General Principles of
Human and Machine
Learning

Lecture 2: Origins of biological and artificial learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Organization

® [0 allow time for people to travel between classes
® | cctures: 10:30 - 12:00 on Thursdays
® [ytorals: 10:75 - 1/7:30 on Fridays

Lesson plan

1. Behavioralism

e Understanding intelligence through
benavior

2. Connectionism

® Jnderstanding intelligence through
artificial neural networks

output,

Behaviorism

* [noun Psychology.] An approach to understanding the behavior of humans and
animals that emerged In the early 1900s

* (Generally tries to focus on outward observable behavior rather than hidden
Inner mental states

* One of the earliest programs to empirically study biological intelligence and
learning

Mental states?

— EERed = | Response

Varieties of Behaviorism

John B. Watson B.F. Skinner

Methodological -— Radical
Behaviorism Behaviorism

 Thoughts and feelings exist, but * |Internal processes are also the

cannot be the target of scientific target of scientific study

study

 But they are fully controlled by

* Only public events can be environmental variables just as

objectively observed and studied environmental variables control

scientifically behavior

A brief timeline of early research on learning

Pavlov (1927) _ | Tolman (1948)

S Skinner (1938)

Thorndike (1911)

Thorndike’s (1911) Law of Effect

Thorndike’s (1911) Law of Effect

Thorndike’s (1911) Law of Effect

\:‘. ,
"..
-
.
N 1 H -
el | — p — 4
-Y“'
x —H »—J -4

PUzzle Box Time to escape

Thorndike’s (1911) Law of Effect

1
1

“Uzzle Box [Ime to escape

Actions associlated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

3888 8

Time to Escape (seconds)
=
(-

1111111111

4 8 12 16 20 24 28 32 36 40
Trials

Learning as Trial and Error

What are the benefits? \What are the Iimitations”

Learning as Trial and Error

What are the benefits? \What are the Iimitations”
Benetfits:

® 11Ors decrease over time
® Openess to trying new solutions

® Basis for all modem reinforcement leaming (RL)

A1. Balance A2. Collapse A3. Remove A4. Shove AS. Spiky
0

Allen, Smith & Tenenbaum (PNAS 2020)
Learning as Trial and Error [~ g™ ¢)

L — ‘
A6. Trap A7. Basic (v2) A8. Falling (v2) A9. Launch (v2) A10. Table (v2)

| ¢ ¢

What are the benefits? \What are the Iimitations”
Benetfits:

® L110rs decrease over time

® Openess to trying new solutions

® Basis for all modem reinforcement leaming (RL)

Allen, Smith & Tenenbaum (PNAS 2020)

Learning as Trial and Error eg B T
What are the benefits? \What are the Iimitations” W _

-
o o
o o
1} A 1}
>
=i <
m
®
&
3

Senetits: —ra | .
® 1Ors decrease over time H F/_ f

e Openess to trying new solutions e i —
e Basis for all modem reinforcement leaming (RL) °jf:f f: f/’F f

Attempts

Model — Human - Full Mo del

Limitations:
e [angerous when some errors are fatal

o | acks creativity and generalizastion of past
solutions

e N\O Tormalism between behavior and
outcome....

Thorndike’s (1911) Law of Exercise

® |n addition to the repeating successtu
actions, we also repeat actions that
we performed In the past

® Hapit leaming

® c.J., morming routine, commute to
Jniversity, studying/exercise routine,
elC. ..

® Schavior Is reinforced through frequent
connections of stimulus and response

Paviov (1849-1936) was studying digestion

ne sal

N dogs

\vation response could be transterred

from an unconditioned stimulus (US) —food
— 10 a conditioned stimulus (CS) —the
nging of a bell

® 1) the dog naturally salivates when

® 3)whe

ols

anti
peqgir

WIT

clpa

]

h

©

)

oresented with food and 2) has no initial
‘esponse 10 a bell

the dog Is trained to associate a
the delivery of food, 4) it leamns to
food when a bell rings and

S 1o salivate

10

Key ideas: Classical conditioning

“aviovian responses are driven py outcome expectations

Leamning Is driven by reward predictions and (as we will see) shaped by
orediction error

Cues compete for shared credit In predicting reward outcomes

11

Conditioned stimuli Unconditioned

Rescorla-Wagner @
9 o

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update

A [~
’”rZZCSiWi w; <= w;+n(r,—r)
i

Conditioned stimuli Unconditioned

Rescorla-Wagner @
9 o

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update
A [~
’”r—ZCSiWi w; <= w;+n(r,—r)
I N AN

Reward CSion Associative
expectation trial 1 strength

Conditioned stimuli Unconditioned

Rescorla-Wagner @
9 o

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update
A [A
Ky = E,Csiwi w; < w;+n(r,—r,)
TN S
Reward CSion Associative Learning Observed Predicted
expectation trial t strength rate outcome outcome

Conditioned stimuli Unconditioned

stimuli

Rescorla-Waagner W
9 ~

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update
A [A
’”zZZCSiWi w; <= w;+n(r,—r)
I RN S

Reward CSion Associative Learning Observed Predicted
expectation trial t strength rate outcome outcome
)
o)
The delta-rule of learning: Reward prediction error (R

» Learning occurs only when events violate expectations (0 # 0)
* The magnitude of the error corresponds to how much we update our beliefs

D)

Implications: Cue competition

T multiple stimuli cues predict an outcome, they will
share credit

Overshadowing:.

e [f sound and light are both associated reward,
then presenting individual cues will result In
weaker responses

Blocking

® [f [[ght Is first associated with reward, and then
ater pboth lignt and sound, there will be less
assoclating of sound with reward than it souno
were conditioned alone

Overshadowing

_ //;.':_‘ N _ /;.':_‘ =
v R :9‘51

J

E N\
j
)

13

Reward learning as refining an internal representation of the world

\\(h)

e Intermnal hypotheses about how sensory data & were

® |[Nhe parameters w are unknown and must be estimated
to maximize the likelihood of the data P(J | w)

® [Nhis s known as maximum likelihood estimation (ML

U

Loss function
ZL(w) =—1log P(D|w)

generated

w = arg max P(| w)

nder linear Gaussian assumptions,

VILE through gradient descent

SW implements a

Gradient update
A\;\\/i X — leg(W) — CSZ'(I" — I/;)

(&)
O

Operant conditioning

e Bullding off of Thomdike’s Law of
the animal’'s behavior

® nlke C
N respo

assical condrtion

nse to rewards/p

[

g, opera

Nt conditioning descripes the active select

U

NIsSnMmen’

S, rather than only thelr passive associatio

ON Of act

—ffect, operant conditioning studies how rewards shape

or

N with st

Mull

® [his allows us to describe how animals leam to perform actions (conditioned on stimuli)
that are predictive of reward

Center Pannel

Key
Key ure Key lights
~
Magazine light
e & Solenoid
A /
A —
R '—'*—ﬁ]
Food /

. £]. Opertur

Food Tray

o0

Food
Storage

- —

Counter weight

\

s

Illustration. Skinner box as adapted for the pigeon.

15

https://www.youtube.com/watch?v=_qLs2K4UXXk

Behavioral Shaping ”z@{

Reward learming is slow when the space of possible actions Is very large

® [0 encourage exploration towards the target benhavior, we can use

shaping by adding rewards for smaller, intermediate steps,
echnigue pioneered by Skinner to train a target benhavior by rewarding

successive approximations

1. Reinforce any response that resembles the desired behavior

2. lteratively rein

orce responses that more selectively resemble the target

nenavior, anc

remove reinforcement from previously reinforced

responses (causing extinction)

16

Reinforcement schedules

Different reinforcement schedules yield different response patterns

* Interval reward(time) vs. Ratio reward(responses)

 Variable vs. Fixed

1000

Variable Fixed \Variable
ratio interval
/50 [

500 [—
Fixed

interval

250 [

Cumulative number of responses

| | l I I l l

10 20 30 40 50 60 /70

Time (minutes)

30

17

a: = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

18

a: = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

A ;= Z CSiwl Reward estimate Q(Sv at)
]

18

at = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

}//\' p — Z CSiwl Reward estimate Q(St, at)
l

Wi «— Wi + ;,](I,.t _ i,‘.t) Prediction error Q(Sta at) P Q(Sta at) 4+ 7][7‘ o Q(Sta at)]

learning

18

at = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

}//\' p — Z CSiwl Reward estimate Q(St, at)
l

Wi «— Wi + ;,](I,.t _ i,‘.t) Prediction error Q(Sta at) P Q(Sta at) 4+ 7][7‘ o Q(Sta at)]

learning

? Beéwg\i/(i:?/ral n(a,|s,) o< exp(Q(s, a,)/t)

18

Dark side of Behavioralism

® \\alden Two (1948) describes a Utopia, where
behavioral engineering is used 1o shape a perfect
soclety

® -rom childhood, citizens are crafted through rewards
and punishment into the ideal citizens and to value
pbenefit for the common gooo

® Rejection of free will, and has been criticized as
creating a “pertectly efficient antnill”

® [s intelligence just learning to acquire reward and
avoiding punishment”

Summary so far

® Behavioralism tries to understand intelligence and leaming by pracketing out
Unobservable mental phenomena. How far can we get with this approach’?

® Thorndike’s Law of Effect describes trial and error learming

® NO guidance for what actions we try, but repeat successtul actions

e Pavlovian Classical Conditioning describes the association between stimul

and rewards based on predictions of rewarc

® Rescorla Wagner (
ction error

Orec

mMaxi

mum likell

AP

o) L

000

SW) model formalizes this theory based o

pdating, wr

cS!

mation anc

ch can be related to ratio
gradient descent

1 rewalrC

nal princ

ples of

® Operant conditioning relates stimuli-reward associations to the active shaping
of behavior, to acquire rewards and avoid punishment

20

5 MiNute break

Neural networks

® Neurons are specialized cells that transmit information

through electrical impulses

® Roughly speaking, the dendrites recelve Information,
which I1s processed In the cell body, and then
poropogated through the axon and synapses with other

NEUrons

® Human perception, reasoning, emaotions, actions, memory,

® \/\\hereas behaviorists focused on ou
neuroscientists have been peering i

and much more are governed by neural activity

ward behavior,
0 black box for

centuries in order to understand how neural activity gives

rise to Intelligence

e \ore recently (mid 1900s), art

Deen developed as computati

mficial neura
onal tool 1o

- SO

e

WOrkS have

ving problems

Dendrite

Cellbody)

Nucleus

FD

f Myelin sheath
Schwann cel

Node of Ranvier}
Axon

¢ WSS TP @ ¢ APV TRt - -y

\osenblatt’s Perceptron Mark |

| Axon Terminal

22

Timeline of Artificial Neural Networks

Timeline of Artificial Neural Networks

X1

X2 —

X3 — e
Xn:

McCulloch & Pitts
(1943) neuron

Timeline of Artificial Neural Networks

Rosenblatt (1958) Perceptron

McCulloch & Pitts
(1943) neuron

23

Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Rosenblatt (1958) Perceptron

Perceptrons

McCulloch & Pitts
(1943) neuron

23

Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Rosenblatt (1958) Perceptron

Perceptrons

Al Winter

McCulloch & Pitts
(1943) neuron

23

Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Marvin L. Minsky
Seymour A. Papert

Al Winter
! T
X2 PN —
X3 T
X n I ‘ulnl'lql::l’rlnr
McCulloch & Pitts

(1943) neuron
First deep network (lvakhnenko & Lapa 1965)

Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Marvin L. Minsky
Seymour A. Papert

Convnets for MNIST (LeCun et al., 1989)

10 oulpul unils

fully connectac
~ 300 links

layer H3

3C nidden units fully connected

~ 8000 links

layer H2
12 x 16=182

hidcen units

H2.1 ~ 40,000 links

1 frem 12 xernels
B e TR

layer H1
12 x 64 = 768
hiddan units

~20,000 links
from 12 kernels
5x5

256 inpul unts

Al Winter

e .
x] v
1 o’ .."*.1_ ..'
| *r-..
X2 v, e e
‘_ “'\- o~ "\ - _,’:'\ r""
’d 2T
x 3 A R = S Y grer
° V. L¥ toe it
. b N e
X ‘ -)—w 1 urd b Ader

19er

ot < Second N~
o o hidder eaer K
:' T .. L
: 15 hdder
McCulloch & Pitts ‘;‘

(1943) neuron :

First deep network (lvakhnenko & Lapa 1965)

23

Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Deep Learning

revolution
A

Convnets for MNIST (LeCun et al., 1989)

10 oulpul unils

7\ fully connectac
~ 300 links

layer H3

3C nidden units fully connected

~ 8000 links

layer H2
12 x 16=182

hidcen units

H2.1 ~ 40,000 links

1 frem 12 xernels
B e TR

layer H1
12 x 64 = 768
hiddan units

~20,000 links
from 12 kernels

5x5
256 Inpul units
L
L
L]
L
L}
L]
L
..
Marvin L. Minsky s
Seymour A. Papert . .
Al Winte !
INter -
‘0
“
> .. .
,. *) BENRY sl
. ; . ‘{ AN s\ 1 ’d \
Fr=r e ol \\ \ AN / \‘
[e 9% 1] \/ 2738 \/ 2085 \Jense
TR /’}\"" Twe - k \ X‘ [] "]\
sV ¥ 0 -~ s " \ \ \ AN / \\ \
. gt . — , \J3 VAR ;o\
el e - Foe, oot E MU S \ 4
. S . _,’\ -~ ol / B y \
P % . - 3 e 4
g I &7 Ok tlager ul o ol [;
o X e it L1 @ 5w ense
Y .., s \\
'& K 1 wrd h Ader \ 1000
s I 192 17 Max
’ pooling Lo | 2048
© Zecnd
hddur ewer

McCulloch & Pitts
(1943) neuron

First deep network (lvakhnenko & Lapa 1965)

RelLU & Dropout (Krizhevsky,
Sutskever, & Hinton, 2012)
23

McCulloch & Pitts (1943)

® rst computational model of a neuron

e The dendritic inputs {xi, ..., X, } Dendrites

provide the input signal X1 ~_
® [ne cell boay processes the signal

Ax) = {1 ifZXiZQ /

0 else

Cell body | AXon
ef(X()) y >y = {0,1}

® |[Nhe axon produces the output

24

McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on

25

McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on

25

McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on

25

fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
xy W=1
\
w=—1
X1 o —>y€{0,1} W2=—1 —>y€{0,1}
X5 /
w; € {—1,1} w; € {—1,1}
Neuron fires if no inputs are on Neuron fires when X+ is on AND X»

NOot on

26

fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
xy W=1
\
w=—1
X1 o —>y€{0,1} W2=—1 —>y€{0,1}
X5 /
w; € {—1,1} w; € {—1,1}
Neuron fires if no inputs are on Neuron fires when X+ is on AND X»

NOot on

26

fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
xy W=1
\
w=—1
X1 o —>y€{0,1} W2=—1 —>y€{0,1}
X5 /
w; € {—1,1} w; € {—1,1}
Neuron fires if no inputs are on Neuron fires when X+ is on AND X»

NOot on

26

Rosenblatt’s Perceptron

 Added a learning rule, allowing it to
learn any binary classification
problem with linear seperability

* Very similar to McCulloch & Pitts’,
but with some key differences:

e A bias term is added b

» Weights w; aren’t only

€ {—1,1} but can be any real
number

* Weights (and bias) are updated
based on error

out(t)

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ ,.
[nitialize w and & randomly.
while noir converged do

Loop through the examples.
for ; — 1, mdo

Compare the true label and the prediction.
rror = y; - olw? X;i 4+ b)
1f the model wrongly predicts the class, we update the weights and bias.
if error != 0 then
##4 Update the weights.

W L Sy

#i## Update the bias.

| b= b4 errvor

Test for convergence

Output: Set of weights w and bias b for the perceptron.

27

Rosenblatt’s Perceptron

 Added a learning rule, allowing it to
learn any binary classification
problem with linear seperability

* Very similar to McCulloch & Pitts’,
but with some key differences:

e A bias term is added b

» Weights w; aren’t only

€ {—1,1} but can be any real
number

* Weights (and bias) are updated
based on error

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ ,.
[nitialize w and & randomly.
while noi1 converged do

Loop through the examples.
for ; — 1, mdo

Compare the true label and the prediction.
rror Y- (YI\N" X;i 4+ b)

1f the model wrongly predicts the class, we update the weights and bias.
if error !'= 0 then

Update the weights.
W =W+

#i## Update the bias.

| b= b4 errvor

Test for convergence

Output: Set of weights w and bias b for the perceptron.

27

WiIl gsp an Pablo Caceres

Perceptron learning rule savc
Foe o

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ . r(P

Initialize w and b randomly. @ @
while not converged do @ @

Loop through the examples.

o
for) = 1, mdo %’)'
Compare the true label and the prediction. — weight

error = y; - G(VVIXJ 4+ b)

1t the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W=W-<error X &;

Update the bias.

. b=0b+ error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

28

WiIl g span Pablo Caceres

Perceptron learning rule Ve

(% >y A
e B
Algorithm 1: Perceptron Learning Algorithm

- .) (_"’
Input: Training examples {X;, ¥} |. (weight, wingspan) AF

Loop through the examples.
for) = 1, mdo

®
B,

Initialize w and b randomly. @ @
while not converged do @ @

Compare the true label and the prediction.
error = y; - a(w? X;+b)

weight

1t the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W=W-<error X &;

Update the bias.

b=0b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

28

WiIl g span Pablo Caceres

Perceptron learning rule Ve

(% >y A
e B
Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {xu Y } 1. (weight, wingspan) Owl=0 vs. Albatross=1 f}b
Initialize w and 6 randomly. N / @ @
while not converged do @ @

Loop through the examples.
for) = 1, mdo

®
B,

Compare the true label and the prediction.
error = y; - a(w? X; + h)

weight

1t the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W+ €rror X I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

28

WiIl g span Pablo Caceres

Perceptron learning rule Exle

W[A-

(2

A P A=
Algorithm 1: Perceptron Learning Algorithm

- ‘ (2
Input: Training examples {x;. .’/z}:’_'_l- (weight, wingspan) OwI=0 vs. Albatross=1

A -
Initialize w and b randomly. N / @ @
while not converged do @ @

Loop through the examples.
for) = 1, mdo

®
B,

Compare the true label and the prediction.
error = y; - a(w? X; + h)

weight

1t the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W+ €rror X I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

28

Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; } ~1+ (weight, wingspan) OwlI=0 vs. Albatross=1

/

Initialize w and b randomly.

while not converged do
if wx+b>0

b) = {1
0 else

o(w'x

g

Compare the true label and the prediction.
error = uy; - a(w’ X;+b)

Loop through the examples.
for) = 1, mdo

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W €error x I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

wingspan

®
B,

Pablo Caceres

fo.
A =
(- r(c.
AT o(WX+b)
f'o.
A -

weight

28

Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; } ~1+ (weight, wingspan) OwlI=0 vs. Albatross=1

/

Initialize w and b randomly.

while not converged do
if wx+b>0

b) = {1
0 else

o(w'x

g

Compare the true label and the prediction.
error = uy; - a(w’ X;+b)

Loop through the examples.
for) = 1, mdo

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W €error x I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

wingspan

®
B,

Pablo Caceres

fo.
A =
(- r(c.
AT o(WX+b)
(s
A -

weight

28

WiIl g span Pablo Caceres

=W+err0r><xj

Perceptron learning rule Shs .
(= | s B

A - AT o(W'X +b)
‘Alg()ri'hm l: l)crccptr')n [Jeaming ‘Algorithm xﬂ..
Input: Training examples {x;, .’/:}:tl- (weight, wingspan) OwlI=0 vs. Albatross=1 %3

Intialize w and b randomly. M / @ @
while not converged do @ @

1 if wix+b>0
b) =
0 else

Loop through the examples. o(w'x

for j = 1, mdo /

Compare the true label and the prediction.
error = uy; - a(w’ X;+b)

®
B,

weight

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W €error x I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

wingspan

Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; } ~1- (weight, wingspan) Owl=0 vs. Albatross=1
Initialize w and b randomly. M /
while not converged do | .
Loop through the examples. oc(W'x+b) = { Lt wix+b>0

@
for) = 1, mdo / 0 else @ o)

Compare the true label and the prediction.
error = uy; - a(w’ X;+b)

weight

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

Update the weights.
W =W €error x I;

Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

29

Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {X;, ¥} . (weight, wingspan)

while not converged do

Loop through the examples. o(w'x

for) = 1. mdo /‘

Compare the true label and the prediction.
ErTor = Yy; - a(w’ X; + b
if error = 0 then

Update the weights.

W =W+ €error x xI;

Update the bias.

. b=0b+ error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

Owl=0 vs. Albatross=1

Initialize w and b randomly. M /

b)

:{1 if wx+b>0
0 else

##+# 1f the model wrongly predicts the class, we update the weights and bias.

wingspan

Tl T
- R
_..a.(.\.vTX+b)
¥y g
weight

Guaranteed to converge if data is linearly separable

Limitations of linear separability

AND OR XOR

Adrian Rosebrock

® [Nne perceptron can leam any linearly
separable problem ®

® Sut not all problems are lineary . AN
separable

® \/en a single mislabeled data point In the
data will throw the algorithm into chaos X x x

e nter the XOR problem and Minsky &
Darpe’t (1 969) Critique Mislabeled point

® Argument: because a single neuron IS
unable to solve XOR, larger networks g
will also have similar problems e faldee <

® [herefore, the research program
should be dropped AL

Limitations of linear separability

AND OR XOR

Adrian Rosebrock

® [Nne perceptron can leam any linearly
separable problem ®

® Sut not all problems are lineary . AN
separable

® \/en a single mislabeled data point In the
data will throw the algorithm into chaos X x x

e nter the XOR problem and Minsky &
Darpe’t (1 969) Critique Mislabeled point

® Argument: because a single neuron IS
unable to solve XOR, larger networks g
will also have similar problems e faldee <

® [herefore, the research program
should be dropped AL

Addressing Minsky & Parpert’s critiques

® Changing the leaming rule

o ADALINE adds robustness to training noise

® AJdINg More layers
® \/\/nile single neurons can only com

ouUte some logica

Nnetworks of these neurons can cor
(Rosenblatt, 1962)

o \ultilayer Perceptron can solve XOR

® Changing the activation function
® Beyond nard thresnolds

Npute any PossIo

oredicates,
e boolean tunction

31

Widrow & Hoff, 1960

ADALINE

Improving the Learning Rule

Adaptive Linear Element (ADALINE)

® \\eight updates based on a loss function
rather than the (binary) classification error

I out(t)

® [Nis uses the activation prior to the sigmoio

step, allowing us to compute gradients MSE
® \\le can use the Delta rule to minimize loss, PL(W, b) = l Z ((WTXi +b) — yi>2
which is equivalent to stochastic gradient 2 =
des_éent for \east—square§ tlfegreslsm Weight update Bias update
ADALINE Is more robust to training noise: W < W+ aAw b — b+ alAb
= 0L 0L
) Aw = — Ab = —
R OW ob
T =) (WX, +5) —) % = 2, (Wixi+b) -y,
) i=1 =1

32

Widrow & Hoff, 1960

ADALINE

Improving the Learning Rule

Adaptive Linear Element (ADALINE)

® \\eight updates based on a loss function
rather than the (binary) classification error

I out(t)

® [Nis uses the activation prior to the sigmoio

step, allowing us to compute gradients MSE
® \\le can use the Delta rule to minimize loss, PL(W, b) = l Z ((WTXi +b) — yi>2
which is equivalent to stochastic gradient 2 =
des_éent for \east—square§ tlfegreslsm Weight update Bias update
ADALINE Is more robust to training noise: W < W+ aAw b — b+ alAb
= 0L 0L
) Aw = — Ab = —
R OW ob
T =) (WX, +5) —) % = 2, (Wixi+b) -y,
) i=1 =1

32

Widrow & Hoff, 1960

ADALINE

Improving the Learning Rule

Adaptive Linear Element (ADALINE)
® \\eight updates based on a loss function

I out(t)

rather than the (binary) classification error . /[Error]
® [Nis uses the activation prior to the sigmoio
step, allowing us to compute gradients MSE
® \\le can use the Delta rule to minimize loss, PL(W, b) = l Z ((WTXi +b) — yi>2
which is equivalent to stochastic gradient 2 =
des_éent for \east—square§ tlfegreslsm Weight update Bias update
ADALINE Is more robust to training noise: W < W+ aAw b — b+ alAb
= 0L 0L
) Aw = — Ab = —
R OW ob
T =) (WX, +5) —) % = 2, (Wixi+b) -y,
) i=1 =1

32

Widrow & Hoff, 1960

ADALINE

Improving the Learning Rule

Adaptive Linear Element (ADALINE)
® \\eight updates based on a loss function

I out(t)

rather than the (binary) classification error . /[Error]
® [Nis uses the activation prior to the sigmoio
step, allowing us to compute gradients MSE
® \\le can use the Delta rule to minimize loss, PL(W, b) = l Z ((WTXi +b) — yi>2
which is equivalent to stochastic gradient 2 =
des_éent for \east—square§ tlfegreslsm Weight update Bias update
ADALINE Is more robust to training noise: W < W+ aAw b — b+ alAb
= 0L 0L
) Aw = — Ab = —
R OW ob
T =) (WX, +5) —) % = 2, (Wixi+b) -y,
) i=1 =1

32

Multilayer Perceptron

® Rosenplatt introduced an NV
only the outer layer had leam

® rst deep

stochastic gradient ©

Amari

L

P with 3 layers In 1962, but

Ng connections

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

earming MLP by lvaknhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

N at each layer

e hidden layers,

X1 X2 oF ho y
0 0
1 1
1 0
0 1

Grosse & Ba

an output

unit
) |

Y1 (Y2

output layer

A
:@’g‘ 2 second hidden layer

D an
@ Dy first hidden layer
a hidden ‘

unit '
| aconnection '
depth |

iInput layer

an input
unit

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,

where we apply the same activation tunction at each layer
h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0

1

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,

where we apply the same activation tunction at each layer
h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0 o(—=.5)=0

1

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,

where we apply the same activation tunction at each layer
h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0 o(—.5) =0 o(—=1.5) =0

1

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,

where we apply the same activation tunction at each layer
h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0

o(-5)=0 | 6(=15)=0 | 6(=.5)=0

1

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

N at each layer

an output

a hidden

| a connection

e hidden layers, fepth

an input

X1 X2 h1 ho Y

0 0 o(—.5)=0 6(—=1.5)=0 | o(—=.5)=0
1 1 o(1.5) =1

1 0

0 1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,

where we apply the same activation tunction at each layer
h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0

o(-5)=0 | 6(=15)=0 | 6(=.5)=0

1 o(1.5) =1 o(.5) =1

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but
only the outer layer had leaming connections

® Hirst deep learmning MLP by Ivaknenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun'ichi
Amari

e \[Ps are feedforward networks with multiple hidden layers,
where we apply the same activation tunction at each layer

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

an output

a hidden

| a connection
depth

an input

X1 X2 N+ h2 y

0 o(-5)=0 | 6(=15)=0 | 6(=.5)=0

1

o(1.5) =1 o(.5) =1 o(=.5) =0

— O | =0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X X2 h h2 y

0 0 o(—.5)=0 6(—=1.5)=0 | o(—=.5)=0
1 1 c(1.5) =1 o(.5) =1 o(—.5)=0
1 0 o(.5)=1

0 1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X X2 h h2 y

0 0 5(—=35)=0 | 6(=15)=0 | 6(—.5) =0
1 1 o(l.5) =1 o(.5) =1 o(—.5) =0
1 0 o(.5)=1 o(—.5)=0

0 1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X X2 h h2 y

0 0 5(—=35)=0 | 6(=15)=0 | 6(—.5) =0
1 1 o(l.5) =1 o(.5) =1 o(—.5) =0
1 0 o(.5)=1 o(—.5)=0 o(.5) =1
0 1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X X2 h h2 y

0 0 o(—.5)=0 6(—=15)=0 | 6(—=5)=0
1 1 o(1.5) =1 o(.5) =1 o(—.5)=0
1 0 o(.5) =1 o(—.5)=0 o(.5) =1

0 1 o(.5) =1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X X2 h h2 y

0 0 5(—=35)=0 | 6(=15)=0 | 6(—.5) =0
1 1 o(l.5) =1 o(.5) =1 o(—.5) =0
1 0 o(.5)=1 o(—.5)=0 o(.5) =1
0 1 o(.5)=1 o(—.5)=0

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Multilayer Perceptron

® Rosenblatt introduced an MLP with 3 layers in 1962, but

only the ou

® rst deep

Amari

eaming V
stochastic gradient ©

o \[Ps are feedforward networks with multip

where we apply the same activation tunctio

h, = oc(W'X +b)andy = o(w'h + b)
® A single hidden layer allows us to solve XOR

e \What are h,h,, and y when:

ter layer had leaming connections

LP by vakhenko & Lapa (1965), with
escent added in 1967 by Shun'ichi

e hidden layers,
N at each layer

an output

a hidden

| a connection
depth

an input

X1 X2 oF ho y

0 0 o(—.5)=0 6(—=15)=0 | 6(—=5)=0
1 1 o(1.5) =1 o(.5) =1 o(—=.5)=0
1 0 o(.5) =1 o(—.5)=0 o(.5) =1
0 1 o(.5) =1 o(=.5)=0 | o(5=1

Grosse & Ba

output layer

second hidden layer

first hidden layer

iInput layer

33

Forward propagation of the mput signals

Backpropagation

e Rosenblatt (1962): Forward propagation of signals (for making
oredictions), and backward propagation of error (for updating
weights)

® Ve can start with the familiar delta-rule weight update and mean- inpu Sayer Output layer
sguared error loss Hidden layer
® Backpropogation takes advantage of the fact that the MLP Is a Ba<ckpropagation of the error

function composed of several individual functions (at each layer):

y(x) = h(f(x))

e Thus, the loss is also composed of the loss across individua 0F
ayers W <— Ww— ——
® This allows us to use the chain rule for derivatives: ow

0L 0Z ou

ow ou ow

— A2
® \\e use the error to first update the u weights, and then update ZL = 5 Z (}7 i~y i)
W weignts w.r.t. how they change u '

® or further reading, see Grosse & Ba (CSC427)

34

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Other activation functions

ST

Hard Threshold Linear Rectifieg Llirlljear Unit Soft RelU
1 ifz>0 (ReLU)

y:{o ifz<0 y =< yzmax(O,z) y=|og1+ez
Universal approximation theorem (Cybenko, + —
1989): An ANN with a hidden layer witha —
finite numer of units and mild assumptions S
on the activation function can approximate Logistic Mypertioic Tengant
any function arpitrarily well Y=o e

ez + e—z

Connectionism: Summary

® Perceptrons can learmn a number of logical operations, but fail at
oroblems that are not linearly separable (e.g, XOR)

® Rosenblatt’s lcaming rule is guaranteed to converge (for linearly
separable problems), but is brittle with noisy training data

o ADALINE offers a more robust leaming rule, which is equivalent to
stochastic gradient descent

e Multilayer Perceptrons arc capable of solving XOR and other non-
inearly separaple proplems

e Backpropogation is necessary for learning in MLPs, by passing the
gradient across multiple layers using the chain rule

36

General Principles

® [ncrementally Improve predictions by reducing error
® [he unit of leaming is the magnitude of the prediction error (Delta-rule)

® Rescorla-VWagner model and ADALINE

® BSut more generally, stochastic gradient descent, backpropogation, and all modem
this principle

® |ncremental learning is Not always guaranteed to succeeo

® Bchavioral shaping and reinforcement schedules nelp guide leaming towards desired
outcomes

® Single layer perceptrons are limited in which types of problems they can solve
e Adding more layers nelps, but it took a long time 1o develop leaming rules
® (Gradient descent can get stuck in local optima

e \/\\nat other principles have you picked up”

Sl use

37

Next week we will look at what happened during the Al winter and explore the
limits of stimulus-response learning

SYMBOLIC Al

Symbolic Al
e \/\\hat happened during the Al winter”

Knowledge Inference
: base engine
® |ntelligence as manipulating symmbols through BLIBEET Answer

—
ules and logical operations

® [caming as searcn

Cognitive Maps

e From Stimulus-Response leaming to Stimulus- ; ’“‘1
Stimulus learming B M‘L
e (Constructing a mental representation of the [i |
, e 1} !
environment [W’FJ
i _*......1. - ’ J' "*.‘a.ﬂ 4.....D00R
® Neurological evidence for cognitive maps in the 1) -

prain o o

