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Some confusion from the last pop quiz

 According to Shepard, why does generalization occur?

* In Bayesian concept learning, what is the size principle?
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* In Bayesian concept learning, what is the size principle?
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The story so far...



Learning to behave

Reinforcement \\
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Symbolic vs. Subsymbolic Al

Subsymbolic Al
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Learning concepts and functions

5 a Classification task b
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Today’s agenda

® Plato’'s problem and the Poverty of the Stimulus argument
(Chomsky, 1980)

® | atent Semantic Analysis
(Landauer & Dumais , 1997)

® \/\lora2vec
(Mikolov et al,. 2013)

e RNN and LSTM language models
® | arge language models, transformers and selt-attention




Meno’s Paradox

Socrates

And how will you enquire, Socrates, into that which you do not
know? What will you put forth as the subject of enquiry? And
if you find what you want, how will you ever know that this Is
the th/ng Wh/Ch yOU d/d nOt knOW? “Meno” - Plato



Meno’s Paradox

Socrates Plato

And how will you enquire, Socrates, into that which you do not
know? What will you put forth as the subject of enquiry? And
if you find what you want, how will you ever know that this Is
the th/ng Wh/Ch yOU d/d nOt knOW? “Meno” - Plato

How can we learn what we don’t already know? How can we acquire new concepts?
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Is (some) knowledge innate?

Plato’s theory of anamnesis

® kKnowledge Is In the soul from etemnity

® the soul Is Immortal and repeatedly Incarmateo

® cach time knowledge Is forgotten in the trauma of birth

® \\/Nat
of wha

O

Demonstrateo
geometry prob

ne pe

L ONe

‘celves 10 be learning, then, Is the recovery
nas forgotten

Oy having a slave boy intuitively solving

ems he was Not INstructed In

® (just goes to show what kinds of theories you need to
develop to explain leaming without an account of

generalization!)
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Chomsky: Universal Grammar (UG)

e Plato’s problem (Chomsky, 1980): "How comes it that human beings, whose

contacts with the world are brief and personal and limited, are nevertneless able to know
as much as they do know"?”

® | anguage acquisition in children suggests they “attain infinitely more than they
experience’

® Poverty of the stimulus: it seems like there is a disparity between the amount of input
([experience) and the output (acquired langauge)

® [hus, there Is a missing factor and that factor is UG:
‘the system of cateqories, mechanisms, and constraints that shared by all human
lanquages and considered to be innate’

e Output (language ability) # input (experience)
® [herefore, language = UG + Input

12



Criticisms of Universal Grammar

e Universality of grammatical structure across languages is overstated

® Prana language lacks recursion, empbedded ¢
(Everett, 2005), which are commonly taken 1o

auses, qua
e universals

Ntifiers, and color terms

® Similarty-based generalization explains how children generalize beyond observed evidence

® | caming probabvilistic patterns rather than hard and fast rules (

VicDonald & Ramscar, 20071)
® ven without negative examples (explic

error learning ased on fallure of expec

(Ramscar & Yarlett, 2007)
® -volutionary argument

t INstruction of wha

atioNs serves as a-

orm of Imp

Distributional hypothesis;

(1S ungrammatical), prediction-

CIt feedback

® (Convergence across languages I1s not due to some innate universal structure in our
brains, but due to general processes/constraints of human cognition (fTomasello, 2008)
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Landauer & Dumais (1997)

Solving Plato’s Problem with Latent Semantic Analysis (LSA)

® [Focusing on semantic leaming (1.e., the

pbetween words)

® | andal
simple
DEeyoNC

® [)escr
DAseo

® Rc

OIese

e

er &

the aval

On

e the similarity
the contexts in which they occur

Nt semantics

meaning of words) rather than grammar
eaming (the relationa

structure or syntax

Dumais (1997) developed a very
method to model “induction” (reasoning
able evidence) In semantics

between Words

Using word

nedd
similarity

ngs (l.e., vec

0rs), where the

between words can be measured
Using cosine distance

A

Text sample (context)

Word/ |1f. 130,000
] x| x| x| x{ x| x|. . |. | x] x| X)X x] x
x| x| X[ x[x =] ] XX ] x
. X| x| x| x| x| x|. X| x| XIX| x| x
60,000 |x|x|x|x|x|x]. X| x| x{X| x| X
Factor
B (dimension) Factor
Word/ 1{.1.1. 1300 C (dimension)
| yl.|.].] Y Sample/ [1].].].1300
vi.|.|.] Y 1 AP E
als . v
s Z
. . : 1l |
: y|. y 30,000 |z|.[|.]|.] z
60,000 |y|. y
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LSA algorithm

® Simple idea: Represent the meaning of woras
based on the company they keep

e Input: a matrix (A) containing counts of which
words occur in which contexts (1.e., texts)

® Process. matrix factorization using singular value
decomposition (SVD; next slide)

e Outputs:
e \\ord vectors (B) and Context vectors (C)

® S0th are mapped to the same high-dimensional
atent space (300 dims)

® [Ne distance petween word vectors captures
similarity, which can be used to generalize

A Text sample (context)
Word/ [1f.|.][.[. .1.130,000
l x| x| x| x| x X[ X| X|X| X| X
x| x| [x[xT] xx] X %
Mals - |:
; X| x| x| x| x X| x| x|X| x| X
60,000 |x|x|x|x|x X! X| x[x| x| x
Factor
B (dimension) Factor
Word/ 11.1.1. 1300 C (dimension)
] yl.[.].] Y Sample/ |1[.[.].]300
vl.I.].] y 1 AP E
il : Z
Zhl oz
. : : il | &
. y. y 30,000 |z[.|.].| z
60,000 |[y]. y
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Singular Value Decomposition (SVD)

® SVD is a generalization of

elgende

composition (sguare matrix only) to

any rectangular matrix

® Dreak down the description of A into a

numer of components (i.e., basis

functions) based on the outer product of &

Uand V' g
e Components are weighted by the values in €

2., which is a diagonal matrix (Os except

for the diagonal)

® No unigque solution, but usually computed

througn

terative methods finding

orogressively better solutions until

convergence

e Jsing only the top K components, we get an

efficient

approximation

n Documents K

A=0UxV'

mxn

16
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Singular Value Decomposition (SVD)

A=0UxV'

® Dreak down the description of A into a n Documents K
functions) based on the outer product of
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® Components are weighted by the values In
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Singular Value Decomposition (SVD)

A=0UxV'

e Dbreak down the description of A into a n Documents K

e SVD is a generalization of
elgendecomposition (sguare matrix only) to
any rectangular matrix
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Using word vectors to model
semantic learning

® | ocal context of words predict long-
range generalization by using the
Cosine similarty between word vectors

® Synonym test: predicting which words
are Synonyms naseda on cosine
distance performed as well as foreign

students testing at Us colleges 72| numbers indicate
< o—12s | NUMber of training

samples with the
stem word

® Predicted learning rates comparable 1o
children (10-15 words per day during
ate elementary/high school)

3.8

Discrimination Ratio (z ord’ )
o
®

0.4 v— ey
0 10,000 20,000 30,000

Total Contexis



Using word vectors to model
semantic learning

L ocal context of words predict long-
range generalization by using the
Cosine similarty between word vectors

Synonym test: predicting which words
are Synonyms naseda on cosine
distance pertormed as well as foreign
students testing at US colleges

“redicted leaming rates comparable to
children (10-15 words per day during
ate elementary/high school)

similarity = cos(f) =

A B

|AlllB]

Item 2

Cosine Distance

Discrimination Ratio (z ord" )

14

1.21

1.0°

0.8

0.61J%

22.2

- 12.8

7.4

3.8

0.‘0 -

Total Contexis
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stem word
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Word2Vec

® sing neural networks to learm word vectors

(Mikolov et al., 2013)
® [\WO training methods

e Cumulative bag of words (CBOW):

oredicting the target word based on the context (g |

(Neighboring words)

e Skip-gram: predicting the context based on

the target word

® [terative move context window through training
text, and upadate network weights to minimize

orediction 0SS

® Same basic principle as LSA (local context), but

"icher geometric interp
nased on the need to

etat

Ored

oNs Of

ICt WO

WOrd vectors

ds

dog \

cats

Paris

woman

mother 4‘ bl
daughter fast P

France

himself

England longer
fastest
Italy she long
Londor/

herself
Rame

gurl slower
\\ father slow
son
Yy AN o slowest
W

longest

Input Projection

=N

%

CBOW

.

Input Projection
Pineapples
are
B —
and
yellow
Skip-gram

context word
contextword ta rget word ,,

context window

| like natural |language processing

i|like natural language |processing

| like| naturallanguage processing

i like natural |language processing
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Word2vec architecture

CBOW Architecture

""""

O

O OO |

Skip Gram Architecture

(Shze = 1%

Hidden Layer O
(size = 30¥))

.. 00|«

00O

O
O

1' QW1

OO0 | —

® One hot encoding of words

® \/\/ord vectors are just extracted from

the welight matrix

One Hot Encode (D e e p' L e a rni n g) One Hot Encode

Output Layer
(sizee = 10¥<)

o O
o o
Ow2 @

O :
O

!

- OO

OO

Weight Matrix

1st Word Vector
2nd Word Vector
3rd Word Vector

Last Word Vector
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Word2vec results

® Both semantic and syntactic
relationships

® Similar relationships exist on the
same nyperplane

® Reasoning about analogies can
Oe done through addition ano
suptraction

: 4 > > >
KInNg — man 4+ woman = gueen

® [ry out a demo here:
https.//rare-technologies.com/
word2vec-tutorial/#bonus_app

Queen |

e,
-

Big |

Biggest

.‘l"

Smallest%

R 775 Ssmall |~
¥
Semantic Syntactic
Relationship Relationship
king female queen
royal royal
man female woman
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Word2vec results ‘ ‘

o= = Biggest
e Both semantic and syntactic el T i P
relationships ™o smail”
® Similar relationships exist on the |
same hyp@rp\ aNe Relationship Relationship
® Reasoning about analogies can
Oe done through addition ano king female —
suptraction
female
— royal royal
king — man + ‘woman = queen ¢ g
® [ry out ademo here: - o oman
emadaie

https.//rare-technologies.com/
word2vec-tutorial/#bonus_app
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® Scalable and cheap to train

® cntire English Wikipedia
took 48 hrs on my laptop
when | was a masters
student in 2014

® (Seometric properties provide
a host of applications

® text classification
® sentiment analysis
® topic Modeling

Word2vec advantages and applications

Word2Vec
TF_l D F ; [‘fz“]\: The English Wikipedia

TF-1DF scores to scale word vectors 1.6 Billion words

580k unique words

YR SR
L, SKa
? 45 GB of raw text

Semantic Role
Structures Word | Vectors OUtp Ut
- 300
428 Sl X N N
speeches D N | ; 2.
BT DAL ’ ﬁ O
33 Rz ’ a
| 300
ég(?eches ‘ _ 5 - — > — > ;.‘
a7 g
(' : g ,: . 5 \"‘-,'l'... - - a
]

Deep Neural Network for SRL ComP05|t'0nalltY

Wu, Skowron, & Petta (2014); my first poster presentation!
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RNNs and LSTMs

e Recursive Neural Networks (RNNs) RNN
e RNNs map input x to some hidden state &, which is used to O
. o — @ Unfold
oredict the output o \ fw tw Iw tw
e af each timestep, Ay is a function of x, and previous hidden V< . i > v (ke (e (R
state h,_;; hidden states are passed forward in time — 1o I§ I o

® n theory, RNNs can keep track of long-term dependencies,
out vanishing graaients make them disappear due to limited
numerical precision (Hochreiter, Diplom thesis 1991)
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S map inp @ ... ()
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| Xt
® in theory, RNNs can keep track of long-term dependencies, @ @ O @
out vanishing graaients make them disappear due to limited

numerical precision (Hochretter, Diplom thesis 1991) Gabriel Loye (2019}

e | STMs (Hochreiter & Schmidhuber, 1995) add additional LSTM
modules that learn when to store longterm memories and when [ ——
to forget, and has both shorterm and longterm hidden states _

¢ Input gate: selects which new information ( ) gets [ L
stored in longterm memory (after multiplying with it

)

® Forget gate: selects which information to be forgotten by .
multiplying incoming longterm hidden state by a [ oy

Memory

® Output gate: computes a new hidden state, which is useo
to generate the output -




RNNs and LSTMs

e Recursive Neural Networks (RNNs)

e RNINs map input x to some hidden state &, which is used to
oredict the output o

e ot each timestep, A is a function of x, and previous hidden

state h,_;; hidden states are passed forward in time

® n theory, RNNs can keep track of long-term dependencies,
out vanishing graaients make them disappear due to limited
numerical precision (Hochreiter, Diplom thesis 1991)

e | STMs (Hochreiter & Schmidhuber, 1995) add additional
modules that learmn when to store longterm memories and when
to forget, and has both shorterm and longterm hidden states

o Input gate: selects which new information ( ) gets
stored in longterm memory (after multiplying with

)

® Forget gate: selects which information to e forgotten by
multiplying iIncoming longterm hidden state by a

® Output gate: computes a new hidden state, which is useo
to generate the output

(

\

Hidden State/
Short-term Memory

Ht-l

\

7

Input Gate

Gabriel Loye (2019)
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® Recursive Neural Networks (RNNs) RNN
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® Recursive Neural Networks (RNNs) RNN
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® n theory, RNNs can keep track of long-term dependencies,
out vanishing graaients make them disappear due to limited

numerical precision (Hochretter, Diplom thesis 1991) | STM Gabriel Loye (2019)
e | STMs (Hochreiter & Schmidhuber, 1995) add additional
modules that learm when to store longterm memories and when | ouput O, |

to forget, and has both shorterm and longterm hidden states

o Input gate: selects which new information ( ) gets
stored in longterm memory (after multiplying with

)

® Forget gate: selects which information to e forgotten by - ~

Hidden State/

multiplying iIncoming longterm hidden state by a —I- ————, im0l O

NEW Cell state
Ct
NEW Hidden State
Ht

Hes

v

input X, Output Gate

® Output gate: computes a new hidden state, which is useo
to generate the output -




LSTM language models S ™

® (Generative model of language using a I T I
seguence generation problem

® predict the next word based on the
orevious word and the hidden states I I I
carried over for the entire string *

® Jse gradient descent with
backpropogation through time 1o Demo
minimize prediction error Generate an original Nietschze quote!
® \/anishing gradient issue with BRNNs Is

This demo uses an LSTM trained on Nietschze's writings running on

(Mostly) avoided, since gates control the TensorFlowjs
flow of information

Give Nietschze some hint of what to talk about

® ot only represents text, but can generate

newtext that s {mosty) coneren



https://reiinakano.com/tfjs-lstm-text-generation/

Interim summary

® Plato’'s problem and poverty of the stimulus argument led people like Chomsky
to believe that language learming 1s underdetermined (not enough data)

® | SA showed how local contexts (which words occur In which texts) can enable
generalization by leaming latent word embeddings

® \\ord2vec provides a neural-network implementation based on predicting
neighbornng words within a moving context window, where word vectors have
Nteresting geometric properties for Al applications

o RBNNs and LSTMs use supervised leaming to predict which word occurs next in
a seqguence, providing a method for generating text

o | STMS use a series of gates and dual hidden states (short vs. longterm) to
avold the vanisning gradient proolem and capture long-term dependencies
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Large Language Models
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can chatgpt write a resume

can chatgpt read pdf
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Large Language Models

Generate bullet points that should be on a "introduction to large language models" slide for
graduate students in cognitive science, neuroscience, psychology, and machine Iearningl

e Definition: | arge lang
systems designed to p

Uage models are adva
'0ocess and generate human-like language.

o Key Components: [hese models typically consist of deep

® Training Process: Large lang

amounts of text o

and wepsites, usl

ata 1

o

ng L

NSU

vario

networks with millions or even Dl
eamn and capture complex pattermns in

\_/

S SOU

pervised lea

ons of parameters, allowing

language data.

Uage models are trained on e

nced artificial intelligence

neural
them to

Assive

CES, SUCh as bookKs, a

ning techniques.

1ICles,

e Natural Language Understanding: [hey excel at tasks like

anguage understanding, text generation, sentiment analysis,
anguage translation, summarization, and guestion answering.

No paper for ChatGPT3
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can chatgpt generate images
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can chatgpt read pdf

26



No paper for ChatGPT3

can chatgpf

Large Language Models

can chatgpt write code

can chatgpt be detected

Generate bullet points that should be on a "introduction to large language models” slide for can chatgpt write essays
graduate students in cognitive science, neuroscience, psychology, and machine Iearning| u can chatgpt replace programmers

can chatgpt generate images

can chatgpt solve math problems

e Definition: L arge language models are advanced artificial intelligence oon chaigptsolue marh b
SySt@mS d@Slgﬂed -I:O DKOCGSS aﬂd g@ﬂerat@ rumaq_“ke ‘aﬂguag@ can chatgpt write a resume

can chatgpt read pdf

o Key Components: [hese models typically consist of deep neural
networks with millions or even billions of parameters, allowing them to
earn and capture complex patterns in language data.

When | realize

® Training Process: Large language models are trained on massive red

my job for me

amounts of text data from various sources, such as nooks, articles,
and websites, using unsupervised leaming technigues.

e Natural Language Understanding:. [ney excel at tasks like Wher | rentize

anguage understanding, text generation, sentiment analysis, ChatGPT can do
. . . . . job f

anguage translation, summarization, and question answering. AT




But really, what are LLMs?

® Sclf-attention mechanism used in massively hierarchical architecture of
transformers networks

® (Context window prediction (similar to word2vec)
® \/arious forms of training

® Unsupervised text prediction

® Supervised training on labeled data

i

® Reinforcement leaming from human feedback (RLH
® |n-context leaming and prompt engineering

27



Vaswani et al., (2017)

Self-attention

. OK'
e Sclf-attention captures relationships between different words/ Attention(Q, K, V) = softmax "4l
tokens in a sequence - vV dy
P
® [his allows the model to focus on different parts of the input | 13]
sguence when processing, capturing contextual information Sca'e: Dot-Product ]
. ttentlon
and complex dependencies { ‘ ] [ ]
o [ | | %
—ach input S mapped tolQuery, Key, and Value ) () [
‘epresentations through linear operations (fully connected layers) { }*
® Analogous to information retrieval (e.q., searching for videos -
on youtube): the search engine maps query (text in search orocer (.
par) to keys (video title/description) associated with each
: : Anthony (B £88sy, 82 T 80O0C0O0) mportantly,
candidate, and then presents us with a set of matches | | 900080000 thesumat
: Q) < (LK. DOOBBO0es |  sechrowist.
(values) softmaz | . (B 1 — '.'
¢ )"J’\; OO UU

® QTT oroduces a score, which Is then put through a softmax to Vi (Bosesccle,
welght the relative importance of each word for each other word

B - - - o §ii, e
® This is then multipled against Value representations to generate ,,_dm{u;;.;::d N ) ——— =)
- - : el | ———— ] vichaes | (S — =
a contextualized representation of the text Solnar o edm - “”]q —"{ = =
im et ) Oudli g j
\//‘Tk 64-dim o v -)'/ 28
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Multi-head attention

o Sclf-attention mechanis

across N attention heac

® cach head has different

M can pe repeated

S In parallel
Inear mappings

(Q K,Vs), each computing attention (on
different types of relationships)

® Outputs of each head are merged together

The heat maps of self attentions of "Anthony Hopkins

admired Michael Bay as a great director."

in encoder_layer3_block

start> - <stars - <stat> - ‘.
antony - o ' athony - I asthony - otrony - I ®
rep top oo [
brs - -08 s - I 03 kns - ans -
B t E 3 3 i
lr-’: -06K -nd = - 05 rod: r:c S|
M:wd ch;eyl. I mtf:;l ncnhei . l ..
. =t ol a
et - I great - l great eal
director - 02 d@vector - rector ' B
<aM;- <m; vl o
LEFERETER LERIREFIFTEE BIREDERTEE LFREREEIR
1 | gt il ity gl i L
Head 1 Hezd 2 Head 2 FHead 4
start - star> 030 <stat>- <start> -
- .:' = o W.u s e - H . I
Kirs - 1 08 Nns - dins -
o - od - & -
ired l 06 e s | ey .l
muchael mchaee -N15 mchael - muchael -
= S = - !
ye gest oreat geat - l
e ctor rect Arestor
- N> - nd> - <end::
R I B A ] o (] “uu U] [ B I e S e T L B B e
S3BECEEINEE 4 ¢3BERCERECRE b L3BECREEE) $FEERCEIR 5D
? g § ' ie ¥ ﬁ% v i 1 % v
Yasuto Tamura 2021 Head 5 Hezd 6 Head 7 Fead 8

p—

| Attention Score

uery Key

N heads
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Transformers

® —Nncoder-decoder arcnitecture

—Ncoder represents the INput

Decoder takes the target and

the encoded representation to

oredict the output

® Aftention Is used In 3 places

® the Input

® the target

the relationsn
target and INp

0 pbetween

Ut

ki Output

Iy

e )
Transformer S“:"” J
L Linear j
A
[ Enc:der ﬁecoder \
#
ﬂincoder \
]

-

| Layer Norm

Layer Norm
[ sormtenin |
[ .@‘ ] l e*-b Posi]tion
[ Embedding ) [ ;:;'g?:g ] [Embe?dding ] [ Encading ]J

|

Input

|

Target
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Generative pre-training (GPT) - “Open”Al

12x —

GPT

Text Task

Prediction | Classifier

Layer Norm

e

Feed Forward

3

I Layer Norm \
Masked Multi
Self Attention

Text & Position Embed

Radford et al., (2018)

Classification

Multiple Choice

&
1.5B %
g 117M 3 GPT-2
512 token size 1024 token size
Start Text Extract }» Transformer —~{ Linear
Start Premise Delim | Hypothesis | Extract }» Transformer [~ Linear
Start Text 1 Delim Text 2 Extract | > Transformer
- Linear
Start Text 2 Delim Text 1 Extract | Transformer
Start Context Delim Answer 1 Extract | > Transformer [ Linear
Start Context Delim Answer 2 Extract | (| Transformer > Linear —EE
Start Context Delim Answer N Extract | > Transformer > Linear

175B parameters

2048 token size
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Generative pre-training

GPTT

® Unsupervised pre-training: predict the next word/token ; that comes in a

sequence
L(T) = ) log P(tiltik,....t1;6) (@

® Supervised fine-tuning. predict the label y given features/tokens Xy, ..., X

L(C) = ) log P(ylxs,..., xn) (i)
X,y

GPT2

® /ask conditioning: not only P(outpL

Short Task Transfer: leaming to prec

t]ir

put) bu

n

- P(output | input, task) and Zero

Ct 1

Ne task -

rom the Input
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GPT3 adds Reinforcement learning with human feedback (RLHF)

* Train an initial language Step 1
: _ Collect demonstration data Collect comparison data and Optimize a policy against the
m Od el an d th en fl ne-tune and train a supervised policy. train a reward model. reward model using the PPO
Wlt h h uman feed b acC k reinforcement learning algorithm.
. A prompt is ' A prompt and I A new promptis o
° M assive amounts Of h UMmaln sampled fromour oy r:;,icmm several model ot ,;f“mt sampled from S h
. . “y prompt dataset. learning to a 6 year oid outputs are learning to a 6 year oid. the dataset. aboxA clters,
trainers provide additional ] sampled, —— $
Y it
SUpPpo g by - The PPO model is O
A labeler @ (C) (D) initialized from the .<.<2X§\>.
. . . demonstrates the e pee—ni supervised policy. e e
* labeling desired behavior desiedoutput ¢ oo i |
- - pehavior el % v
for supervised learning o |
| A labeler ranks the The policy generates Orico Lpon a time...
_ Y outputs from best an output.
 ranking best to worst - to worst ©-0-0-0 *
. This datais usedto LI, The reward model RM
O Ut p UtS tO p Fovi d e d ﬁ"i'tu ne GPT’S-S R \; calculates a reward M.
. with supervise V4 NS
reward signal for RL carning ~o o for e it La
.. . : === This data is used 2R |
training using proximal to train our B The reward is used v
. . . . reward model. to update the
policy optimization 0-0-0-0 policy using PPO. L

(PPO; a form of policy
gradient)




In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

In-context learning ——————

® An emergent behavior, where without changing 1h o e
peppermint => menthe poivrée
welgnts, It can solve new tasks by providing It with
a description and examples of the task

® [his can be seen as a form of Implicit Bayesian

nference (Xie et al,. 2022), where the mode " et v oy et v et
extracts context from the prompt and uses that to B
Nnform it's output:

plush girafe => girafe peluche

cheese => prompt

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).

concept

® Prompt engineering

rou lazy piece of garbage. Why don't you try {

e Carefully selecting the prompt can yield better
results, by providing more evidence for the
target concept

r about a bear lmmmg empathy. | have better

al whims. Get 3 grip, you sentimentsal feol. 34




Summary

® \/ector space representations of semantics (word embeddings) are a powertul tool for modeling
language, where (cosine) similarity between vectors provides a means for generalization

® Semantic representations are (usually) learmed via predicting which words come next and/or
supervised labels provided by human trainers

® Attention provides a powerful mechanism to contextualize semantic representations, using

transformation of Query, Key, and Value matrices to encode the relational structure between
tokens

o Adding RLHF and massively more parameters by hierarchically stacking transformer networks
olays a large role iIn how we got from GPT12—>GPT3

e But while there are some shared principles (e.g., similarity, prediction, relational structure), the
earning mechanisms and scale of training data is guite distinct from human learming

e | | Ms haven't solved the poverty of the stimulus problem, since they have a glut of experience
e Still an open guestion humans obtain “infinitely more than we experience’
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Next week

General Principles + Exam Prep
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