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Exam

e Combination of multiple choice and short answer guestions
® No complex calculations are needed
® N0 need to memorize formulas or dates

® -OCUS IS on understanding the main theoretical ideas and how they connect together across
flelds

e [hursday July 27th, 10:30-12:00
® same room/time as the lecture

® Bring pens/pencils

® Register on ALMA it possible, otherwise we can enter the grades manually it your study
orogram doesn't allow it

® Second taking is scheduled for Oct 12, 10:30-12:00
® Please contact us if you are interested in taking it by Oct 1st




Revisiting our original questions

o\/\\hat Is learmning’

o\\/nat aspects of learning are the same across biological and artificia
systems”? What is different’/

o\\/nat has the stuady of biological intelligence iNnformed us avout artificial
systems”/

o\\\hat can artificial intelllgence teach us about biological intelligence’?
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A brief timeline of early research on biological learning

Pavlov (1927) _ | Tolman (1948)

s Skinner (1938)

Thorndike (1911)




Thorndike’s Laws
Law of Effect
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Thorndike’s Laws

Law of Effect Law of Exercise

Independent of success, exercising
connection between stimulus and
response strengthens the association

(i.e., habits)
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Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk

What is the relationship between Thorndike,

Pavlovian condition, and Operant condition?

® ach are verpal theories, describing a
pattern of behavioral phenomenon

o |

S

normndike: successtul actions get

rengtheneo

® Paviov: resonse to Us get transferred to
CS

® Skinner: conditioning Not only applies to
responses, but also actions/behavior

Thorndike



Conditioned stimuli Unconditioned
stimull

Rescorla-Wagner

CS+ *‘ r
Rescorla-Wagner model ___—
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS» ‘ W
2

Reward prediction Weight update

A [ A
’”rZZCSiWi w; <= w;+n(r,—r)
i
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Conditioned stimuli Unconditioned

stimuli

Rescorla-\Waagner W
O ~

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update
A [ A
’”zZZCSiWi w; <= w;+n(r,—r)
I RN S

Reward CSion Associative Learning  Observed Predicted
expectation trial t strength rate outcome outcome
)
o)
The delta-rule of learning: Reward prediction error (R

» Learning occurs only when events violate expectations (0 # 0)
* The magnitude of the error corresponds to how much we update our beliefs

D)



a: = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)
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a: = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

A ;= Z CSiwl Reward estimate Q(Sv at)
]
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at = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

}//\' p — Z CSiwl Reward estimate Q(St, at)
l

Wi «— Wi + ;,](I,.t _ i,‘.t) Prediction error Q(Sta at) P Q(Sta at) 4+ 7][7‘ o Q(Sta at)]

learning
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at = peck

From Rescorla-Wagner to Q-learning OV

Rescorla-Wagner model Q-learning
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) (Watkins, 1989)

}//\' p — Z CSiwl Reward estimate Q(St, at)
l

Wi «— Wi + ;,](I,.t _ i,‘.t) Prediction error Q(Sta at) P Q(Sta at) 4+ 7][7‘ o Q(Sta at)]

learning

? Beéwg\i/(i:?/ral n(a,|s,) o< exp(Q(s, a,)/t)
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Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

11



Latent Learning

* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end

 Group 2 [Late food] No food in the maze for
days 1-6, then food provided at the end on day 7

Group |
w— v Group I

o

 Group 3 [Early food] ... food added on day 3

N
o

e |earning curves dropped dramatically when food
was added

~
(=)

.-
.
(5]

* This suggests latent learning prior to reward

=

* “They had been building up a ‘map’”

(lower is better)

o
tn

* Once the reward was added, they could use the
map rather than starting from scratch

Error Score
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Latent Learning e | e——(

* Blodgett (1929) Maze navigation task
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Place cells in the hippocampus represent location in an environment

cell activity behavior

Place Cell #

©,

G
$: o

v"

- .;
N ,
o e J

(O’keefe & Nadel 1978)

ongoing

oL '-.j, -

h—-

John O’Keefe WiISOn Lab (MIT)

Nobel Prize in Physiology or Medicine 2014

13


https://www.youtube.com/watch?v=lfNVv0A8QvI

Place cells in the hippocampus represent location in an environment

cell activity behavior

Place Cell #

©,

G
$: o

v"

- .;
N ,
o e J

(O’keefe & Nadel 1978)

ongoing

oL '-.j, -

h—-

John O’Keefe WiISOn Lab (MIT)

Nobel Prize in Physiology or Medicine 2014

13


https://www.youtube.com/watch?v=lfNVv0A8QvI

Grid cells in the Entorhinal Cortex provide a coordinate system

Firing Rate

I High
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Edvard and Maj-Britt Moser
Nobel Prize in Physiology or

Medicine 2014 o
Hafting et al (Nature, 2005)
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Grid cells in the Entorhinal Cortex provide a coordinate system

Firing Rate
¥ Trajectory

® Peaks

High

Low

Edvard and Maj-Britt Moser
Nobel Prize in Physiology or

Medicine 2014 A
ICi Hafting et al (Nature, 2005)
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Origins of Artificial Learning




Timeline of early Artificial Neural Networks




Timeline of early Artificial Neural Networks

X1

X2 —

X3 — e
Xn:

McCulloch & Pitts
(1943) neuron




Timeline of early Artificial Neural Networks

Rosenblatt (1958) Perceptron

McCulloch & Pitts
(1943) neuron
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Timeline of early Artificial Neural Networks

Minsky & Parpert (1969)

Rosenblatt (1958) Perceptron

Perceptrons

McCulloch & Pitts
(1943) neuron
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Timeline of early Artificial Neural Networks

Minsky & Parpert (1969)

Rosenblatt (1958) Perceptron

Perceptrons

Al Winter

McCulloch & Pitts
(1943) neuron

16



McCulloch & Pitts (1943)

® rst computational model of a neuron

e The dendritic inputs {xi, ..., X, } Dendrites

provide the input signal X1 ~_
® [ne cell boay processes the signal

Ax) = {1 ifZXiZQ /

0 else

Cell body | AXon
ef(X()) y >y = {0,1}

® |[Nhe axon produces the output

17



McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on

18



fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
xy W=1
\
w=—1
X1 o —>y€{0,1} W2=—1 —>y€{0,1}
X5 /
w; € {—1,1} w; € {—1,1}
Neuron fires if no inputs are on Neuron fires when X+ is on AND X»

NOot on

19



Rosenblatt’s Perceptron o,

 Added a learning rule, allowing it
to learn any binary classification
problem with linear seperability

I out(t)

* Very similar to McCulloch & Pitts’,
but with some key differences:

Algorithm 1: Perceptron Learning Algorithm

" . b Input: Training examples {x;, y; }™ ,.
° A bIaS term IS added [nitialize w and & randomly.

while noi1 converged do

not on the exam
# # # Loop through the examples.

 Weights w. aren’t only for j = 1,m do
l # # # Compare the true label and the prediction.
1,1} b b | har i
E { 2 } Ut Can e any rea ### 1f the model wrongly predicts the class. we update the weights and bias.
number if error /= 0 then

### Update the weights.
W =W+

#i## Update the bias.

* Weights (and bias) are updated | | S
based on error | Test for convergence

Output: Set of weights w and bias b for the perceptron.

20
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Limitations of linear separability

AND OR XOR

® [Nhe perceptron can learn any linearly Gy b v A
separable problem @

e BSut not all problems are lineary
separable

® -\/en a single mislabeled data point in the g g "
data will throw the algorithm into chaos

o nter the XOR problem and Minsky &

Mislabeled point

Parpert (1969) critique
. . ¢
® Argument: because a single neuron Is o !
Jnable to solve XOR, larger networks — £]s ° ¢. N X
will also have similar problems ,
ty
® [herefore, the research program 5]

S

Nould e aropped

21
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Multilayer Perceptrons

® \/ Ps are feedforward networks with

(multiple) hidden layers, where we apply
the same activation function at each layer

® A single hidden layer allows us to solve

XOR

® \ore generally, ML
decision boundary
avers

-s can leam any abitrary
oy adding more hidden

® [raining via gradient descent ano

packpropogation

I out(t)

r ° "
(D

wo(t) = 6

Hidden Layer Output

Layer
Input #1 — /
Input #2 — %‘%"‘

22



The 1st Al winter and the rise of symbolic Al

® After the disappointment of early
neural networks, there was a brief
DOOM Perod of “expert systems”

using symbolic Al

® | mitations of ex

caused a 2nd A

ended with modem ac
pattermn recognition and deep
networks (i.e., machine

neura
leamning)

winte

Dert systems

~which

VanCces N

First wave of excitement

First neural networks and perceptrons
written, first attempts at machine
translation.

The U.S. Defense Advanced Research
Projects Agency (DARPA) funds Al
research with few requirements for
delivering functioning products
throughout the 1960s.

1974-1980

First Al winter

Limited applicability of Al leads to funding
pullback in the U.S. and abroad.

1969: Researchers Marvin Minsky and Seymour
Papert published Perceptrons, an influential
book pointing out the ways early neural
networks failed to live up to expectations.

1970-1974: DARPA cut its funding as enthusiasm
wore thin.

1974: The Lighthill report, compiled by
researcher James Lighthill for the British
Science Research Council, stated: “In no part
of the field [of Al] have the discoveries made
so far produced the major impact that was

. then promised.”

Renewed Al
excitement

Expert systems emerge
representing human
decisions in if-then form.
Funding picks up.

Slow but
steady progress

Computation power
increases, big data
provides training data,
algorithms improve.

1987-1994

Second Al winter

Limitations of if-then reasoning become more
apparent.

1987: Market for Lisp machines (specialty
hardware for running Al applications) collapses.

1987: DARPA again cuts funding for Al research.

1990: Expert systems, an attempt to replicate
human reasoning through a series of if-then
rules, failed. The software proved hard to
maintain and couldn’t handle novel information,
resulting in a cutback in Al development.

1991: Japanese Ministry of International Trade
and Industry’s Fifth Generation Computer
project failed to deliver on goals of holding
conversations, interpreting images and
achieving humanlike reasoning.



Symbolic Al

® Physical Symbol System hypothesis.

A physical symbol system has the necessary and sufficient means for gemera/
intelligent action - Allen Newell and Herbert Simon (1976)”

® Symbols can represent anything in the world

® cg

y

Sagels), (ChatGG

2T), (Charley), etc. ..

® Relations can be a predicate that describes a symbol or veros describing
NOW Sympols Interact with other symiols

® toasted(Bagel)

e cat(Charley, Bagel)

® By populating a knowledge base with symbols and relations, we can use a
orogram to find new propositions (nference)

24



Symbolic vs. sub-symbolic Al o
A =>B (“A implies B”)

Symbolic models

® Symbols, rules, and structured representations

® cxpress logical operat

e Compositionality: symbols and rules can e combined to

oroduce new representations

Sub-symbolic models

® Necura
welgnt

o N\

® [he rise of deep leaming takes advantage of the scalability of

q
e Knowledge can be implicitly learned by capturing statistical
pattems

0 exp

Cit representation o

stribu

ONS

networks encoding information through connection
S

- concepts or knowledge, but

ed throughout the

etwork

sSupsyMpolic leaming mechanisms

apple

origin structure
/ SN
apple tree body stem
d
/ shape size color taste
‘ / f [\ N\

round hand

X=1 ifw,A+w
w,=-1
X=0 otherwise
w,=1
)

1.11 321/
- 2.18

red green apple

apple

012

022 472>

D )

432 089 \134

D © 00 O

345
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Hybrid systems: Neurosymbolic Al

® Symbolic and subsymbolic
approacnes can operate togetner e world
to get the best of both worlds

Human question

® Subsymbolic neural networks cgn - el angusse
e used to extract symbolic
representations

® \odem Al assistants (e.qg., Sir1,
Google, Alexa) are essentially
expert systems with voice

recognition and text-to-speecnh
added on

26



Modern Machine Learning

f

MACHINE LEARNING

.

4 D

SUPERVISED

5

CLASSIFICATION

LEARNING

Develop predictive
model based on both
input and output data

. J

& ™
UNSUPERVISED

data based only

.

\

J

LEARNING
Group and interpret ﬁ

REGRESSION

on input data

CLUSTERING

27



Variable 1

Variable 1

Supervised vs. unsupervised learning

Supervised

Variable 2

Variable 1

Variable 1

Unsupervised

Variable 2




Variable 1

Variable 1

Supervised vs. unsupervised learning

Supervised

Variable 2

M I—PS Discriminative

. o
Decision trees .»° °_
and random \': s
forests * %" o
SVMs

Variable 1

Variable 1

Unsupervised

Variable 2




Variable 1

Variable 1
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Supervised vs. unsupervised learning
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Variable 1

Variable 1

Supervised vs. unsupervised learning

Supervised

Variable 2

Learn decision boundary

MLPs

Decision trees  »° °

and random
forests

SVMs

Nalve Bayes

Discriminative

Generative

Learn data distribution

k-Means

GMMs
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Variable 1

Unsupervised
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Learning concepts

b Rule-based

a Classification task

Previous Experiences

Concept Learning

/

\ Sandwich?

Sandwich!

1

N

Flatness

-

X Sandwich

O Not sandwich
? Query

— Rule

Bread Enclosure

c Similarity-based

Flathess

X Sandwich

O Not sandwich

? Query .
<> Similarity T

Bread Enclosure

Concepts are mental representations of categories in the world

d

Flatness

Hybrid

X Sandwich
? Query

— Hypothesis

?

Likelihood
1

Bread Enclosure

Classical view used rules to describe the necessary and sufficient conditions for category membership

NMore psychological approaches used similarity, compared to a learned prototypes or past exemplars

Sayesian concept

consistent with sir

eaming i1s a hybrid approacn, that uses distributions over rules, and recreating patterns
larity-pased approaches

29



Bayesian Concept Learning

* Uses a distribution over rule-like hypotheses,
and produces similarity-like generalization
gradients

X Data point

* The probabillity of y being in the same P ‘1h)

category of x is thus based on summing over £

all hypotheses consistent with the data g

o

h)p(h) 8

p(y € Clx) = 2 p(hlx). where p(hlx) = pelh)pty é
h:yeh p(?C)

 Where narrower hypotheses are favored under
strong sampling (Bayesian Size Principle)

BMI

1 .
p(x\h) ={ Al if x € hj [strong sampling], Tenenbaum (NIPS 1999)
0 otherwise Tenenbaum & Griffiths (BBS 2001)

30



Bayesian Concept Learning Subsumes Tversky’s
Contrast Model

X Data point

p(h)

Blood Pressure

Contrast model Bayesian concept learning
Slyx) =0f (YN X) —af(Y—X) = BfFIX—=V), plyeClx)= Y p(hlx).
h:yeh

Ratio model (alternative form)

h .
S(y,x) = 1/[1+ of (Y - X)+Bf (X - y] (equivalent when a=0 and [/=1) :1/[1 | Zh’xeh»yfhp( ) |

fiYynx)

31



Bayesian Concept Learning Extends Shepard’s
Law of Generalization to Multiple Examples

1 [~ 1.00+4 ;
Shepard’s
piye CLX) g 075° GGeneralization
i Gradient
0 { I N—— - 1 I & L ] T —— '© 0.501
0 10 20 30 40 50 60 70 80 90 100 &
1 - O 254
0.00 4
piye CI1X) ——
’/ \ Psychological Distance
0 | e—— | | @ ') 1 e ——)
0 10 20 30 40 50 60 70 80 90 100
1
p(y€ Cl1 X)) J —\’\‘
0 | L | | |
0 10 20 30 40 50 60 70 80 90 100
1 —
0 1 1 1 | 1 m 1 1 | )|
0 10 20 30 40 50 60 70 80 a0 100

Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, . = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples.
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prior, . = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples. 30



Learning functions

e Regression task
Spiciness Enjoyment

Function Learning

f

Enjoyment

Rule-based

® Observation
= Linear prediction

= Polynomial prediction
? Query

Spiciness

9

Enjoyment

Similarity-based
® (Observation
— Prediction

<«» Similarity
? Query

Spiciness

h

Enjoyment

Hybrid

® Observation ? Query ?
— Hypothesis

— Expectation
Uncertainty

Spiciness

33



Learning functions

e Regression task f Rule-based g Similarity-based h Hybrid

O) Spiciness Enjoyment LO.bservanon. : ? * Obsgrvgtion ? ® Observation ? Query ?
(- Linear prediction | — Prediction . — Hypothesis
E ________ : Polynomial prediction «» Similarity : — Expectation
E = Query ? Query : | Uncertainty
q) - : PY "E ' & =

) O )
— el L A5 A4 e = e

> > >
- 9 9 Q,
O T 5 5
e
O
-
D)
LL ?

Spiciness Spiciness Spiciness

* Rules describe an explicit parametric family of candidate functions (e.g., linear or polynomial)
(Carroll, 1963; Brehmer, 1976)

* Similarity uses the generic principle that similar inputs produce similar outputs (often learned using

ANNSs) as the basis of generalization
(McClelland et al., 1986; Busemeyer et al., 1997)

* Hybrids combine elements of both: Gaussian process (GP) regression uses kernel similarity to learn a

distribution over functions, and can compositionally combine kernels like we can combine multiple rules
(Rasmussen & Williams, 2005; Mercer, PhilTransRoySoc 1909; Lucas et al., PBR 2015)
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Value function approximation in RL

® \/alue function approximation is a key method for
generalization in RL

e se function leaming mechanisms for inferring implicit
value of novel states: V(s') = f(s')

® [mplement a policy on the basis of value:
7(s’) & exp(V(s'))

e AlphaGo uses a deep neural network for value function
approximation

Silver et al., (Nature 2016)
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Value function approximation in RL

® \/alue function approximation is a key method for
generalization in RL

Value network

v, (S)
(o

e se function leaming mechanisms for inferring implicit
value of novel states: V(s') = f(s')

® [mplement a policy on the basis of value:
7(s’) & exp(V(s'))

e AlphaGo uses a deep neural network for value function
approximation

Silver et al., (Nature 2016)
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Spatially Correlated Bandit

33

Wu et al., (Nature Human Behaviour 2018)

{bclick tiles on the grid
maximize reward

Ij_\ each tile has normally
distributed rewards

m limited search horizon

, nearby tiles have
similar rewards
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Wu et al., (Nature Human Behaviour 2018)

{bclick tiles on the grid
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distributed rewards

m limited search horizon

, nearby tiles have
similar rewards
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Spatlally Correlated Bandit

44 | 38

Wu et al.,

36

40

40

37

39

27

14

17

33

40

17

15

28

26

18

27

29

20

27

30

23

28

40

38

39

31

35

41

7 10|22 |32 | 32 |28 | 24 | 22 | 26 | 33
6 [11|19 29|38 |41 |42 |40|37 | 36|40
22 |27 |30 | 35 | 43

(Nature Human Behaviour 2018)

@CHCK tiles on the grid

‘ maximize reward

Ij_\ each tile has normally
distributed rewards

E49 limited search horizon

, nearby tiles have
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Pavlovian (classical)
conditioning

hm

Learn which environmental cues predict reward

Operant (instrumental)
conditioning

Learn which actions predict reward
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Pavlovian (classical)

conditioning
\u‘h\“ ‘% % \

Learn which environmental cues predict reward

Neuro-

Reinforcement \\
Learnmg n\,wf

nd Joncdrew G, Barto
/ y

Relnforcement
Learning

|

dynamic programing

Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

Operant (instrumental)
conditioning

Learn which actions predict reward
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Reinforcement Learning

States

Environment

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

Actions




Temporal Difference Error and Dopamine
neurons:

Do dopamine neurons report an error
in the prediction of reward?

No prediction
Reward occurs

RL enables to quantify prediction mechanisms:
e In behavioural science
® |n neuroscience

Reward predicted
Reward occurs

® In psychiatry

® And of course in Al!

Reward predicted
No reward occurs

Schultz, Dayan, Montague, 1997



Discount factor and impulsivity:

RL parameters enables the characterization of populations or environments
® Discount factor characterizes impulsivity / myopia

® [earning rate characterizes volatility
® ...

$100 2000

s90 £ \ {} Control

580 I \
o
L

5
o

$70 4% \

W
)
S
2
/

2
o

. \ Low
S50 - : hT% ¢ Impulsivity

sap { * ~

... High ~ o .
530 1 '-.<: Impulsivity T s

$20 -

Discounted Value ($)

&
o

Subjective Value ($)

S10 -

7T 7

L} L) L) L] L] L L]
C 50 100 150 200 250 300 350 0 20 40 60 80 100 120

Delay (months)

Mok, Jenkin NY, et al. Journal of Cognitive Neuroscience. (2021)



Model-based vs model-free mechanisms

Model-based agent: Model-free agent:

Experience

[Learns/

is given /
Transitions across states
Rewards of states
Value function
Plans Policy

Learns




Model-based vs model-free mechanisms

Comparing behaviors/ brain region activity to model-based / model-free agents enables us to:
® assess how omniscient humans and animals are about a situation
e quantify the breadth of planning

Key example: the 2-steps task (Daw, et al. Neuron, 2011):
(a)




Facing biological constrains

2-steps task (Daw, ef al. Neuron, 2011):

Comparing behaviors to model-based / model-free agents enables us to:

e quantify biological computational constrains
e quantify mechanisms of arbitration between the two

Humans are in between...

(a) reinforcement (b) model-based (c) data
1 : _
M common
Mrare
=
5
3
e 0jslI_.. l I I '
Q.
o
wn

0.5
rewarded unrewarded rewarded unrewarded rewarded unrewarded



Goal-directed Habit system

Uncovering mechanisms of habit
formation

Sensorimotor

Comparing neural activity and behaviors to model-based / model- crix

free agents enables us to:

¢ track emergence of habits

e quantify mechanisms of arbitration between the two and their
neurological gating

Associative
crtx

(A) (B)
Model-based

Model-free

Model-free | Model-based I

Action Action

Lingawi, Dezfouli, and Balleine. The Wiley handbook on the cognitive neuroscience of |



Uncovering mechanisms of prediction

Comparing neural activity and behaviors to an SR-based agent:
® maps timescales of predictions in the brain

Data- place f1e1d SR- place field
(Alvernhe et al., Eur. |. Neurosci.,2011)
Near

J‘.‘ .~*‘.

. Near

Stachenfeld, Botvinick and Gershman, Nat. Neu ., 2017

i
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Quantifying flexibility from change

® is omniscient, can adapt to any change
Model-based L . P Y 5
® planning is expensive

e can adapt better to changes that are

, consistent with long-term predictions

Successor representation L , ,
¢ planning is cheap(er): jumps to likely

future states

Flexibility

very slowly /if adapts to changes

¢ Model-free
very cheap: only one cached value for prediction e

Etficiency

Lingawi, Dezfouli, and Balleine. The Wiley handbook on the cognitive neuroscience of learning (2016)



Quantifying randomness, moderating
exploration/exploitation

Fitting exploration parameters/ terms enables us to:
® quantify degree of randomness
e quantify directed exploration

€ - greedy policy:

o 7(s,a;) = maxQ(s,a;) with probability 1- &

@j

e 7(S,a;) = Random with probability &

eXp(ﬂQ(S7 aj)) |
Zk 1 €XP (ﬁQ(Sa ak))

m(s,a;) =



Quantifying replay/ offline learning

Comparing offline neural activity / replay behaviors (text, audio reports, dreams) to Dyna agent helps
unravel and quantify the needs and gains for/from replay

a c Open field Linear track

= :
O O 1, -~ (& I I
b S@aE B L2 T N <)
R - i NG ) T o
od X &/~ -
b (s). d
Actions @ f S — No replay
— Random replay
Stales
O O 0L T 17 — Priorilized replay

Number ol
steps to reward
o
o

s‘,.' i
Bellman backup: ak,,,'i}'§\\ ol ' . : : S S ' . :
Q(s,. a) «r+yV(s) (.,Ifk y ) 5 0 10 20 0 10 20
' L

Episode Episode
Gain term Need term
e Small or no Large &
effect on policy effect on policy

- A W oy
Low gain val High gain 3
/ \ £
3
- [ |

- o

Value
f Optimal actlion Nonoptimal aclion(s)
Q< Qsecand-be;.': !" Q< Qaem ?_;\
| ! 1= Greedy 35
_ i i ’/ -p=20 g-
1= : L A A-p=10 2
@] - ’ = 5 @
N | | i e=2
oL——= >t =1 p=1

0 0
Change in QlIrom backup  Change in Q from backug

Mattar and Daw. Nature. (2018)



Summary RL: quantifying mechanisms of learning
and decision making

Value/Q-learning: formalizes operant and pavlovian conditioning

Policy gradient: formalizes ‘repeat bias’ /‘win-stay’ behaviors

Actor-critic: investigates boundary /interplay between values and actions

Actor-critic VS policy gradient: to study value representation and action selection

Deep Q-learning: transfer learning across states - large states and action spaces - generalization -
mechanisms of layer processing in the brain

Hierarchical RL: investigates how we break-out tasks
Model-based: how we plan ahead

Model-free vs model-based and their interplay: how sensitive one is to a specific experience/ how
structural is the knowledge/ limitations of both

SR: prediction: how far in the future do we plan ahead? How far in the past do we integrate
information from? What is the relationship between timescale of prediction and precision of
prediction?

Dyna: how replay influences performance/learning & how experience influences replay



Summary RL: Science of learning to make decisions
from interaction with the environment

Computer
Science

A broad investigation of behaviour, learning and
prediction

® Reward-related prediction

® Transition-related prediction

® State representation and generalization

e Action representation and generalization

® Experience-modulated learning

Neuroscience

Engineering

Interplay between neuroscience, behavior, cognitive

science, machine learning, robotics:

e all of those approaches enable to study behaviors

e they also improve from neurosciences advances
in particular, we need more flexible agents!

Psychology



Dimensionality reduction

Manifold:

e Can capture task-relevant dimensions of neural
activities - practical for dimension reduction

¢ Comparing those dimension and the stability of the
dynamics using modeling enables to shed light on
neural computations

¢ Embedding useful task-related dynamics within neural
network can help perform tasks

Firing rate 3




Representation similarity analysis

silhouette image

Can capture representational and functional marker of a
brain region/ model by looking at its pattern of activity
correlations
RDMs capture how different do their react to stimuli/
experimental conditions
Can be used to compare to models and or other brain
regions:

With models, it gives information on the encoding of the

luminance image luminance image
(high-pass)

- -

(Lab)

animate-inanimate

. face-animate- :
reglon face-nonface S et o left FF A | right FFA

With brain regions, it can be used to infer connectivity
between brain regions

[t can be used to infer/design clever connecting weights
in RNNSs

left PPA

[percentie)

dissimilarity




Chomsky: Universal Grammar (UG)

e Plato’s problem (Chomsky, 1980): "How comes it that human beings, whose

contacts with the world are brief and personal and limited, are nevertneless able to know
as much as they do know"?”

® | anguage acquisition in children suggests they “attain infinitely more than they
experience’

® Poverty of the stimulus: it seems like there is a disparity between the amount of input
([experience) and the output (acquired langauge)

® [hus, there Is a missing factor and that factor is UG:
‘the system of cateqories, mechanisms, and constraints that shared by all human
lanquages and considered to be innate’

e Output (language ability) # input (experience)
® [herefore, language = UG + Input
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Landauer & Dumais (1997)

Solving Plato’s Problem with Latent Semantic Analysis (LSA)

® Simple idea: Represent the meaning of woras Y ]Te’“ samp:e (context) I
based on the company they keep i = CEEECARACEE CER
: C : XXXXX?...XXXXXX
e Input: a matrix (A) containing counts of which TTT
words occur in which contexts (1.e., texts)
® Process. matrix factorization using singular value . | X[ x| X[ x| X[ |-~ [x]x[x]x[x] x
decomposition (S\/D) 60,000 |x|x|x|x|{xIx].].]. [xIx|x{x|x| x
e Outputs. Factor
B (dimension) Fact
e \\ord vectors (B) and Context vectors (C) Word/ [I[.1.[.1300] . (dimension)
| | | 1 yl.|.].[ ¥ Sample/ [1].].].1300
e Both are mapped to the same high-dimensional . Ty 1 ARRE
atent space (300 dims) alh . :
® [he distance between word vectors captures | - 2|.|.|-]
T . . \ y|. y 30,000 |z|.[|.]|.] z
similarity, which can be used to generalize 60,000 Iy .11y
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context window

contextword

contextword targetword

i like natural

royal

king female queen
royal
man female
A
Woman

: - T Man
Queen |

"M King

Semantic
Relationship

language processing

i|like natural language |processing

| like| naturallanguage processing

i like natural

woman

Big

language processing

A
' Biggest
"'.17
% Smallest
.".1 =
Small |~
>
Syntactic
Relationship

Word2vec, RNNs, and LSTMs

RNNs

(W1 | s




Vaswani et al., (2017)

Self-attention in Transformer Networks

Attention(Q, K, V) = softmax Q V!

® Sclf-attention captures relationships between different

words/tokens in a sequence, capturing contextual

iNformation and complex dependencies

e Each input is mapped to Query, Key, and Value

ayers)

representations through linear operations (fully connecteo

® Analogous to information retrieval (e.g., searching for

viIdeos on youtupe): the search

N search bar) 1o keys (video tit
With each candidate, and then

matches (values)

engine maps query (text

e/description) associatec
oresents us with a set of

e OK' produces a score, which is then put through a
softmax to weight the relative importance of each word for

each other woro

e This is then multipled against Value representations to
generate a contextualized representation of the text
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175B parameters

What are LLMs? ]

% 117M § GPT_Z

<
- =T
N GPT-1

512 token size

® Sclf-attention mechanism used in massively hierarchical architecture of
transformers networks

® Context window prediction (similar to word2vec)
® \/arious forms of training

® Unsupervised text prediction

® Supervised training on labeled data

]

® Reinforcement leaming from human feedback (RLH
® [n-context learning and prompt engineering
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How well have we answered these original questions?

o\/\\hat Is learmning’

o\\/nat aspects of learning are the same across biological and artificia
systems”? What is different’/

o\\/nat has the stuady of biological intelligence iNnformed us avout artificial
systems”/

o\\\hat can artificial intelllgence teach us about biological intelligence’?
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What is learning?

-orming expectations about the environment anad updating througn prediction error
([delta-rule)

® Reward: Rescorla-\Wagner, RL, and ANNS via gradient descent
e State transitions: Model-based RL and Successor Representation

Generalization from local to global patterns

® Concepts and rule leaming, value function approximation, latent semantic
analysis

Combination of different systems
® Napit and planning

® SyMPOliC and subsymMoolic

® rules and similarity
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What aspects of learning are the same  What is different?
across biological and artificial

systems?
® (Seneralization mechanisms e Amount of training data and
® Structured hypotheses computational power
® hicrarchical organization ® (General Intelligence (still missing
® concept boundaries/functional AG_D
relationships ® Hlexibility in a variety of real-world
environments

® —Unctional separation | |
® Social, pedagogical, and cultura

leaming

® Different mechanisms focusing on
different subproblems (e.g., value
function and policy)

® Siological aevelopment



What has the study of biological intelligence informed us about artificial systems?

~rediction-error leaming
L anguage of Thought (LoT) and symbolic representations

Representations of the environment (Tolman)

Combining different learning systems

® Hules and similarity

® Habits and planning
e Symbolic and subsymbolic
e Across different timescales and hierarchies (e.g., subgoals)

® Poverty of the stmulus
® How humans learn so much from so little: infinite use of finite means (A. Humloldt)
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What can artificial intelligence teach us about biological intelligence?

® Precise computational specification of verbal/conceptual theories
® \Vih testable outcomes via simulations

e ApIlity to address normative guestions
e \/\\hich learming systems work well in which situations'?
® And why do they fail”/

® Resolutions to debates through model comparison

® Access to learned representations that are difficult to study in living brains
® c.g., analyzing weights of ANNS

® ajllures of Al to capture human behavior point towards promising research
directions



Tutorial tomorrow

 Exam preparation
* Bring in 2-3 candidate exam questions
e Short answer gquestions

* You are incentivized to bring plausible questions that would be sufficiently
challenging, thought provoking, and feasible

 Good questions will be included on the exam
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