General Principles of Human and Machine Learning

- Lecture 1: Introduction
 - Dr. Charley Wu Dr. Charline Tessereau
- https://hmc-lab.com/GPHML.html

Overview

• Organization

- Contact information and office hours
- Introductions
- Course organization
- Grading
- Schedule
- What is learning?

Course & Contact Info

Instructors

Dr. Charley Wu (<u>charley.wu@uni-tuebingen.de</u>) Dr. Charline Tessereau (<u>charline.tessereau@internationalbrainlab.org</u>)

Teaching Assistants

Hanqi Zhou (<u>hanqi.zhou@uni-tuebingen.de</u>) Turan Orujlu (<u>turan.orujlu@tuebingen.mpg.de</u>) Mani Hamidi (<u>manihamidi@gmail.com</u>)

General information

Location: Ground floor seminar room, AI building, Maria-von-Linden-Str. 6, D-72076 Tübingen Lecture time: **10:15** - 12:00 Thursdays Tutorial time: 16:15 - 17:30 Fridays Office Hours: Charley directly after lectures; Charline by appointment (email) Course website: <u>https://hmc-lab.com/GPHML.html</u>

Charley

Charline

Introductions

- What is your name?
- What do you study?
- What do you hope to learn from this course?
- [Bonus] Name each of the people prior to you

Course organization

Lectures

- Read assigned paper
- Show up to class and participate in discussion

Tutorials

- Combination of hands-on exercises, (paper) discussions, programing challenges, and pop-quizzes (see Grading on next slide)
- Student responsibilities:
 - visit office hours, ask TAs)
 - Show up and participate

Keep up with material (complete assigned readings, re-visit lecture slides,

Grading

- [30% of grade] Best 3 out of 4 pop-quizzes
 - easy marks
 - advance (or as early as possible)
 - alternative solutions
- **[70% of grade**] Final exam
 - Tentative dates: July 27th and October 12th

• They are designed to make sure you are following the material and are relatively

• If you are unable to attend any tutorials, please email both instructors 24 hrs in

If you have well-documented absences, we may consider make-up quizzes or

• Questions will be a combination of multiple choice and short answer questions

Course overview

What are the guiding principles of human and machine learning?

How have these two fields informed one another?

Which mechanisms of learning are shared across fields?

Where have we seen convergence?

Syllabus

Date	Lecturer	Торіс
Week 1: April 20,21	Wu/Tessereau	Introduction
Week 2: April 27, 28	Wu	Origins of b
Week 3: May 4, 5	Wu	Cognitive m
Week 4: May 11,12	Tessereau	Introduction
Week 5: No classes		Christihimm
Week 6: May 25, 26	Tessereau	Advances ir
Week 7: No classes		Pfinstpause
Week 8: No classes		Fronleichna
Week 9: June 15,16	Wu	Concepts a
Week 10: June 22,23	Wu	Supervised
Week 11: June 29,30	Wu	Generalizat
Week 12: July 6,7	Tessereau	Common to
Week 13: July 13,14	Wu	Language a
Week 14: July 20,21	Wu/Tessereau	General Pri

- iological and artificial learning: Behaviorism and Connectionism
- naps: Learning a representation of the environment
- to RL: Model-free vs. model-based learning and biological realisn
- nelfahrt: No lecture, no tutorial
- n RL: Modern implementations and recent breakthroughs
- e: No lecture, no tutorial
- am: No lecture, no tutorial
- nd Categories: Representations Learning in Humans
- and Unsupervised learning: Representation Learning in Al
- tion: Predicting in Novel Situations
- ools for understanding brains and neural networks
- and semantics
- nciples (overview)

n

Origins of Biological and Artificial Learning

Behavioralism

- Understanding intelligence through behavior
- Trial and error learning
- Classical and operant conditioning
- Rescorla-Wagner model as proto-RL

Connectionism

- Understanding intelligence through artificial neural networks
- Perceptrons, logical operators, gradient descent, and backpropagation

Symbolic Al and Cognitive Maps

Symbolic Al

- What happened during the AI winter?
- Intelligence as manipulating symbols through rules and logical operations
- Learning as search

Cognitive Maps

- From Stimulus-Response learning to Stimulus-Stimulus learning
- Constructing a mental representation of the environment
- Neurological evidence for cognitive maps in the brain

Introduction to RL

Sutton & Barto (1998)

Sutton (1991)

Deep RL

Mnih et al., (2015)

Concepts and Categories

Bread Enclosure

Wu et al., (in prep)

Supervised and Unsupervised Learning

Generalization

Shepard's (1987) Law of Generalization

Model Complexity

Common tools for understanding brains and neural networks

Overview of empirical methods used for understanding both brains and neural networks

 Representational Similarity Analysis

When things go wrong...

Link to computational psychiatry

Language and Semantics

Vector Space Semantics

Large Language Models

ChatGPT

-;¢;-	4	
Examples	Capabilities	Limitations
"Explain quantum computing in simple terms"	Remembers what user said earlier in the conversation	May occasionally generate incorrect information
"Got any creative ideas for a 10 year old's birthday?"	Allows user to provide follow- up corrections	May occasionally produce harmful instructions or biased content
"How do I make an HTTP request in Javascript?"	Trained to decline inappropriate requests	Limited knowledge of world and events after 2021

GPT is optimized for dialogue. Our goal is to make Al ystems more natural to interact with, and your reedback will help us improve.

slowest

General Principles

Humans

What is learning?

Computational

Algorithmic

Implementation

Computational

What is the goal of the system? How does it behave?

Algorithmic

Implementation

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

Flight

Flapping

Feathers

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

Flight

Flapping

Feathers

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

Flight

Flapping

Feathers

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

$$s \leftarrow s';$$

until s is terminal

Flight

Flapping

Feathers

Computational

What is the goal of the system? How does it behave?

Algorithmic

Which representations and computations?

Implementation

How is the system realized?

Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize sRepeat (for each step of episode): Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s' $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$ $s \leftarrow s'$; until s is terminal

Categorize each definition of "learning" using Marr's levels

How can machines inform our understanding of human learning?

How does human learning inform the development of machine learning?

See you next week

- Don't forget to finish your assigned reading before the tutorial tomorrow
 - <u>Spicer & Sanborn (2019)</u>
- learning

• Next week, we look at the the origins of research on biological and artificial

