacnes can operate togetner e world
to get the best of both worlds

Human question

® Subsymbolic neural networks cgn - el angusse
e used to extract symbolic
representations

® \odem Al assistants (e.qg., Sir1,
Google, Alexa) are essentially
expert systems with voice

recognition and text-to-speecnh
added on

10



Program induction: a generative approach to symbolic reasoning

List Processing Text Editing Regexes LOGO Graphics Block Towers Symbolic Regression Recursive Physical Laws
Sum List Abbreviate Phone numbers O IS ngramming

(1 23) =6 Allen Newell —*A.N. (555) 867-5309 ﬂ |II"} /\/ Filter Red - l B
[4 6 81]~ 17 Herb Simon —+H.S. (650) 555-2368 _H (MEEEN] — (EN) v e m !
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= ]{!
!

B
— Learned Library of Concepts Sample Problem: Sort List
Primitives 9271) — [1279)
: (38942) — [23489]
me;p concept 13 (622385] —= [223568)
concept 4 -
fOld\ Pt_ (A(L) (car (concept 4 L ¢ 15
: (AL P)(fold L nil (A(y) (nil? (concept_ 4 | concepe_ , . _
if Az ) (if (P 2) A (Z) C 2z v)))))) — : — §olutlonto Sort List discovered
cons (cons z u) u)))) (A (L N)(concept_13 (concept_4 in learned language:
[maximum)] L (A (L)(> N (length(concept 4 \
g [filter] L (W z u))NN) (map (A (n)

[nth largest element]

(concept 15 L (+ 1 n)))
(range (length L)))

(A (x) (map (A (y) (car (fold (fold x nil (A (z u) (if (gt? (+ y 1) (length (fold x nil (A (v
w) (if (gt? z v) (cons v w) w))))) (cons z u) w))) nil (A (a b) (if (nil? (fold (fold x nil . e
(A (c d) (if (gt? (+ y 1) (length (fold x nil (A (e f) (if (gt? c e) (cons e f) f))))) (cons It expressed in initial
c d) d))) nil (A (g h) (if (gt? g a) (cons g h) h)))) (cons a b) b))))) (range (length x)))) primitives

Dreamcoder (Ellis et al., 2020)

Solution to sort list
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Wake-Sleep Algorithm

® |nspired by Hinton et al., (1995

® Wake: find the best program in the
current liorary of concepts using a
recognition model (neural network)

® Sleep

® Abstraction: Grow library to
find more compressible
Orograms

® Dreaming: rain recognition
model by sampling programs
that solved previous experiencec
tasks (replays) and by sampling
tasks that can e solved by
orograms In the current library
(fantasies)

Wake
Objective: For each task x in X, find best program p, solving = under current library L

Library L
filx) =(+ x 1)
fa(z) =(fold cons

Neurally guided search
Propose programs p in Best program p. for task =
decreasing order under Q(-|x) (map f; (fold f; nil x))

{cons z nil)) Recognition

>
""""" Model Q(-|x) I " until timeout
\
Task = ’ ’%g. T Choose p, that maximizes:
e
3

(7 2 3)—[4 3 8] Plplz, L| xx P |z|p| P |p|L]
(3 8]—([5 4]
4 3 2]-+[3 4 §8)

Sleep: Abstraction Sleep: Dreaming

Objective: Grow library L to compress

, , Objective: Train recognition model Q(p|x)
programs found during waking

to predict best programs p, for typical
tasks = and current library L

program for task 1 program for task 2

Fantasies Replays

(cons (+ 1 1)) (+ (car z) 1) 1. draw 1. recall
N /\ 4 p from g_ solved in
+ 1 1 car z library L ®  waking
2. set task x 2. set program
to output of p to retrieved
- executing p solution p,
Refactoring

/

i
Train network on z,p pairs

Propose new library routines from
subtrees of refactorings of programs

New library L
w/ routine

Expand L w/ K\G -

the routine that N

maximizes: Repeat Train Gradient step in parameters of Q
PIL|[l.ex  max _ P[z|p]P[p|L] until no until to maximize log Q(p|z)
- p: refactorings of p, increase converged -
In score

Dreamcoder (Ellis et al., 2020) 1



Learning as Search

® A big part of what makes symbolic Al difficult is search

® Representing relations petween all possible symools creates a combinatoria
explosion

® [here are No gradients for symbolic representations

® | caming can thus be understood as a search proplem

® Hinding which rules/programs capture data

® Hinding which hypotheses 1o test

e One of the major contributions of symbolic Al research was developing search
algoritnms

o A~
e \ontecarlo Tree Search



A* Heuristic Search

® One of the most popular methods for path-finding and

search over grapns

® xpand the path by choosing node n that minimizes cost

function f(n) = g(n) + h(n)

e g(n) is the cost of the path so far from the start to n

e /i(n) is a heuristic that estimates the cost of the
cheapest remaining path from n to the goal (often

—Uclidean distance)

® (Costs for finding the best sy
data can represent complex
symbolic operations)

MPolIC re

ty (i.e., tr

oresentation for

e number of

® [he heuristic avolds calculating the actual remaining cost
to the goal, which is very costly

Start

h(n)

Goal

14
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Monte Carlo Tree Search

e A key mechanism in AlphaGo (Silver et
al.,, 2016) and other modem RL
algorthms

® Select nodes for expansion (often
UsSiNg a heuristic based on reward +
information gain)

e Expand node and perform simulation/
iNference on new Nnode

e Backpropogate the value of the child
to the parent node

® [his allows us to save a heuristic
value for the parent node based on
orevious simulations over the children

Selection

The selection function is
applied recursively until
a leaf node 1s reached

Repeated X times

Onc or morc nodcs

are created

» Simulation |
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\\) gamg is playcd

— Backpropagation
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Symbolic Al: Summary

e Symbols and relational rules are a powertul tool for describing the world

e Capture rapid generalization and allow for compositional construction of new

representations

e xplicit formulation of relationships in the world that mirror our own Language of
[hought and provides interpretable predictions

e Learning is difficult ana rules can sometimes e 100 rgio

e Compositional hypothesis space leads to a combinatorial explosion of possible

SYmMoliC representations, where search can e very costly

® | camning Is often framed as a search problem, where heuristic solutions provide a

valuable aid
® Neurosymbolic Al can offer the best of botr

WOrlads
oowertu

subsymbolic Al (i.e., neural networks) with the

Oy compbining the fast leam

apstractions of symmoolic A

Ng of

16
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Cognitive Maps

Tolman (1948) Moser et al., (2008)



The story so far ...



Thorndike’s (1911) Law of Effect




Thorndike’s (1911) Law of Effect
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Thorndike’s (1911) Law of Effect
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Time 1o escape
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Thorndike’s (1911) Law of Effect

1
1

“Uzzle Box [Ime to escape

Actions associlated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

3888 8

Time to Escape (seconds)
=
(-

1111111111

4 8 12 16 20 24 28 32 36 40

Trials
20



Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk

Edward Tolman (1886 - 1959)

Raised by an adament Quaker mother
Studied at MIT, Harvard, and Giessen

Inspired by Gestalt psychologists like Kurt Koffka and Kurt
Lewin

Coined “Purposive Behaviorism”

 Behavior needs to be studied in the context of the purpose
or goals of behavior

In contrast to other behaviorists at the time, Tolman believed
In latent learning and the need to talk about hidden mental
states in how we make decisions

Lewin, Tolman, & Hull




Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

23



Tolman (1948): Different interpretations

“All students agree as to the facts. They disagree, however on theory and explanation’

* S-R school: learning consists of strenthening/weakening of S-R connections (like a telephone exchange)
e subgroup a) more frequent responses are strengthened (Law of Exercise)
e subgroup b) more rewarded responses are strengthened (Law of Effect)

S-S school: in the course of learning, “a field map of the environment gets established”
 Sampling of stimuli is not passive, but active and selective during learning w.r.t. to a goal or purpose

o Stimuli are not just routed to associations, but used to construct some new map-like representation
that captures the relational structure of the environment

 The nature of these map-like representations (strip-like vs. broad) have consequences for
generalization

J

24



— 16" —| e— 187 —p]

Experiments — (=

=

1. Latent Learning

2. Vicarious trial and error

3. Searching for the stimulus

4. Hypotheses

5. Spatial orientation

25
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Latent Learning

* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end

 Group 2 [Late food] No food in the maze for
days 1-6, then food provided at the end on day 7

Group |
w— v Group I

o

 Group 3 [Early food] ... food added on day 3

N
o

e |earning curves dropped dramatically when food
was added

~
(=)

.-
.
(5]

* This suggests latent learning prior to reward

=

* “They had been building up a ‘map’”

(lower is better)

o
tn

* Once the reward was added, they could use the
map rather than starting from scratch

Error Score
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* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end

 Group 2 [Late food] No food in the maze for
days 1-6, then food provided at the end on day 7

 Group 3 [Early food] ... food added on day 3

e |earning curves dropped dramatically when food
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* This suggests latent learning prior to reward
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Latent Learning e | e——(

* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end
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Latent Learning

* Tolman replicates with more complex environment (Tolman & Honzik, 1930)

* Y-maze (Spence & Lipitt, 1946)
 Exposed to maze while satiated (food + thirst)
* One group reintroduced when hungry goes left

* Another group reintroduced when thirsty goes right

: a—-'-"" ®
) ,
L
, e 2
D B - § . No reward

_ * 5 ®
‘l+~1 E -—-"‘"“d‘ I 5 °
E l ro T L ; =

t A - s ° Always reward
m! _w‘fJ i + . 4. DOOR < :

. _ MR
! .1.,'5.,,,,‘.“ : Reward added
A,RT L S HNA-A

T 2 3 4 5 8 T B 9% W 1 12 13 M4 18 8 17 8 Y9 DN R

S ..
Tolman & Honzik (1930) _| Spence & Lipitt (1946)



Muenzinger (1938)

Vicarious Trial and Error (VTE)

* Animal put on jumping stand, facing two doors (I vs. r) with different
visual properties (e.g., horizontal vs. vertical stripes)

e One door is correct, the other incorrect
* location is randomly swapped but visual features are predictive

* |f the animal jumps towards the correct door, it opens and reveals
food on a platform behind

 VTE = hesitating, looking-back-and-forth behavior

* Tolman (1939) added landing platforms infront of the doors

 When the choice was easy (black vs. white stimuli), the animals
learned quicker and did more VTEing than for hard problems

» After learning had been established, VIEs went down

» Better learners also did more VTEIng (Geier, LEvin & Tolman, 1941)




Kl

w127, "o"{"

‘r :

’/,ﬂ’ : 'l."»'.' !
’.“,. "" s r
IS
- ,‘, * il
.". o’..l"

.
#F

¢ .
.

.
pr 4


https://www.youtube.com/watch?v=sijDOwaLaAo

CORRECT RUNS

Vicarious Trial and Error (VTE)

* |Learning curves on the left, VTEs on the right: VTEs coincinde with the start of learning, and fade away

* Not just passive association of stimuli, but active selecting and comparison of stimuli
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Vicarious Trial and Error (VTE)
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Tolman, Ritchie, & Kalish (1946)

Spatial Orientation

® 3 trials of alley maze task, where H was a light shining from G-F
® Afterwards, rats transferred to sun-burst maze
o [nitially tried the C-D move, but found it blocked

® Retumned to circle and pretfered the radiating path in the same direction as the original food location

- \‘10 ’,O 20 -

Alley Maze Sun-burst maze

A i A Paths

31



Tolman, Ritchie, & Kalish (1946)

Spatial Orientation

® 3 trials of alley maze task, where H was a light shining from G-F
® Afterwards, rats transferred to sun-burst maze
o [nitially tried the C-D move, but found it blocked

® Retumned to circle and pretfered the radiating path in the same direction as the original food location
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Spatial Orientation
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Cognitive Maps shape generalization

* The nature of the maps we learn shape how we generalize

* “the narrower and more strip-like the original map, the less will it carry over successfully
to the new problem; whereas, the wider and the more comprehensive it was, the more
adequately it will serve in the new set-up”

 What conditions favor learning a narrow strip-map vs. a broad comprehensive map?

* narrow maps induced by :
1) damaged brains
2) impoverished environments
3) overdose of repetition

4) too strongly motivational/frustrating conditions
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Maladaptive psychopathologies

* Regression to childlike behavior

“take an example, the overprotected middle-aged woman (reported a couple of years ago in Time Magazine)
who, after losing her husband, regressed (much to the distress of her growing daughters) into dressing in too
youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring

continuous care, would be an illustration of regression.”

e Fixation on various addictive behaviors

“If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original
path is no longer correct”

* Displacement of agression towards outgroups

“The individual comes no longer to distinguish the true locus of the cause of his frustration. The poor
Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords, the
southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie,
onto a mere convenient outgroup. .... [physicists vs. humanities, psychologists vs. all other depts., university
vS. secondary school, americans vs. russians]... nothing more than such irrational displacements of our

aggressions onto outgroups”
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What is the solution?

“We must, in short, subject our children and ourselves ... to the
optimal conditions of moderate motivation and of an absence of
unnecessary frustrations.... | cannot predict whether or not we
will be able, or be allowed, to do this; but | can say that, only
Insofar as we are able and are allowed, have we cause for hope.



Cognitive Maps in the Brain




Place cells in the hippocampus represent location in an environment

cell activity behavior
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https://www.youtube.com/watch?v=lfNVv0A8QvI
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Grid cells in the Entorhinal Cortex provide a coordinate system
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Grid cells in the Entorhinal Cortex provide a coordinate system
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“Hippocampal Zoo”
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Tools for navigation

 Distances between landmarks and between
events are represented in the Hippocampus

 Direction of travel can be decoded based on

the firing strength of “conjunctive” grid cells
in the EC

* Participants moved in a VR environment

 When direction aligned with one of the 3
axes of their grid cells, we observe
stronger BOLD activation in the EC

* [hese angles are remarkably robust, and
are preserved (in the same environment)
when participants return to the scanner
days or weeks later

Morgan et al., (JNeuro, 2011)
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Not just naive distance, but based on the structure of the environment
A = goal

® As In [olman's experiments, the
orain represents distance in the
environment based on the
transition structure

Machado et al. (/CLR 2018)

® ot just "as the crow tlies” but a
structure-informed distance metric
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Not just spatial, but also conceptual navigation

Abstract features Relational structure Social Hierarchies
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Do we always need a representation of the environment?

An ant, viewed as a behaving system, Herbert Simon

IS quite simple. [he apparent
complexity of its behavior over time IS
largely a reflection of the complexity of
the environment in which it finds itself. |
should like to explore this hypothesis
with the word "man” substituted for o ;

1t

ant.

Grandfather of Al
and proponent of
Bounded Rationality

J)

- Herbert Simon (1970)
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Cognitive Maps: Summary

® | caming IS more than just a telephone switchiboard of Stimulus-Response associations

e \\/e lean a map-like representation of the environment, allowing us to rapidly
generalize and plan efficiently

® [olman refers to this as S-S learning
® Neural evidence for a cognitive map in the rain
® Place cells in the Hippocampus encode location and distances

® Grid cells in the Entorhinal Cortex provide a coordinate system and encode
direction of travel

® + g whole zoo of other specialized cells In the hippocampal-entorninal system

® Cognitive maps are sensitive to transition structure and used in abstract,
conceptual contexts as wel
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General principles

e Symbolic Al: Leamning as infering rules and manipulating symbols
® |s inteligence nothing more than symbol manipulation”/

e Cognitive maps: Learning as inferring a representation of the structure of the
environment

® Do we always need a representation of the environment”

® Both lines of research capture mechanisms for learming structure
® Structure as the relationships between different symbolic concepts
® Structure as the relationship between stimuli

® |s there a common basis for both forms of leaming”? Or are they complementary
systems”/
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Next week: Introduction to Reinforcement Learning
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