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Exam
• Combination of multiple choice and short answer questions 

• No complex calculations are needed 
• No need to memorize formulas or dates 
• Focus is on understanding the main theoretical ideas and how they connect together across 

fields 
• Thursday July 27th, 10:30-12:00  

• same room/time as the lecture 
• Bring pens/pencils 
• Register on ALMA if possible, otherwise we can enter the grades manually if your study 

program doesn’t allow it 
• Second taking is scheduled for Oct 12, 10:30-12:00 

• Please contact us if you are interested in taking it by Oct 1st
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Revisiting our original questions
•What is learning? 
•What aspects of learning are the same across biological and artificial 
systems? What is different? 

•What has the study of biological intelligence informed us about artificial 
systems? 

•What can artificial intelligence teach us about biological intelligence?
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Foundations of Biological Learning
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A brief timeline of early research on biological learning
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Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)



Thorndike’s Laws 
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Puzzle Box Time to escape

Law of Effect Law of Exercise



Thorndike’s Laws 
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Cat Puzzle Box Time to escape

Actions associated with 
satisfaction are 
strengthened, while those 
associated with discomfort 
become weakened. 

Law of Effect Law of Exercise
Independent of success, exercising 

connection between stimulus and 
response strengthens the association 
(i.e., habits)



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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https://www.youtube.com/watch?v=_qLs2K4UXXk
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• Each are verbal theories, describing a 
pattern of behavioral phenomenon 
• Thorndike: successful actions get 

strengthened 
• Pavlov: resonse to US get transferred to 

CS 
• Skinner: conditioning not only applies to 

responses, but also actions/behavior

Thorndike

Skinner

Pavlov

What is the relationship between Thorndike, 
Pavlovian condition, and Operant condition?



Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)
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Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted 
outcome

Observed 
outcome

Learning 
rate

δ

{

Reward prediction error (RPE)The delta-rule of learning: 

• Learning occurs only when events violate expectations ( )

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0
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From Rescorla-Wagner to Q-learning
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Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck
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From Rescorla-Wagner to Q-learning
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̂rt = ∑
i

CSt
iwi Reward estimate Q(st, at)

wi ← wi + η(rt − ̂rt) Q(st, at) ← Q(st, at) + η[r − Q(st, at)]Prediction error 
learning

Behavioral  
policy π(at |st) ∝ exp(Q(st, at)/τ)?

Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Q-learning 
(Watkins, 1989)

st

at = peck



Tolman and Cognitive maps
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• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning



Latent Learning
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• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch

(lo
w

er
 is

 b
et

te
r)



Latent Learning

12

• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch

(lo
w

er
 is

 b
et

te
r)

Food added



Latent Learning

12

• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch

(lo
w

er
 is

 b
et

te
r)

Food added

Food added



Place cells in the hippocampus represent location in an environment
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Wilson Lab (MIT)John O’Keefe 
Nobel Prize in Physiology or Medicine 2014

https://www.youtube.com/watch?v=lfNVv0A8QvI


Place cells in the hippocampus represent location in an environment

13

Wilson Lab (MIT)John O’Keefe 
Nobel Prize in Physiology or Medicine 2014

https://www.youtube.com/watch?v=lfNVv0A8QvI


Grid cells in the Entorhinal Cortex provide a coordinate system
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Firing Rate

High

Low

Trajectory
Peaks

+ Peak

Hafting et al (Nature, 2005)

Edvard and Maj-Britt Moser 
Nobel Prize in Physiology or 
Medicine 2014
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Origins of Artificial Learning



Timeline of early Artificial Neural Networks
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AI Winter

Timeline of early Artificial Neural Networks
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McCulloch & Pitts (1943)
• First computational model of a neuron 

• The dendritic inputs  
provide the input signal 

• The cell body processes the signal 
 

  

• The axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

17

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts



McCulloch & Pitts (1943)
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θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the 
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

1



McCulloch & Pitts (1943)
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θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

f(x) = {1 if∑ wixi ≥ θ
0 else

Neuron fires when x1 is on AND x2 
not on

1

w1 = 1

w2 = − 1

wi ∈ {−1,1}

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {−1,1}



Rosenblatt’s Perceptron
• Added a learning rule, allowing it 

to learn any binary classification 
problem with linear seperability


• Very similar to McCulloch & Pitts’, 
but with some key differences:


• A bias term is added 


• Weights  aren’t only 
 but can be any real 

number


• Weights (and bias) are updated 
based on error

b

wi
∈ {−1,1}

20
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Limitations of linear separability
• The perceptron can learn any linearly 

separable problem 
• But not all problems are lineary 

separable 
• Even a single mislabeled data point in the 

data will throw the algorithm into chaos 
• Enter the XOR problem and Minsky & 

Parpert (1969) critique 
• Argument: because a single neuron is 

unable to solve XOR, larger networks 
will also have similar problems 

• Therefore, the research program 
should be dropped

21

Adrian Rosebrock 
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Multilayer Perceptrons
• MLPs are feedforward networks with 

(multiple) hidden layers, where we apply 
the same activation function at each layer 
• A single hidden layer allows us to solve 

XOR  
• More generally, MLPs can learn any abitrary 

decision boundary by adding more hidden 
layers 

• Training via gradient descent and 
backpropogation

22



The 1st AI winter and the rise of symbolic AI
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• After the disappointment of early 
neural networks, there was a brief 
boom period of “expert systems” 
using symbolic AI 

• Limitations of expert systems 
caused a 2nd AI winter, which 
ended with modern advances in 
pattern recognition and deep 
neural networks (i.e., machine 
learning)



Symbolic AI
• Physical Symbol System hypothesis:  

“A physical symbol system has the necessary and sufficient means for general 
intelligent action -  Allen Newell and Herbert Simon (1976)” 
• Symbols can represent anything in the world 

• e.g., (Bagels), (ChatGPT), (Charley), etc…  
• Relations can be a predicate that describes a symbol or verbs describing 

how symbols interact with other symbols 
• toasted(Bagel) 
• eat(Charley, Bagel) 

• By populating a knowledge base with symbols and relations, we can use a 
program to find new propositions (inference)
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Symbolic vs. sub-symbolic AI
Symbolic models 

• Symbols, rules, and structured representations 
• express logical operations 

• Compositionality: symbols and rules can be combined to 
produce new representations  

Sub-symbolic models 
• Neural networks encoding information through connection 

weights 
• No explicit representation of concepts or knowledge, but 

distributed throughout the network 
• Knowledge can be implicitly learned by capturing statistical 

patterns 
• The rise of deep learning takes advantage of the scalability of 

subsymbolic learning mechanisms
25



Hybrid systems: Neurosymbolic AI
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• Symbolic and subsymbolic 
approaches can operate together 
to get the best of both worlds 

• Subsymbolic neural networks can 
be used to extract symbolic 
representations 

• Modern AI assistants (e.g., Siri, 
Google, Alexa) are essentially 
expert systems with voice 
recognition and text-to-speech 
added on



Modern Machine Learning
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Supervised Unsupervised

Supervised vs. unsupervised learning
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Supervised Unsupervised

Supervised vs. unsupervised learning

MLPs

Decision trees  
and random 
forests

SVMs

k-Means

GMMs

Naïve Bayes

Learn decision boundary Learn data distribution



Learning concepts
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• Concepts are mental representations of categories in the world 

• Classical view used rules to describe the necessary and sufficient conditions for category membership 

• More psychological approaches used similarity, compared to a learned prototypes or past exemplars 

• Bayesian concept learning is a hybrid approach, that uses distributions over rules, and recreating patterns 
consistent with similarity-based approaches



• Uses a distribution over rule-like hypotheses, 
and produces similarity-like generalization 
gradients


• The probability of y being in the same 
category of x is thus based on summing over 
all hypotheses consistent with the data 
 
 

• Where narrower hypotheses are favored under 
strong sampling (Bayesian Size Principle) 

Bayesian Concept Learning
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Bayesian Concept Learning Subsumes Tversky’s 
Contrast Model

31

Ratio model (alternative form)

Contrast model Bayesian concept learning

(equivalent when =0 and =1)α β

𝒳 ∩ 𝒴𝒳 − 𝒴 𝒴 − 𝒳



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

32

Shepard’s 
Generalization 
Gradient



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

32

Range of generalization 
decreases with more 
examples

more examples = less 
uncertainty about the 
extent of consequential 
region

Shepard’s 
Generalization 
Gradient



Learning functions
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• Rules describe an explicit parametric family of candidate functions (e.g., linear or polynomial) 
(Carroll, 1963; Brehmer, 1976)

• Similarity uses the generic principle that similar inputs produce similar outputs (often learned using 
ANNs) as the basis of generalization 
(McClelland et al., 1986; Busemeyer et al., 1997)

• Hybrids combine elements of both: Gaussian process (GP) regression uses kernel similarity to learn a 
distribution over functions, and can compositionally combine kernels like we can combine multiple rules 
(Rasmussen & Williams, 2005; Mercer, PhilTransRoySoc 1909; Lucas et al., PBR 2015)



Value function approximation in RL
• Value function approximation is a key method for 

generalization in RL 

• Use function learning mechanisms for inferring implicit 
value of novel states:  

• Implement a policy on the basis of value: 
 

• AlphaGo uses a deep neural network for value function 
approximation

V(s′ ) = f(s′ )

π(s′ ) ∝ exp(V(s′ ))

34Silver et al., (Nature 2016)
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Wu et al., (Nature Human Behaviour 2018)

Spatially Correlated Bandit
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 maximize reward


 each tile has normally 
distributed rewards


 limited search horizon


nearby tiles have 
similar rewards 
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Smooth Rough

Wu et al., (Nature Human Behaviour 2018)

Spatially Correlated Bandit
click tiles on the grid

 maximize reward


 each tile has normally 
distributed rewards


 limited search horizon


nearby tiles have 
similar rewards 
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5 minute break
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Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward
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Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward
Reinforcement 

Learning

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 



Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

States Rewards 
Actions

Agent 

Environment 

st

st+dt

rt+dt

rt

at

Sutton and Barto. Reinforcement learning: An introduction. MIT press. (2018)

Reinforcement Learning 



Schultz, Dayan, Montague, 1997

Temporal Difference Error and Dopamine 
neurons:

RL enables to quantify prediction mechanisms: 
• In behavioural science 
• In neuroscience 
• In psychiatry 
• And of course in AI! 



Mok, Jenkin NY, et al. Journal of Cognitive Neuroscience. (2021)

Discount factor and impulsivity:
RL parameters enables the characterization of populations or environments 
• Discount factor characterizes impulsivity/myopia 
• Learning rate characterizes volatility 
• … 



Model-based vs model-free mechanisms 

Experience 

Value function
Policy 

Transitions across states
Rewards of states

Learns/ 
is given

Plans 

Learns

Model-based agent: Model-free agent:



Key example: the 2-steps task (Daw, et al. Neuron, 2011):

Model-based vs model-free mechanisms 
Comparing behaviors/ brain region activity to model-based/model-free agents enables us to:
• assess how omniscient humans and animals are about a situation 
• quantify the breadth of planning 



2-steps task (Daw, et al. Neuron, 2011):

Humans are in between…

Facing biological constrains 

Comparing behaviors to model-based/model-free agents enables us to:
• quantify biological computational constrains 
• quantify mechanisms of arbitration between the two 



Lingawi, Dezfouli, and Balleine.  The Wiley handbook on the cognitive neuroscience of learning (2016) 

Uncovering mechanisms of habit  
formation

Comparing neural activity and behaviors to model-based/model-
free agents enables us to:
• track emergence of habits 
• quantify mechanisms of arbitration between the two and their 

neurological gating 



Uncovering mechanisms of prediction

Comparing neural activity and behaviors to an SR-based agent: 
• maps timescales of predictions in the brain 

Data- place field
(Alvernhe et al., Eur. J. Neurosci.,2011) 

SR- place field  

Stachenfeld, Botvinick and Gershman, Nat. Neurosci., 2017



Lingawi, Dezfouli, and Balleine.  The Wiley handbook on the cognitive neuroscience of learning (2016) 

Efficiency 

Fl
ex

ib
ili

ty
Model-based 

Successor representation

Model-free

Quantifying flexibility from change

• is omniscient, can adapt to any change
• planning is expensive 

• can adapt better to changes that are 
consistent with long-term predictions

• planning is cheap(er): jumps to likely 
future states

very slowly/if adapts to changes
very cheap: only one cached value for prediction 

•  
•  



    - greedy policy:

• 

•   Random

 with probability 1-

 with probability

Quantifying randomness, moderating 
exploration/exploitation 
Fitting exploration parameters/ terms enables us to: 
• quantify degree of randomness  
• quantify directed exploration 



Mattar and Daw. Nature. (2018)

Quantifying replay/ offline learning 
Comparing offline neural activity/replay behaviors (text, audio reports, dreams) to Dyna agent helps 
unravel and quantify the needs and gains for/from replay 



• Value/Q-learning: formalizes operant and pavlovian conditioning 
• Policy gradient: formalizes ‘repeat bias’/‘win-stay’ behaviors 
• Actor-critic: investigates boundary/interplay between values and actions
• Actor-critic VS policy gradient: to study value representation and action selection 
• Deep Q-learning: transfer learning across states - large states and action spaces - generalization - 

mechanisms of layer processing in the brain 

• Hierarchical RL: investigates how we break-out tasks
• Model-based: how we plan ahead
• Model-free vs model-based and their interplay: how sensitive one is to a specific experience/ how 

structural is the knowledge/ limitations of both 

• SR: prediction: how far in the future do we plan ahead? How far in the past do we integrate 
information from? What is the relationship between timescale of prediction and precision of 
prediction?

• Dyna: how replay influences performance/learning & how experience influences replay 

Summary RL: quantifying mechanisms of learning 
and decision making 



A broad investigation of behaviour, learning and 
prediction 
• Reward-related prediction 
• Transition-related prediction 
• State representation and generalization 
• Action representation and generalization 
• Experience-modulated learning 

Interplay between neuroscience, behavior, cognitive 
science, machine learning, robotics: 
• all of those approaches enable to study behaviors 
• they also improve from neurosciences advances 

- in particular, we need more flexible agents! 

Summary RL: Science of learning to make decisions 
from interaction with the environment 

Engineering

Maths

Computer 
Science 

Neuroscience

Psychology 

Economics 

Operations 
research

Optimal 
control 

Machine 
Learning 

Reward 
system 

Classical/
Operant 

conditioning 

Bounded 
rationality

Reinforcement 
Learning 



Manifold: 
• Can capture task-relevant dimensions of neural 

activities - practical for dimension reduction 
• Comparing those dimension and the stability of the 

dynamics using modeling enables to shed light on 
neural computations 

• Embedding useful task-related dynamics within neural 
network can help perform tasks 

Dimensionality reduction 



• Can capture representational and functional marker of a 
brain region/model by looking at its pattern of activity 
correlations 

• RDMs capture how different do their react to stimuli/
experimental conditions 

• Can be used to compare to models and or other brain 
regions:

- With models, it gives information on the encoding of the 
region 

- With brain regions, it can be used to infer connectivity 
between brain regions

- It can be used to infer/design clever connecting weights 
in RNNs

Representation similarity analysis 



Chomsky: Universal Grammar (UG)
• Plato’s problem (Chomsky, 1986): “How comes it that human beings, whose 

contacts with the world are brief and personal and limited, are nevertheless able to know 
as much as they do know?” 
• Language acquisition in children suggests they “attain infinitely more than they 

experience”  
• Poverty of the stimulus: it seems like there is a disparity between the amount of input 

(experience) and the output (acquired langauge) 
• Thus, there is a missing factor and that factor is UG: 

“the system of categories, mechanisms, and constraints that shared by all human 
languages and considered to be innate” 

• Output (language ability) ≠ input (experience)  
• Therefore, language = UG + input 

54



• Simple idea: Represent the meaning of words 
based on the company they keep 

• Input: a matrix (A) containing counts of which 
words occur in which contexts (i.e., texts) 

• Process: matrix factorization using singular value 
decomposition (SVD) 

• Outputs: 
• Word vectors (B) and Context vectors (C)  
• Both are mapped to the same high-dimensional 

latent space (300 dims) 
• The distance between word vectors captures 

similarity, which can be used to generalize
55

Solving Plato’s Problem with Latent Semantic Analysis (LSA) 
Landauer & Dumais (1997)



Word2vec, RNNs, and LSTMs

56

context window
RNNs

LSTMs



Self-attention in Transformer Networks
• Self-attention captures relationships between different 

words/tokens in a sequence, capturing contextual 
information and complex dependencies 

• Each input is mapped to uery, ey, and alue 
representations through linear operations (fully connected 
layers) 
• Analogous to information retrieval (e.g., searching for 

videos on youtube): the search engine maps query (text 
in search bar) to keys (video title/description) associated 
with each candidate, and then presents us with a set of 
matches (values) 

•  produces a score, which is then put through a 
softmax to weight the relative importance of each word for 
each other word 

• This is then multipled against alue representations to 
generate a contextualized representation of the text

Q K V

QK⊤

V
57

Attention(Q, K, V) = softmax ( QK⊤

dk ) V⊤

Vaswani et al., (2017)



What are LLMs?

• Self-attention mechanism used in massively hierarchical architecture of 
transformers networks 

• Context window prediction (similar to word2vec) 
• Various forms of training 

• Unsupervised text prediction 
• Supervised training on labeled data 
• Reinforcement learning from human feedback (RLHF) 

• In-context learning and prompt engineering

58



How well have we answered these original questions?
•What is learning? 
•What aspects of learning are the same across biological and artificial 
systems? What is different? 

•What has the study of biological intelligence informed us about artificial 
systems? 

•What can artificial intelligence teach us about biological intelligence?

59



What is learning?
• Forming expectations about the environment and updating through prediction error 

(delta-rule) 
• Reward: Rescorla-Wagner, RL, and ANNs via gradient descent 
• State transitions: Model-based RL and Successor Representation 

• Generalization from local to global patterns 
• Concepts and rule learning, value function approximation, latent semantic 

analysis 
• Combination of different systems 

• habit and planning  
• symbolic and subsymbolic 
• rules and similarity

60



What aspects of learning are the same 
across biological and artificial 
systems? 

• Generalization mechanisms 
• Structured hypotheses 

• hierarchical organization 
• concept boundaries/functional 

relationships 
• Functional separation 

• Different mechanisms focusing on 
different subproblems (e.g., value 
function and policy)

61

What is different?

• Amount of training data and 
computational power 

• General Intelligence (still missing 
AGI) 
• Flexibility in a variety of real-world 

environments 
• Social, pedagogical, and cultural 

learning 
• Biological development



What has the study of biological intelligence informed us about artificial systems?

• Prediction-error learning 
• Language of Thought (LoT) and symbolic representations 
• Representations of the environment (Tolman) 
• Combining different learning systems 

• Rules and similarity 
• Habits and planning 
• Symbolic and subsymbolic 
• Across different timescales and hierarchies (e.g., subgoals) 

• Poverty of the stimulus 
• How humans learn so much from so little: infinite use of finite means (A. Humboldt)
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What can artificial intelligence teach us about biological intelligence?

• Precise computational specification of verbal/conceptual theories 
• with testable outcomes via simulations 

• Ability to address normative questions 
• Which learning systems work well in which situations? 
• And why do they fail? 

• Resolutions to debates through model comparison 
• Access to learned representations that are difficult to study in living brains 

• e.g., analyzing weights of ANNs  
• Failures of AI to capture human behavior point towards promising research 

directions
63



Tutorial tomorrow

64

• Exam preparation


• Bring in 2-3 candidate exam questions


• Short answer questions


• You are incentivized to bring plausible questions that would be sufficiently 
challenging, thought provoking, and feasible


• Good questions will be included on the exam


