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Organization
• To allow time for people to travel between classes


• Lectures: 10:30 - 12:00 on Thursdays

• Tutorials: 16:15 - 17:30 on Fridays
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Lesson plan
1. Behavioralism


• Understanding intelligence through 
behavior


2. Connectionism 
• Understanding intelligence through 

artificial neural networks
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Behaviorism
• [noun Psychology.] An approach to understanding the behavior of humans and 

animals that emerged in the early 1900s


• Generally tries to focus on outward observable behavior rather than hidden 
inner mental states


• One of the earliest programs to empirically study biological intelligence and 
learning
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ResponseBlack BoxStimulus

Mental states?



Varieties of Behaviorism
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John B. Watson B.F. Skinner

Methodological 
Behaviorism

Radical 
Behaviorism

• Thoughts and feelings exist, but 
cannot be the target of scientific 
study


• Only public events can be 
objectively observed and studied 
scientifically


• Internal processes are also the 
target of scientific study


• But they are fully controlled by 
environmental variables just as 
environmental variables control 
behavior



A brief timeline of early research on learning
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Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)



Thorndike’s (1911) Law of Effect 
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Thorndike’s (1911) Law of Effect 
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Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 
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Benefits:

• Errors decrease over time

• Openess to trying new solutions

• Basis for all modern reinforcement learning (RL)


Allen, Smith & Tenenbaum (PNAS 2020)

Limitations:

• Dangerous when some errors are fatal

• Lacks creativity and generalizastion of past 
solutions


• No formalism between behavior and 
outcome….



Thorndike’s (1911) Law of Exercise 
• In addition to the repeating successful 

actions, we also repeat actions that 
we performed in the past


• Habit learning

• e.g., morning routine, commute to 

university, studying/exercise routine, 
etc…


• Behavior is reinforced through frequent 
connections of stimulus and response
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Pavlov’s Dog: Classical conditioning
• Pavlov (1849-1936) was studying digestion 

in dogs

• The salivation response could be transferred 

from an unconditioned stimulus (US) —food 
— to a conditioned stimulus (CS) —the 
ringing of a bell

• 1) the dog naturally salivates when 

presented with food and 2) has no initial 
response to a bell


• 3) when the dog is trained to associate a 
bell with the delivery of food, 4) it learns to 
anticipate food when a bell rings and 
begins to salivate
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Ivan Pavlov



Key ideas: Classical conditioning
Pavlovian responses are driven by outcome expectations


Learning is driven by reward predictions and (as we will see) shaped by 
prediction error


Cues compete for shared credit in predicting reward outcomes
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Rescorla-Wagner
Rescorla-Wagner model  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Implications: Cue competition
If multiple stimuli cues predict an outcome, they will 
share credit


Overshadowing:

• If sound and light are both associated reward, 

then presenting individual cues will result in 
weaker responses


Blocking

• If light is first associated with reward, and then 

later both light and sound, there will be less 
associating of sound with reward than if sound 
were conditioned alone
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? ?Overshadowing



Reward learning as refining an internal representation of the world

• Internal hypotheses about how sensory data  were 
generated


• The parameters  are unknown and must be estimated 
to maximize the likelihood of the data 

• This is known as maximum likelihood estimation (MLE): 




• Under linear Gaussian assumptions, RW implements a 
MLE through gradient descent

𝒟

w
P(𝒟 |w)

ŵ = arg max
w

P(𝒟 |w)
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Gradient descent

Δŵi ∝ − ∇wi
ℒ(w) = CSi(r − ̂r)ℒ(w) = − log P(𝒟 |w)

CS r
w

Loss function Gradient update



Operant conditioning
• Building off of Thorndike’s Law of Effect, operant conditioning studies how rewards shape 

the animal’s behavior

• Unlike classical conditioning, operant conditioning describes the active selection of actions 

in response to rewards/punishments, rather than only their passive association with stimuli

• This allows us to describe how animals learn to perform actions (conditioned on stimuli) 

that are predictive of reward
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https://www.youtube.com/watch?v=_qLs2K4UXXk


Behavioral Shaping
• Reward learning is slow when the space of possible actions is very large

• To encourage exploration towards the target behavior, we can use 

shaping by adding rewards for smaller, intermediate steps, 

• Technique pioneered by Skinner to train a target behavior by rewarding 

successive approximations

1. Reinforce any response that resembles the desired behavior

2. Iteratively reinforce responses that more selectively resemble the target 

behavior, and remove reinforcement from previously reinforced 
responses (causing extinction)
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Reinforcement schedules
Different reinforcement schedules yield different response patterns


• Interval reward(time) vs. Ratio reward(responses)


• Variable vs. Fixed

17



From Rescorla-Wagner to Q-learning
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Dark side of Behavioralism
• Walden Two (1948) describes a Utopia, where 

behavioral engineering is used to shape a perfect 
society

• From childhood, citizens are crafted through rewards 

and punishment into the ideal citizens and to value 
benefit for the common good


• Rejection of free will, and has been criticized as 
creating a “perfectly efficient anthill”


• Is intelligence just learning to acquire reward and 
avoiding punishment?
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Summary so far
• Behavioralism tries to understand intelligence and learning by bracketing out 

unobservable mental phenomena. How far can we get with this approach?

• Thorndike’s Law of Effect describes trial and error learning


• no guidance for what actions we try, but repeat successful actions

• Pavlovian Classical Conditioning describes the association between stimuli 

and rewards based on predictions of reward

• Rescorla Wagner (RW) model formalizes this theory based on reward 

prediction error (RPE) updating, which can be related to rational principles of 
maximum likelihood estimation and gradient descent


• Operant conditioning relates stimuli-reward associations to the active shaping 
of behavior, to acquire rewards and avoid punishment
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5 minute break
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Neural networks
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• Neurons are specialized cells that transmit information 
through electrical impulses

• Roughly speaking, the dendrites receive information, 

which is processed in the cell body, and then 
propogated through the axon and synapses with other 
neurons


• Human perception, reasoning, emotions, actions, memory, 
and much more are governed by neural activity


• Whereas behaviorists focused on outward behavior, 
neuroscientists have been peering into black box for 
centuries in order to understand how neural activity gives 
rise to intelligence


• More recently (mid 1900s), artificial neural networks have 
been developed as computational tool for solving problems

Rosenblatt’s Perceptron Mark I
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Timeline of Artificial Neural Networks

23

McCulloch & Pitts 
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

ReLU & Dropout (Krizhevsky, 
Sutskever, & Hinton, 2012)

Deep Learning 
revolution



McCulloch & Pitts (1943)
• First computational model of a neuron


• The dendritic inputs  
provide the input signal


• The cell body processes the signal 
 

 


• The axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

24

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts
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25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the 
neuron to fire

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)



McCulloch & Pitts (1943)

25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the 
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)



McCulloch & Pitts (1943)

25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the 
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

1



McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2 
not on

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)w1 = − 1

wi ∈ {−1,1}



McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2 
not on

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {−1,1}



McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2 
not on

1

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {−1,1}



Rosenblatt’s Perceptron
• Added a learning rule, allowing it to 

learn any binary classification 
problem with linear seperability


• Very similar to McCulloch & Pitts’, 
but with some key differences:


• A bias term is added 


• Weights  aren’t only 
 but can be any real 

number


• Weights (and bias) are updated 
based on error

b

wi
∈ {−1,1}

27

b



Rosenblatt’s Perceptron
• Added a learning rule, allowing it to 

learn any binary classification 
problem with linear seperability


• Very similar to McCulloch & Pitts’, 
but with some key differences:


• A bias term is added 


• Weights  aren’t only 
 but can be any real 

number


• Weights (and bias) are updated 
based on error

b

wi
∈ {−1,1}

27

b

Error

Error



Perceptron learning rule

28

Pablo Caceres 



Perceptron learning rule

28

(weight, wingspan)

Pablo Caceres 



Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

Pablo Caceres 



Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

w

Pablo Caceres 



Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Pablo Caceres 



Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Pablo Caceres 
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(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

w = w + error × xj

Pablo Caceres 
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Perceptron learning rule
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(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Guaranteed to converge if data is linearly separable



Limitations of linear separability
• The perceptron can learn any linearly 

separable problem

• But not all problems are lineary 

separable

• Even a single mislabeled data point in the 

data will throw the algorithm into chaos

• Enter the XOR problem and Minsky & 

Parpert (1969) critique

• Argument: because a single neuron is 

unable to solve XOR, larger networks 
will also have similar problems


• Therefore, the research program 
should be dropped

30

Adrian Rosebrock 



Limitations of linear separability
• The perceptron can learn any linearly 

separable problem

• But not all problems are lineary 

separable

• Even a single mislabeled data point in the 

data will throw the algorithm into chaos

• Enter the XOR problem and Minsky & 

Parpert (1969) critique

• Argument: because a single neuron is 

unable to solve XOR, larger networks 
will also have similar problems


• Therefore, the research program 
should be dropped

30

Adrian Rosebrock 



Addressing Minsky & Parpert’s critiques
• Changing the learning rule


• ADALINE adds robustness to training noise

• Adding more layers


• While single neurons can only compute some logical predicates, 
networks of these neurons can compute any possible boolean function 
(Rosenblatt, 1962)


• Multilayer Perceptron can solve XOR

• Changing the activation function


• Beyond hard thresholds
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Adaptive Linear Element (ADALINE)

• Weight updates based on a loss function 

rather than the (binary) classification error

• This uses the activation prior to the sigmoid 

step, allowing us to compute gradients

• We can use the Delta rule to minimize loss, 

which is equivalent to stochastic gradient 
descent for least-squares regression


ADALINE is more robust to training noise:

32
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Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but 

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with 

stochastic gradient descent added in 1967 by Shun’ichi 
Amari


• MLPs are feedforward networks with multiple hidden layers, 
where we apply the same activation function at each layer 

 and 

• A single hidden layer allows us to solve XOR


• What are , , and  when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y
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stochastic gradient descent added in 1967 by Shun’ichi 
Amari


• MLPs are feedforward networks with multiple hidden layers, 
where we apply the same activation function at each layer 

 and 
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Backpropagation
• Rosenblatt (1962): Forward propagation of signals (for making 

predictions), and backward propagation of error (for updating 
weights)


• We can start with the familiar delta-rule weight update and mean-
squared error loss


• Backpropogation takes advantage of the fact that the MLP is a 
function composed of several individual functions (at each layer): 



• Thus, the loss is also composed of the loss across individual 

layers

• This allows us to use the chain rule for derivatives: 




• We use the error to first update the  weights, and then update 
 weights w.r.t. how they change 


• For further reading, see Grosse & Ba (CSC421) 

y(x) = h( f(x))

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

u
w u
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w ← w − α
∂ℒ
∂w

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2 w

u

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf


Other activation functions

35

Universal approximation theorem (Cybenko, 
1989): An ANN with a hidden layer with a 
finite number of units and mild assumptions 
on the activation function can approximate 
any function arbitrarily well



Connectionism: Summary

36

• Perceptrons can learn a number of logical operations, but fail at 
problems that are not linearly separable (e.g, XOR)


• Rosenblatt’s learning rule is guaranteed to converge (for linearly 
separable problems), but is brittle with noisy training data

• ADALINE offers a more robust learning rule, which is equivalent to 

stochastic gradient descent 

• Multilayer Perceptrons are capable of solving XOR and other non-

linearly separable problems

• Backpropogation is necessary for learning in MLPs, by passing the 

gradient across multiple layers using the chain rule



General Principles
• Incrementally improve predictions by reducing error


• The unit of learning is the magnitude of the prediction error (Delta-rule)

• Rescorla-Wagner model and ADALINE 

• But more generally, stochastic gradient descent, backpropogation, and all modern RL use 

this principle

• Incremental learning is not always guaranteed to succeed


• Behavioral shaping and reinforcement schedules help guide learning towards desired 
outcomes


• Single layer perceptrons are limited in which types of problems they can solve

• Adding more layers helps, but it took a long time to develop learning rules


• Gradient descent can get stuck in local optima

• What other principles have you picked up?
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Next week we will look at what happened during the AI winter and explore the 
limits of stimulus-response learning

38

Symbolic AI

• What happened during the AI winter?

• Intelligence as manipulating symbols through 

rules and logical operations

• Learning as search 


Cognitive Maps 
• From Stimulus-Response learning to Stimulus-

Stimulus learning

• Constructing a mental representation of the 

environment

• Neurological evidence for cognitive maps in the 

brain


