
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 2: Origins of biological and artificial learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Organization
• To allow time for people to travel between classes

• Lectures: 10:30 - 12:00 on Thursdays

• Tutorials: 16:15 - 17:30 on Fridays

2

Lesson plan
1. Behavioralism

• Understanding intelligence through
behavior

2. Connectionism
• Understanding intelligence through

artificial neural networks

3

Behaviorism
• [noun Psychology.] An approach to understanding the behavior of humans and

animals that emerged in the early 1900s

• Generally tries to focus on outward observable behavior rather than hidden
inner mental states

• One of the earliest programs to empirically study biological intelligence and
learning

4

ResponseBlack BoxStimulus

Mental states?

Varieties of Behaviorism

5

John B. Watson B.F. Skinner

Methodological
Behaviorism

Radical
Behaviorism

• Thoughts and feelings exist, but
cannot be the target of scientific
study

• Only public events can be
objectively observed and studied
scientifically

• Internal processes are also the
target of scientific study

• But they are fully controlled by
environmental variables just as
environmental variables control
behavior

A brief timeline of early research on learning

6

Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)

Thorndike’s (1911) Law of Effect

7

Puzzle Box

Thorndike’s (1911) Law of Effect

7

Cat Puzzle Box

Thorndike’s (1911) Law of Effect

7

Cat Puzzle Box Time to escape

Thorndike’s (1911) Law of Effect

7

Cat Puzzle Box Time to escape

Actions associated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:

• Errors decrease over time

• Openess to trying new solutions

• Basis for all modern reinforcement learning (RL)

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:

• Errors decrease over time

• Openess to trying new solutions

• Basis for all modern reinforcement learning (RL)

Allen, Smith & Tenenbaum (PNAS 2020)

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:

• Errors decrease over time

• Openess to trying new solutions

• Basis for all modern reinforcement learning (RL)

Allen, Smith & Tenenbaum (PNAS 2020)

Limitations:

• Dangerous when some errors are fatal

• Lacks creativity and generalizastion of past
solutions

• No formalism between behavior and
outcome….

Thorndike’s (1911) Law of Exercise
• In addition to the repeating successful

actions, we also repeat actions that
we performed in the past

• Habit learning

• e.g., morning routine, commute to

university, studying/exercise routine,
etc…

• Behavior is reinforced through frequent
connections of stimulus and response

9

Pavlov’s Dog: Classical conditioning
• Pavlov (1849-1936) was studying digestion

in dogs

• The salivation response could be transferred

from an unconditioned stimulus (US) —food
— to a conditioned stimulus (CS) —the
ringing of a bell

• 1) the dog naturally salivates when

presented with food and 2) has no initial
response to a bell

• 3) when the dog is trained to associate a
bell with the delivery of food, 4) it learns to
anticipate food when a bell rings and
begins to salivate

10

Ivan Pavlov

Key ideas: Classical conditioning
Pavlovian responses are driven by outcome expectations

Learning is driven by reward predictions and (as we will see) shaped by
prediction error

Cues compete for shared credit in predicting reward outcomes

11

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi wi ← wi + η(rt − ̂rt)

Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted
outcome

Observed
outcome

Learning 
rate

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted
outcome

Observed
outcome

Learning 
rate

δ

{

Reward prediction error (RPE)The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

Implications: Cue competition
If multiple stimuli cues predict an outcome, they will
share credit

Overshadowing:

• If sound and light are both associated reward,

then presenting individual cues will result in
weaker responses

Blocking

• If light is first associated with reward, and then

later both light and sound, there will be less
associating of sound with reward than if sound
were conditioned alone

13

? ?Overshadowing

Reward learning as refining an internal representation of the world

• Internal hypotheses about how sensory data were
generated

• The parameters are unknown and must be estimated
to maximize the likelihood of the data

• This is known as maximum likelihood estimation (MLE): 

• Under linear Gaussian assumptions, RW implements a
MLE through gradient descent

𝒟

w
P(𝒟 |w)

ŵ = arg max
w

P(𝒟 |w)

14

Gradient descent

Δŵi ∝ − ∇wi
ℒ(w) = CSi(r − ̂r)ℒ(w) = − log P(𝒟 |w)

CS r
w

Loss function Gradient update

Operant conditioning
• Building off of Thorndike’s Law of Effect, operant conditioning studies how rewards shape

the animal’s behavior

• Unlike classical conditioning, operant conditioning describes the active selection of actions

in response to rewards/punishments, rather than only their passive association with stimuli

• This allows us to describe how animals learn to perform actions (conditioned on stimuli)

that are predictive of reward

15

https://www.youtube.com/watch?v=_qLs2K4UXXk

Behavioral Shaping
• Reward learning is slow when the space of possible actions is very large

• To encourage exploration towards the target behavior, we can use

shaping by adding rewards for smaller, intermediate steps,

• Technique pioneered by Skinner to train a target behavior by rewarding

successive approximations

1. Reinforce any response that resembles the desired behavior

2. Iteratively reinforce responses that more selectively resemble the target

behavior, and remove reinforcement from previously reinforced
responses (causing extinction)

16

Reinforcement schedules
Different reinforcement schedules yield different response patterns

• Interval reward(time) vs. Ratio reward(responses)

• Variable vs. Fixed

17

From Rescorla-Wagner to Q-learning

18

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck

From Rescorla-Wagner to Q-learning

18

̂rt = ∑
i

CSt
iwi Reward estimate Q(st, at)

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck

From Rescorla-Wagner to Q-learning

18

̂rt = ∑
i

CSt
iwi Reward estimate Q(st, at)

wi ← wi + η(rt − ̂rt) Q(st, at) ← Q(st, at) + η[r − Q(st, at)]Prediction error 
learning

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck

From Rescorla-Wagner to Q-learning

18

̂rt = ∑
i

CSt
iwi Reward estimate Q(st, at)

wi ← wi + η(rt − ̂rt) Q(st, at) ← Q(st, at) + η[r − Q(st, at)]Prediction error 
learning

Behavioral  
policy π(at |st) ∝ exp(Q(st, at)/τ)?

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck

Dark side of Behavioralism
• Walden Two (1948) describes a Utopia, where

behavioral engineering is used to shape a perfect
society

• From childhood, citizens are crafted through rewards

and punishment into the ideal citizens and to value
benefit for the common good

• Rejection of free will, and has been criticized as
creating a “perfectly efficient anthill”

• Is intelligence just learning to acquire reward and
avoiding punishment?

19

Summary so far
• Behavioralism tries to understand intelligence and learning by bracketing out

unobservable mental phenomena. How far can we get with this approach?

• Thorndike’s Law of Effect describes trial and error learning

• no guidance for what actions we try, but repeat successful actions

• Pavlovian Classical Conditioning describes the association between stimuli

and rewards based on predictions of reward

• Rescorla Wagner (RW) model formalizes this theory based on reward

prediction error (RPE) updating, which can be related to rational principles of
maximum likelihood estimation and gradient descent

• Operant conditioning relates stimuli-reward associations to the active shaping
of behavior, to acquire rewards and avoid punishment

20

5 minute break

21

Neural networks

22

• Neurons are specialized cells that transmit information
through electrical impulses

• Roughly speaking, the dendrites receive information,

which is processed in the cell body, and then
propogated through the axon and synapses with other
neurons

• Human perception, reasoning, emotions, actions, memory,
and much more are governed by neural activity

• Whereas behaviorists focused on outward behavior,
neuroscientists have been peering into black box for
centuries in order to understand how neural activity gives
rise to intelligence

• More recently (mid 1900s), artificial neural networks have
been developed as computational tool for solving problems

Rosenblatt’s Perceptron Mark I

Timeline of Artificial Neural Networks

23

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

AI Winter

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

AI Winter

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

AI Winter

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

AI Winter

Timeline of Artificial Neural Networks

23

McCulloch & Pitts
(1943) neuron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

ReLU & Dropout (Krizhevsky,
Sutskever, & Hinton, 2012)

Deep Learning
revolution

McCulloch & Pitts (1943)
• First computational model of a neuron

• The dendritic inputs
provide the input signal

• The cell body processes the signal 
 

• The axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

24

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts

McCulloch & Pitts (1943)

25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

McCulloch & Pitts (1943)

25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

McCulloch & Pitts (1943)

25

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

1

McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2
not on

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)w1 = − 1

wi ∈ {−1,1}

McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2
not on

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {−1,1}

McCulloch & Pitts (1943)

26

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2
not on

1

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {−1,1}

Rosenblatt’s Perceptron
• Added a learning rule, allowing it to

learn any binary classification
problem with linear seperability

• Very similar to McCulloch & Pitts’,
but with some key differences:

• A bias term is added

• Weights aren’t only
 but can be any real

number

• Weights (and bias) are updated
based on error

b

wi
∈ {−1,1}

27

b

Rosenblatt’s Perceptron
• Added a learning rule, allowing it to

learn any binary classification
problem with linear seperability

• Very similar to McCulloch & Pitts’,
but with some key differences:

• A bias term is added

• Weights aren’t only
 but can be any real

number

• Weights (and bias) are updated
based on error

b

wi
∈ {−1,1}

27

b

Error

Error

Perceptron learning rule

28

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan)

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

w

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Pablo Caceres

Perceptron learning rule

28

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

w = w + error × xj

Pablo Caceres

Perceptron learning rule

29

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Perceptron learning rule

29

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Guaranteed to converge if data is linearly separable

Limitations of linear separability
• The perceptron can learn any linearly

separable problem

• But not all problems are lineary

separable

• Even a single mislabeled data point in the

data will throw the algorithm into chaos

• Enter the XOR problem and Minsky &

Parpert (1969) critique

• Argument: because a single neuron is

unable to solve XOR, larger networks
will also have similar problems

• Therefore, the research program
should be dropped

30

Adrian Rosebrock

Limitations of linear separability
• The perceptron can learn any linearly

separable problem

• But not all problems are lineary

separable

• Even a single mislabeled data point in the

data will throw the algorithm into chaos

• Enter the XOR problem and Minsky &

Parpert (1969) critique

• Argument: because a single neuron is

unable to solve XOR, larger networks
will also have similar problems

• Therefore, the research program
should be dropped

30

Adrian Rosebrock

Addressing Minsky & Parpert’s critiques
• Changing the learning rule

• ADALINE adds robustness to training noise

• Adding more layers

• While single neurons can only compute some logical predicates,
networks of these neurons can compute any possible boolean function
(Rosenblatt, 1962)

• Multilayer Perceptron can solve XOR

• Changing the activation function

• Beyond hard thresholds

31

Adaptive Linear Element (ADALINE)

• Weight updates based on a loss function

rather than the (binary) classification error

• This uses the activation prior to the sigmoid

step, allowing us to compute gradients

• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

32

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE

b

Improving the Learning Rule
Widrow & Hoff, 1960

Adaptive Linear Element (ADALINE)

• Weight updates based on a loss function

rather than the (binary) classification error

• This uses the activation prior to the sigmoid

step, allowing us to compute gradients

• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

32

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b

Improving the Learning Rule
Widrow & Hoff, 1960

Adaptive Linear Element (ADALINE)

• Weight updates based on a loss function

rather than the (binary) classification error

• This uses the activation prior to the sigmoid

step, allowing us to compute gradients

• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

32

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b
Error

Improving the Learning Rule
Widrow & Hoff, 1960

Adaptive Linear Element (ADALINE)

• Weight updates based on a loss function

rather than the (binary) classification error

• This uses the activation prior to the sigmoid

step, allowing us to compute gradients

• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

32

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b
Error

Improving the Learning Rule
Widrow & Hoff, 1960

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0

Multilayer Perceptron
• Rosenblatt introduced an MLP with 3 layers in 1962, but

only the outer layer had learning connections

• First deep learning MLP by Ivakhenko & Lapa (1965), with

stochastic gradient descent added in 1967 by Shun’ichi
Amari

• MLPs are feedforward networks with multiple hidden layers,
where we apply the same activation function at each layer 

 and

• A single hidden layer allows us to solve XOR

• What are , , and when:

hi = σ(w⊤x + b) y = σ(w⊤h + b)

h1 h2 y

33

Grosse & Ba

1 1 1 1

-0.5 -1.5

1 -1

-0.5

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

Backpropagation
• Rosenblatt (1962): Forward propagation of signals (for making

predictions), and backward propagation of error (for updating
weights)

• We can start with the familiar delta-rule weight update and mean-
squared error loss

• Backpropogation takes advantage of the fact that the MLP is a
function composed of several individual functions (at each layer):

• Thus, the loss is also composed of the loss across individual

layers

• This allows us to use the chain rule for derivatives: 

• We use the error to first update the weights, and then update
 weights w.r.t. how they change

• For further reading, see Grosse & Ba (CSC421)

y(x) = h(f(x))

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

u
w u

34

w ← w − α
∂ℒ
∂w

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2 w

u

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Other activation functions

35

Universal approximation theorem (Cybenko,
1989): An ANN with a hidden layer with a
finite number of units and mild assumptions
on the activation function can approximate
any function arbitrarily well

Connectionism: Summary

36

• Perceptrons can learn a number of logical operations, but fail at
problems that are not linearly separable (e.g, XOR)

• Rosenblatt’s learning rule is guaranteed to converge (for linearly
separable problems), but is brittle with noisy training data

• ADALINE offers a more robust learning rule, which is equivalent to

stochastic gradient descent

• Multilayer Perceptrons are capable of solving XOR and other non-

linearly separable problems

• Backpropogation is necessary for learning in MLPs, by passing the

gradient across multiple layers using the chain rule

General Principles
• Incrementally improve predictions by reducing error

• The unit of learning is the magnitude of the prediction error (Delta-rule)

• Rescorla-Wagner model and ADALINE

• But more generally, stochastic gradient descent, backpropogation, and all modern RL use

this principle

• Incremental learning is not always guaranteed to succeed

• Behavioral shaping and reinforcement schedules help guide learning towards desired
outcomes

• Single layer perceptrons are limited in which types of problems they can solve

• Adding more layers helps, but it took a long time to develop learning rules

• Gradient descent can get stuck in local optima

• What other principles have you picked up?

37

Next week we will look at what happened during the AI winter and explore the
limits of stimulus-response learning

38

Symbolic AI

• What happened during the AI winter?

• Intelligence as manipulating symbols through

rules and logical operations

• Learning as search

Cognitive Maps
• From Stimulus-Response learning to Stimulus-

Stimulus learning

• Constructing a mental representation of the

environment

• Neurological evidence for cognitive maps in the

brain

