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course on computational 
modeling!
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Some confusion from the last pop quiz
• According to Shepard, why does generalization occur?  
 
 
 
 

• In Bayesian concept learning, what is the size principle?
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• In Bayesian concept learning, what is the size principle?
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Consequential  
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x′ • Shepard (1987) believed that representations about 
categories or natural kinds correspond to a consequential 
region in psychological space


• Generalization arises from uncertainty about the extent of 
these regions

Bayesian size principle: under strong sampling, smaller h 
(consistent with the data) are more likely



The story so far…

4



5

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward
Reinforcement 

Learning

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Learning to behave



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations

Hybrid systems



Dendrites

Cell body 
f(x)

Axon
x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Symbolic vs. Subsymbolic AI

6

*Gradient descent is 
analogous to the 
delta-rule

Subsymbolic AI

McCulloch & Pitts (1943)

Symbolic AI
Physical symbol 
system hypothesis: 
manipulating 
symbols and 
relations

Hybrid systems



Learning concepts and functions
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Today’s agenda
• Plato’s problem and the Poverty of the Stimulus argument  

(Chomsky, 1986) 
• Latent Semantic Analysis 

(Landauer & Dumais , 1997) 
• Word2vec 

(Mikolov et al,. 2013) 
• RNN and LSTM language models 
• Large language models, transformers and self-attention 
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“Meno” - Plato

And how will you enquire, Socrates, into that which you do not 
know? What will you put forth as the subject of enquiry? And 
if you find what you want, how will you ever know that this is 
the thing which you did not know?

10

Meno’s Paradox

Socrates Plato
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Meno’s Paradox

How can we learn what we don’t already know? How can we acquire new concepts?

Socrates Plato



Is (some) knowledge innate?
Plato’s theory of anamnesis 
• knowledge is in the soul from eternity  
• the soul is immortal and repeatedly incarnated 
• each time knowledge is forgotten in the trauma of birth 
• what one perceives to be learning, then, is the recovery 

of what one has forgotten 
Demonstrated by having a slave boy intuitively solving 
geometry problems he was not instructed in 
• (just goes to show what kinds of theories you need to 

develop to explain learning without an account of 
generalization!)
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Chomsky: Universal Grammar (UG)
• Plato’s problem (Chomsky, 1986): “How comes it that human beings, whose 

contacts with the world are brief and personal and limited, are nevertheless able to know 
as much as they do know?” 
• Language acquisition in children suggests they “attain infinitely more than they 

experience”  
• Poverty of the stimulus: it seems like there is a disparity between the amount of input 

(experience) and the output (acquired langauge) 
• Thus, there is a missing factor and that factor is UG: 

“the system of categories, mechanisms, and constraints that shared by all human 
languages and considered to be innate” 

• Output (language ability) ≠ input (experience)  
• Therefore, language = UG + input 

12



Criticisms of Universal Grammar
• Universality of grammatical structure across languages is overstated 

• Pirahã language lacks recursion, embedded clauses, quantifiers, and color terms 
(Everett, 2005), which are commonly taken to be universals 

• Similarity-based generalization explains how children generalize beyond observed evidence 
• Learning probabilistic patterns rather than hard and fast rules (Distributional hypothesis; 

McDonald & Ramscar, 2001) 
• Even without negative examples (explicit instruction of what is ungrammatical), prediction-

error learning based on failure of expectations serves as a form of implicit feedback 
(Ramscar & Yarlett, 2007) 

• Evolutionary argument 
• Convergence across languages is not due to some innate universal structure in our 

brains, but due to general processes/constraints of human cognition (Tomasello, 2008)
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Solving Plato’s Problem with Latent Semantic Analysis (LSA) 

• Focusing on semantic learning (i.e., the 
meaning of words) rather than grammar 
learning (the relational structure or syntax 
between words) 

• Landauer & Dumais (1997) developed a very 
simple method to model “induction” (reasoning 
beyond the available evidence) in semantics 
• Describe the similarity between words 

based on the contexts in which they occur 
• Represent semantics using word 

embeddings (i.e., vectors), where the 
similarity between words can be measured 
using cosine distance

14

Landauer & Dumais (1997)



LSA algorithm
• Simple idea: Represent the meaning of words 

based on the company they keep 
• Input: a matrix (A) containing counts of which 

words occur in which contexts (i.e., texts) 
• Process: matrix factorization using singular value 

decomposition (SVD; next slide) 
• Outputs: 

• Word vectors (B) and Context vectors (C)  
• Both are mapped to the same high-dimensional 

latent space (300 dims) 
• The distance between word vectors captures 

similarity, which can be used to generalize
15



Singular Value Decomposition (SVD)
• SVD is a generalization of 

eigendecomposition (square matrix only) to 
any rectangular matrix 

• break down the description of  into a 
numer of components (i.e., basis 
functions) based on the outer product of 

 and  
• Components are weighted by the values in 

, which is a diagonal matrix (0s except 
for the diagonal) 

• No unique solution, but usually computed 
through iterative methods finding 
progressively better solutions until 
convergence 

• Using only the top K components, we get an 
efficient approximation

A

U V⊤

Σ
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Using word vectors to model 
semantic learning

• Local context of words predict long-
range generalization by using the 
Cosine similarity between word vectors 

• Synonym test: predicting which words 
are synonyms based on cosine 
distance performed as well as foreign 
students testing at US colleges  

• Predicted learning rates comparable to 
children (10-15 words per day during 
late elementary/high school)

17

numbers indicate 
number of training 
samples with the 
stem word
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Word2Vec
• Using neural networks to learn word vectors 

(Mikolov et al., 2013) 
• Two training methods 

• Cumulative bag of words (CBOW): 
predicting the target word based on the context 
(neighboring words) 

• Skip-gram: predicting the context based on 
the target word 

• Iterative move context window through training 
text, and update network weights to minimize 
prediction loss 

• Same basic principle as LSA (local context), but 
richer geometric interpretations of word vectors 
based on the need to predict words

18

context window



Word2vec architecture

• One hot encoding of words 
• Word vectors are just extracted from 

the weight matrix

19



Word2vec results
• Both semantic and syntactic 

relationships 
• Similar relationships exist on the 

same hyperplane 
• Reasoning about analogies can 

be done through addition and 
subtraction 
 

  
• Try out a demo here:  

https://rare-technologies.com/
word2vec-tutorial/#bonus_app 

⃗king − ⃗man + ⃗woman ≈ ⃗queen

20
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Word2vec advantages and applications

21

• Scalable and cheap to train 
• entire English Wikipedia 

took 48 hrs on my laptop 
when I was a masters 
student in 2014 

• Geometric properties provide 
a host of applications 
• text classification 
• sentiment analysis 
• topic modeling

Wu, Skowron, & Petta (2014); my first poster presentation!



RNNs and LSTMs

22

RNN• Recursive Neural Networks (RNNs)  

• RNNs map input  to some hidden state , which is used to 
predict the output  

• at each timestep,  is a function of  and previous hidden 
state ; hidden states are passed forward in time 

• in theory, RNNs can keep track of long-term dependencies, 
but vanishing gradients make them disappear due to limited 
numerical precision (Hochreiter, Diplom thesis 1991)
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• LSTMs (Hochreiter & Schmidhuber, 1995) add additional 
modules that learn when to store longterm memories and when 
to forget, and has both shorterm and longterm hidden states 
• Input gate: selects which new information (filter) gets 

stored in longterm memory (after multiplying with tanh 
activation)  

• Forget gate: selects which information to be forgotten by 
multiplying incoming longterm hidden state by a forget 
vector 

• Output gate: computes a new hidden state, which is used 
to generate the output

LSTM Gabriel Loye (2019)
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LSTM language models
• Generative model of language using a 

sequence generation problem 
• predict the next word based on the 

previous word and the hidden states 
carried over for the entire string 

• Use gradient descent with 
backpropogation through time to 
minimize prediction error 

• Vanishing gradient issue with RNNs is 
(mostly) avoided, since gates control the 
flow of information 

• Not only represents text, but can generate 
new text that is (mostly) coherent

23

Demo

https://reiinakano.com/tfjs-lstm-text-generation/


Interim summary
• Plato’s problem and poverty of the stimulus argument led people like Chomsky 

to believe that language learning is underdetermined (not enough data) 
• LSA showed how local contexts (which words occur in which texts) can enable 

generalization by learning latent word embeddings 
• Word2vec provides a neural-network implementation based on predicting 

neighboring words within a moving context window, where word vectors have 
interesting geometric properties for AI applications 

• RNNs and LSTMs use supervised learning to predict which word occurs next in 
a sequence, providing a method for generating text 
• LSTMS use a series of gates and dual hidden states (short vs. longterm) to 

avoid the vanishing gradient problem and capture long-term dependencies 
24



5 min break
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Large Language Models
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Large Language Models

• Definition: Large language models are advanced artificial intelligence 
systems designed to process and generate human-like language. 

• Key Components: These models typically consist of deep neural 
networks with millions or even billions of parameters, allowing them to 
learn and capture complex patterns in language data. 

• Training Process: Large language models are trained on massive 
amounts of text data from various sources, such as books, articles, 
and websites, using unsupervised learning techniques. 

• Natural Language Understanding: They excel at tasks like 
language understanding, text generation, sentiment analysis, 
language translation, summarization, and question answering.

26
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But really, what are LLMs?
• Self-attention mechanism used in massively hierarchical architecture of 

transformers networks 
• Context window prediction (similar to word2vec) 
• Various forms of training 

• Unsupervised text prediction 
• Supervised training on labeled data 
• Reinforcement learning from human feedback (RLHF) 

• In-context learning and prompt engineering

27



Self-attention
• Self-attention captures relationships between different words/

tokens in a sequence 
• This allows the model to focus on different parts of the input 

squence when processing, capturing contextual information 
and complex dependencies 

• Each input is mapped to uery, ey, and alue 
representations through linear operations (fully connected layers) 
• Analogous to information retrieval (e.g., searching for videos 

on youtube): the search engine maps query (text in search 
bar) to keys (video title/description) associated with each 
candidate, and then presents us with a set of matches 
(values) 

•  produces a score, which is then put through a softmax to 
weight the relative importance of each word for each other word 

• This is then multipled against alue representations to generate 
a contextualized representation of the text

Q K V

QT⊤

V

28

Attention(Q, K, V) = softmax ( QK⊤

dk ) V⊤

Vaswani et al., (2017)



Multi-head attention

29Yasuto Tamura 2021

• Self-attention mechanism can be repeated 
across N attention heads in parallel 

• each head has different linear mappings 
(Q,K,Vs), each computing attention (on 
different types of relationships) 

• outputs of each head are merged together



Transformers
• Encoder-decoder architecture 

• Encoder represents the input 
• Decoder takes the target and 

the encoded representation to 
predict the output 

• Attention is used in 3 places 
• the input 
• the target 
• the relationship between 

target and input 
30
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Generative pre-training (GPT) - “Open”AI

Radford et al., (2018)

GPT1



Generative pre-training
GPT1 

• Unsupervised pre-training: predict the next word/token  that comes in a 
sequence 

 

• Supervised fine-tuning: predict the label  given features/tokens  

 
GPT2 

• Task conditioning: not only  but  and Zero 
Short Task Transfer: learning to predict the task from the input 

ti

y x1, …, xn

P(output | input) P(output | input, task)
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GPT3 adds Reinforcement learning with human feedback (RLHF)

• Train an initial language 
model and then fine-tune 
with human feedback


• Massive amounts of human 
trainers provide additional 
support by


• labeling desired behavior 
for supervised learning


• ranking best to worst 
outputs to provide a 
reward signal for RL 
training using proximal 
policy optimization 
(PPO; a form of policy 
gradient)



In-context learning
• An emergent behavior, where without changing 

weights, it can solve new tasks by providing it with 
a description and examples of the task 

• This can be seen as a form of implicit Bayesian 
inference (Xie et al,. 2022), where the model 
extracts context from the prompt and uses that to 
inform it’s output: 

 
• Prompt engineering 

• Carefully selecting the prompt can yield better 
results, by providing more evidence for the 
target concept

34



Summary
• Vector space representations of semantics (word embeddings) are a powerful tool for modeling 

language, where (cosine) similarity between vectors provides a means for generalization 
• Semantic representations are (usually) learned via predicting which words come next and/or 

supervised labels provided by human trainers 
• Attention provides a powerful mechanism to contextualize semantic representations, using 

transformation of Query, Key, and Value matrices to encode the relational structure between 
tokens 

• Adding RLHF and massively more parameters by hierarchically stacking transformer networks 
plays a large role in how we got from GPT2—>GPT3 

• But while there are some shared principles (e.g., similarity, prediction, relational structure), the 
learning mechanisms and scale of training data is quite distinct from human learning 
• LLMs haven’t solved the poverty of the stimulus problem, since they have a glut of experience 
• Still an open question humans obtain “infinitely more than we experience”
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Next week
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General Principles + Exam Prep

Humans Machines


