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Clarification from last week’s tutorial
• What is the relationship between Thorndike, 

Pavlovian condition, and Operant condition? 
• Each are verbal theories, describing a pattern of 

behavioral phenomenon 
• Thorndike: successful actions get strengthened 
• Pavlov: resonse to US get transferred to CS 
• Skinner: conditioning not only applies to 

responses, but also actions/behavior
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Lecture Plan
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Symbolic AI 
• What happened during the AI winter? 
• Intelligence as manipulating symbols through 

rules and logical operations 
• Learning as search  

Cognitive Maps 
• From Stimulus-Response learning to Stimulus-

Stimulus learning 
• Constructing a mental representation of the 

environment 
• Neurological evidence for cognitive maps in the 

brain



What happened during the AI winter?
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• Just like German weather, there were 
actually several AI winters 

• After the disappointment of early neural 
networks, there was a brief boom period 
of “expert systems” using symbolic AI 
• Meanwhile, research on neural 

networks and cybernetics continued 
in the background 

• Limitations of expert systems caused a 
2nd AI winter, which ended with modern 
advances in pattern recognition and 
deep neural networks (i.e., machine 
learning)



Symbolic AI
• Physical Symbol System hypothesis:  

“A physical symbol system has the necessary and sufficient means for general intelligent action -  
Allen Newell and Herbert Simon (1976)” 
• Symbols can represent anything in the world 

• e.g., (Bagels), (ChatGPT), (Charley), etc…  
• Relations can be a predicate that describes a symbol or verbs describing how symbols 

interact with other symbols 
• toasted(Bagel) 
• eat(Charley, Bagel) 

• By populating a knowledge base with symbols and relations, we can use a program to find 
new propositions (inference) 
• General Problem Solver (Simon, Shaw, & Newell, 1957)  
• Expert systems
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Expert Systems
• The first truly successful forms of AI, widely applied in medicine, 

finance, and education 
• Expert knowledge is codified in the form of facts and logical rules 

by a knowledge engineer 
• If X then Y 
• If Socrates is a man, then Socrates is mortal 

• This forms the basis of an inference engine, which can apply 
known rules/facts to generates new facts (adding to the 
knowledge base) and resolve rule conflicts 

• Two modes for solving problems 
• Forward chaining: What happens next? 

• Apply rules and facts to arrive at logical conclusions about 
outcomes 

• Backwards chaining: Why did it happen? 
•  Starting from a desired outcome, figure out the set of 

antecedents that can aid in arriving at that outcome
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Strengths and Limitations of Expert Systems
Strengths 
• Knowledge is explicit rather than implicit (e.g., neural networks), allowing for interpretability 
• Applying rules can be very fast and solutions were generated in real-time 
• Rules offer rapid generalization, with a single instance 
• Decisions are interpretable by following logic 
Limitations 
• Cannot learn by itself!  
• Require knowledge engineers to codify rules, with high maintenance and development 

costs 
• Limited generalization to new situations, where existing rules don’t apply exactly  
• If-Then statements cannot capture all relationships without massive scaling problems
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Symbolic vs. sub-symbolic AI
Symbolic models 

• Symbols, rules, and structured representations 
• “Language of thought” (Fodor, 1975) 

• Language-like system of mental representations 
• Compositionality: symbols and rules can be combined to produce 

new representations  
• Extracting symbolic representations and search over compositional 

hypothesis spaces is difficult 
Sub-symbolic models 

• Neural networks encoding information through connection weights 
• No explicit representation of concepts or knowledge, but 

distributed throughout the network 
• Knowledge can be implicitly learned by capturing statistical patterns 
• The rise of deep learning takes advantage of the scalability of 

subsymbolic learning mechanisms
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Hybrid systems: Neurosymbolic AI
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• Symbolic and subsymbolic 
approaches can operate together 
to get the best of both worlds 

• Subsymbolic neural networks can 
be used to extract symbolic 
representations 

• Modern AI assistants (e.g., Siri, 
Google, Alexa) are essentially 
expert systems with voice 
recognition and text-to-speech 
added on



Program induction: a generative approach to symbolic reasoning

11Dreamcoder (Ellis et al., 2020)



• Inspired by Hinton et al., (1995) 
• Wake: find the best program in the 

current library of concepts using a 
recognition model (neural network) 

• Sleep 
• Abstraction: Grow library to 

find more compressible 
programs 

• Dreaming: Train recognition 
model by sampling programs 
that solved previous experienced 
tasks (replays) and by sampling 
tasks that can be solved by 
programs in the current library 
(fantasies) 
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Wake-Sleep Algorithm

Dreamcoder (Ellis et al., 2020)



Learning as Search
• A big part of what makes symbolic AI difficult is search 

• Representing relations between all possible symbols creates a combinatorial 
explosion 

• There are no gradients for symbolic representations 
• Learning can thus be understood as a search problem 

• Finding which rules/programs capture data 
• Finding which hypotheses to test 

• One of the major contributions of symbolic AI research was developing search 
algorithms 
• A* 
• Montecarlo Tree Search
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A* Heuristic Search
• One of the most popular methods for path-finding and 

search over graphs 

• Expand the path by choosing node  that minimizes cost 
function  

•  is the cost of the path so far from the start to  

•  is a heuristic that estimates the cost of the 
cheapest remaining path from  to the goal (often 
Euclidean distance) 

• Costs for finding the best symbolic representation for 
data can represent complexity (i.e., the number of 
symbolic operations) 

• The heuristic avoids calculating the actual remaining cost 
to the goal, which is very costly

n
f(n) = g(n) + h(n)

g(n) n
h(n)

n
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Monte Carlo Tree Search
• A key mechanism in AlphaGo (Silver et 

al., 2016) and other modern RL 
algorithms 

• Select nodes for expansion (often 
using a heuristic based on reward + 
information gain) 

• Expand node and perform simulation/
inference on new node 

• Backpropogate the value of the child 
to the parent node 
• This allows us to save a heuristic 

value for the parent node based on 
previous simulations over the children
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Symbolic AI: Summary
• Symbols and relational rules are a powerful tool for describing the world 

• Capture rapid generalization and allow for compositional construction of new 
representations 

• Explicit formulation of relationships in the world that mirror our own Language of 
Thought and provides interpretable predictions 

• Learning is difficult and rules can sometimes be too rigid 
• Compositional hypothesis space leads to a combinatorial explosion of possible 

symbolic representations, where search can be very costly 
• Learning is often framed as a search problem, where heuristic solutions provide a 

valuable aid 
• Neurosymbolic AI can offer the best of both worlds by combining the fast learning of 

subsymbolic AI (i.e., neural networks) with the powerful abstractions of symbolic AI
16



5 minute break
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Cognitive Maps

Tolman (1948) Moser et al., (2008)



The story so far …
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Thorndike’s (1911) Law of Effect 
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Thorndike’s (1911) Law of Effect 
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Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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https://www.youtube.com/watch?v=_qLs2K4UXXk


Edward Tolman (1886 - 1959)
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• Raised by an adament Quaker mother


• Studied at MIT, Harvard, and Giessen 


• Inspired by Gestalt psychologists like Kurt Koffka and Kurt 
Lewin 


• Coined “Purposive Behaviorism”


• Behavior needs to be studied in the context of the purpose 
or goals of behavior 


• In contrast to other behaviorists at the time, Tolman believed 
in latent learning and the need to talk about hidden mental 
states in how we make decisions

Lewin, Tolman, & Hull



Tolman and Cognitive maps
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• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning
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Tolman (1948): Different interpretations

• S-R school: learning consists of strenthening/weakening of S-R connections (like a telephone exchange)


• subgroup a) more frequent responses are strengthened (Law of Exercise)


• subgroup b) more rewarded responses are strengthened (Law of Effect)


• S-S school: in the course of learning, “a field map of the environment gets established”


• Sampling of stimuli is not passive, but active and selective during learning w.r.t. to a goal or purpose


• Stimuli are not just routed to associations, but used to construct some new map-like representation 
that captures the relational structure of the environment


• The nature of these map-like representations (strip-like vs. broad) have consequences for 
generalization

“All students agree as to the facts. They disagree, however on theory and explanation”



Experiments
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1. Latent Learning


2. Vicarious trial and error


3. Searching for the stimulus


4. Hypotheses


5. Spatial orientation
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Latent Learning
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• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch
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Latent Learning
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• Tolman replicates with more complex environment (Tolman & Honzik, 1930)


• Y-maze (Spence & Lipitt, 1946)


• Exposed to maze while satiated (food + thirst)


• One group reintroduced when hungry goes left


• Another group reintroduced when thirsty goes right

No reward

Always reward

Reward added

Tolman & Honzik (1930) Spence & Lipitt (1946)



Vicarious Trial and Error (VTE)
• Animal put on jumping stand, facing two doors (l vs. r) with different 

visual properties (e.g., horizontal vs. vertical stripes)


• One door is correct, the other incorrect


• location is randomly swapped but visual features are predictive


• If the animal jumps towards the correct door, it opens and reveals 
food on a platform behind


• VTE = hesitating, looking-back-and-forth behavior


• Tolman (1939) added landing platforms infront of the doors


• When the choice was easy (black vs. white stimuli), the animals 
learned quicker and did more VTEing than for hard problems


• After learning had been established, VTEs went down


• Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)
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Muenzinger (1938)

Tolman (1939)
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https://www.youtube.com/watch?v=sijDOwaLaAo


Vicarious Trial and Error (VTE)

30

• Learning curves on the left, VTEs on the right: VTEs coincinde with the start of learning, and fade away


• Not just passive association of stimuli, but active selecting and comparison of stimuli

Correct Alternative
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Spatial Orientation
• 3 trials of alley maze task, where H was a light shining from G-F 

• Afterwards, rats transferred to sun-burst maze 

• Initially tried the C-D move, but found it blocked 

• Returned to circle and prefered the radiating path in the same direction as the original food location

31

Alley Maze Sun-burst maze

Tolman, Ritchie, & Kalish (1946)
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Spatial Orientation
• Rats were trained to find food at either 

F1 or F2, starting from position A 

• After 7 days, the starting location and 
table top were rotated 180 deg

32

Ritchie (n.d.)

Old New

• Tried to run down central alley, but it was 
blocked 

• Majority did not choose path where original food 
was located, but which ran perpendicular to the 
corresponding side of the rooms

L = lights Old orientation
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Cognitive Maps shape generalization
• The nature of the maps we learn shape how we generalize


• “the narrower and more strip-like the original map, the less will it carry over successfully 
to the new problem; whereas, the wider and the more comprehensive it was, the more 
adequately it will serve in the new set-up”


• What conditions favor learning a narrow strip-map vs. a broad comprehensive map?


• narrow maps induced by : 
 
1) damaged brains 
 
2) impoverished environments 
 
3) overdose of repetition 
 
4) too strongly motivational/frustrating conditions
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Maladaptive psychopathologies
• Regression to childlike behavior 
 
“take an example, the overprotected middle-aged woman (reported a couple of years ago in Time Magazine) 
who, after losing her husband, regressed (much to the distress of her growing daughters) into dressing in too 
youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring 
continuous care, would be an illustration of regression.”


• Fixation on various addictive behaviors 
 
“If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original 
path is no longer correct”


• Displacement of agression towards outgroups 
 
“The individual comes no longer to distinguish the true locus of the cause of his frustration. The poor 
Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords, the 
southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie, 
onto a mere convenient outgroup. …. [physicists vs. humanities, psychologists vs. all other depts., university 
vs. secondary school, americans vs. russians]… nothing more than such irrational displacements of our 
aggressions onto outgroups”
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What is the solution?

“We must, in short, subject our children and ourselves … to the 
optimal conditions of moderate motivation and of an absence of 
unnecessary frustrations…. I cannot predict whether or not we 
will be able, or be allowed, to do this; but I can say that, only 
insofar as we are able and are allowed, have we cause for hope. 
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Cognitive Maps in the Brain
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Place cells in the hippocampus represent location in an environment

37

Wilson Lab (MIT)John O’Keefe 
Nobel Prize in Physiology or Medicine 2014

https://www.youtube.com/watch?v=lfNVv0A8QvI
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Grid cells in the Entorhinal Cortex provide a coordinate system
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“Hippocampal Zoo”
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Whittington et al,. (2022) Behrens et al., (2018)



Tools for navigation
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• Distances between landmarks and between 
events are represented in the Hippocampus


• Direction of travel can be decoded based on 
the firing strength of “conjunctive” grid cells 
in the EC


• Participants moved in a VR environment


• When direction aligned with one of the 3 
axes of their grid cells, we observe 
stronger BOLD activation in the EC


• These angles are remarkably robust, and 
are preserved (in the same environment) 
when participants return to the scanner 
days or weeks later

Morgan et al., (JNeuro, 2011)

Nielson et al., (PNAS, 2015)

Doeller et al., (Nature, 2015)



Not just naïve distance, but based on the structure of the environment

• As in Tolman’s experiments, the 
brain represents distance in the 
environment based on the 
transition structure 

• Not just “as the crow flies” but a 
structure-informed distance metric

41

Machado et al. (ICLR 2018)

A = goal

Schapiro et al. (Hippocampus 2013)



Not just spatial, but also conceptual navigation
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Constantinescu et al., (Nature 2016)

Abstract features Relational structure Social Hierarchies

Garvert et al., (eLife 2017) Park et al., (NatNeuro 2021)



Do we always need a representation of the environment?

An ant, viewed as a behaving system, 
is quite simple. The apparent 
complexity of its behavior over time is 
largely a reflection of the complexity of 
the environment in which it finds itself. I 
should like to explore this hypothesis 
with the word “man” substituted for 
“ant.”  
 
- Herbert Simon (1970)
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Herbert Simon 
 
Grandfather of AI 
and proponent of  
Bounded Rationality



Cognitive Maps: Summary
• Learning is more than just a telephone switchboard of Stimulus-Response associations 
• We learn a map-like representation of the environment, allowing us to rapidly 

generalize and plan efficiently 
• Tolman refers to this as S-S learning 

• Neural evidence for a cognitive map in the brain 
• Place cells in the Hippocampus encode location and distances 
• Grid cells in the Entorhinal Cortex provide a coordinate system and encode 

direction of travel 
• + a whole zoo of other specialized cells in the hippocampal-entorhinal system 

• Cognitive maps are sensitive to transition structure and used in abstract, 
conceptual contexts as well
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General principles
• Symbolic AI: Learning as infering rules and manipulating symbols 

• Is intelligence nothing more than symbol manipulation? 
• Cognitive maps: Learning as inferring a representation of the structure of the 

environment 
• Do we always need a representation of the environment? 

• Both lines of research capture mechanisms for learning structure 
• Structure as the relationships between different symbolic concepts 
• Structure as the relationship between stimuli 

• Is there a common basis for both forms of learning? Or are they complementary 
systems?
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Next week: Introduction to Reinforcement Learning
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