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Cognitive maps come in all shapes and sizes. Here, we review

the literature on cognitive maps and their role in novel

inferences during decision making, focusing on the

representations and computations in the hippocampus,

entorhinal cortex, and ventral prefrontal cortex. We suggest

that cognitive maps can be seen as balancing representational

complexity and online computational demand. Recent

evidence suggests the hippocampal formation and orbital

frontal cortex both form and use cognitive maps along this

spectrum, ranging from simple elementary associations to

explicit maps of 2D relational spaces that leverage structural

inference. These representations can be conceptualized in

terms of the degrees of behavioral flexibility they afford.
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There has been a wave of renewed interest in the long-

standing idea that ‘cognitive maps’ play a pivotal role in

flexible goal-directed behaviors. The term ‘cognitive map’

was originally coined by Edward Tolman as early as the

1940s to explain an array of rat behaviors on diverse tasks that

could not be readily accounted for by the palette of stimulus-

response reinforcement learning [1] (Figure 1). The beha-

viors required to perform these tasks successfully can be

understood in terms of degrees of behavioral flexibility.

For example, during Tolman’s latent learning experi-

ments, rats explored the layout of a maze in the absence

of any reinforcement (Figure 1a). Rats subsequently

exploited their acquired knowledge of the layout to reach

a newly introduced reward, even though the particular

sequence of actions had never been reinforced previously.
www.sciencedirect.com 
Even more impressive, studies showed that many rats

trained to find a reward in a route-like maze configuration

could subsequently vector navigate directly to that

reward’s location when the maze was changed to a radial

maze, suggesting they had inferred a direct shortcut

(Figure 1c). Tolman argued that these experiments

showed that rats form and use a cognitive map of the

environment to guide their behavior. Moreover, he envi-

sioned cognitive maps as being abstract and domain-

general, transcending physical space, and perspicaciously

foresaw their utility for a wide range of goal-directed

behaviors.

In principle, a cognitive map of the relationships between

states in a task space [2] or entities in the world [3–5]

would likewise be powerful because it would allow new

relationships to be inferred, as in physical space. This

ability can be shown to dramatically accelerate learning

through generalization and inform novel decisions

(Figure 2d) [4,6��]. Notably, however, there are different

definitions of what constitutes a cognitive map in the

literature, and an array of different paradigms used to

evaluate flexible behaviors that may rely on a cognitive

map. We suggest these behaviors can be understood in

terms of a flexibility hierarchy that balances online

computational demands and representational complexity

(Figure 2a). Here, we review both the evidence concern-

ing the roles of the hippocampus (HC), entorhinal cortex

(EC), and ventral prefrontal cortex (Figure 1d), each

emerging in the field as prime candidate substrates for

cognitive maps [4,7–10], and how recently developed

theories cast light on the putative computations these

neural systems may implement.

Classic inference paradigms
Classic inference paradigms have been utilized across

species to investigate the relational coding or integration

of previously experienced associations that can be con-

sidered a type of cognitive map. For instance, transitive

inference (TI) and associative inference (AI) paradigms

have been commonly used to investigate relational coding

or integration of previous experiences, and have primarily

focused on the hippocampal formation and ventromedial

prefrontal cortex (vmPFC) [11–14]. TI paradigms typi-

cally involve inferring the hierarchical relationship

between elements of a set (e.g. A > B > C > D > E) that

were not compared during learning (e.g. B > D) based

only on direct comparisons between ‘premise pairs’ that

differ by only one rank (e.g. B > C). Early studies first

demonstrated that disconnecting the rat hippocampus
Current Opinion in Behavioral Sciences 2021, 38:141–149
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Figure 1
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(a)–(c) Examples of maze experiments Tolman described as evidence for the existence of cognitive maps [1]. (a) Example of latent learning maze.

After exploring the maze for several days in the absence of reward, rats quickly exploited their ‘latent learning’ of the maze’s layout once a reward

was first introduced. (b) Y-maze used to test the effects of reinforcer devaluation. The animals learned the location of different rewards while they

were neither hungry nor thirsty. The two groups of solely hungry or solely thirsty animals tended to choose the location where the currently

desired outcome used to be. (c) After learning the goal location from a route-like maze (left), animals were more likely to discover a direct novel

route closest to the goal location when the maze was replaced with a radial maze (right). S-starting point; G-goal location. (d) Human

hippocampus (HC), entorhinal cortex (EC), ventromedial prefrontal cortex (vmPFC)/medial orbitofrontal cortex (mOFC), and lateral orbitofrontal

cortex (lOFC) regions of interest proposed to organize relational information into a cognitive map.
(HC) and (pre)frontal cortex through perirhinal and ento-

rhinal cortex (EC) lesions or fornix transection led to

profound deficits on TI tasks, specifically for inferred

relational pairs (BvsD), but not directly learned ‘premise’

pairs (BvsC) [12]. In humans, increasing BOLD activity

in the HC and vmPFC has been found for increasing

power rank in both social and non-social hierarchies

during TI [13], and vmPFC-damaged patients show

selective TI impairments [15]. Notably, human learning

of ordinal social hierarchies is better accounted for by a

Bayesian inference scheme that updates the distribution

over all ranks than leading ‘model-free’ ranking algo-

rithms that update only compared entities [14].

Similarly, in AI paradigms, partly overlapping associations

(AB, BC) enable successful transfer to novel test probes

(AC). Inferences in these tasks are likewise impaired

following HC [16] and vmPFC damage [17]. Moreover,

reactivation of A during encoding of BC is associated with

successful novel AC inferences, and pattern similarity

between integrated items A and C has been found to
Current Opinion in Behavioral Sciences 2021, 38:141–149 
increase post-learning in anterior HC and vmPFC [11,18].

Different theories and associated neural network models

have been proposed to account for inference behavior in

TI and AI tasks. One class of models builds off comple-

mentary learning systems (CLS) [19] supplementing it

with the capacity for rapid integration/generalization of

separately experienced but overlapping associations

through reactivation, with different proposed circuit

mechanisms [20–22]. Other models instead propose the

HC-EC system, or other cortical areas [23], build and use

an explicit representation of a relational map between

items, entities, or states, thereby enabling direct infer-

ences over the map (see Structural Inference) [3,6��].

In sensory preconditioning paradigms used to study novel

decisions in reinforcement learning, a stimulus A leads to

another stimulus X and stimulus B to Y; subsequently,

stimulus X but not Y is rewarded. Animals and people will

often select A over B when presented as novel decisions

[24,25]. However, following OFC inactivation post-

learning, this preference for the inferred choice A is
www.sciencedirect.com
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Figure 2

(a)
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(c)

(d)
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(a) Different behaviors can be understood in terms of a flexibility hierarchy that balances the online computational demand for choice and the

richness of the underlying representation. (b) Successor representation (SR) represents the expected discounted future state occupancy. The

place field skews against the preferred movement direction on a one-dimensional track (top) because the population vectors encode the expected

future states. Each colored cell in the 2-D maze represents the firing rate of the SR located along the route that the animal has experienced

(bottom left). As the animal explores the maze more, the estimate of the SR is updated incrementally using temporal difference learning (bottom

right). The more experience, the richer the representation animals have (right). The strengths of the SR lie in its use of computationally simple

updating to ultimately compute a relatively rich representation of the possible transitions in a well-explored environment, enabling efficient on-the-

fly computations during planning and navigation. On the other hand, the standard SR lacks the flexibility of full-fledged model-based algorithms

because it incrementally learns the SR only through direct experience under a specific policy, implying that changes to the environment (e.g. a

new detour) lead to relatively slow changes to the SR through new experience and hence re-planning, though faster than standard model-free

algorithms. (c) Example tree-search planning task [77]. With perfect knowledge of the transition structure (rich representation), an agent can find

the optimal sequence of actions by exploring all sequences (2M sequences, where M indicates the number of possible moves; M = 3 in this

example) and choose the sequence maximizing the cumulative reward. The number of sequences evaluated can be reduced by pruning the states

incurring a large loss (e.g. key) (middle). Tree-search planning endows the agent with extreme flexibility in decision making – for example, when

encountering sudden environmental or goal changes – but suffers from computationally expensive online planning for multi-step behavior (right).

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 38:141–149
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abolished, despite intact preference for the directly

rewarded choice X [24]. Moreover, coactive HC cells

in sharp wave ripple activity during rest appears to link

the separately experienced associations via a direct asso-

ciation (X and X A ! reward). Optogenetic silencing of

HC during decisions further impaired correct inferences,

while HC neuronal ensembles showed a prospective code

of the associated but unpresented stimulus (X) during

decisions. The inferred preference could thus either be

achieved using a retrieval of each paired association

through ‘model-based reasoning’, offline replay mecha-

nisms that ‘connect the dots’, generalizing reward value

over the reactivated experience at the time of reward [26],

or some combination of the above. Notably, dopamine

bursts are also necessary, not only for the reward associa-

tion with X, but also the initial association A ! X [27].

Taken together, while it has proven challenging to deter-

mine whether these different inference tasks do in fact

utilize an explicit cognitive map per se, or instead the

reactivation of associated experiences, a noteworthy com-

monality is the requirement to leverage an associative

scaffold to link items, entities, or rewards experienced

separately to guide novel decisions, processes that

depend on the HC-EC system, and the interconnected

lOFC and/or neighboring vmPFC [28].

Predictive maps
In the context of sequential behavior, recent evidence has

suggested animals may use a ‘predictive map’ of both

spatial and non-spatial transitions between states (Figure 2).

In contrast to models that propose an explicit forward model

that specifies the likely transitions between states given

potential choices is used to compute values on-the-fly [29],

the successor representation (SR) [30] stores a precompiled,

cached prediction of likely future state occupancies from a

given state under a policy, thereby enabling efficient online

computations (Figure 2). The value function for a given

state (V sð ÞÞ can then be factorized into a reward function

R s
0� �� �

and a transition function (Mðs; s
0 Þ, known as the

successor representation (SR)). This factorization enables

more flexible re-planning following changes to the reward

(e.g. in reward devaluation (Figure 1b)) and, to a lesser

extent, the environment (e.g. detours) than standard

model-free methods [31]. However, for multi-step pro-

blems, re-planning is still relatively slow compared to fully

fledged ‘model-based’ algorithms because the standard SR

is incrementally updated only through new experience

(Figure 2) (though see Ref. [32]).

It has recently been suggested that hippocampal popula-

tion coding may reflect the SR [33] (or related predictive

coding models). HC place cells in rodents have been
(d) Using structural inference, an agent can organize states, items, or entitie

agent to discover novel direct routes in spatial navigation (left), infer new hie

structural knowledge divorced from the experienced content to a novel prob

inexpensive online computation (right).
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shown to fire in anticipation of locations along well-

traveled trajectories, leading to an elongated place field

opposite the direction of movement [33] (Figure 2b). In

humans navigating virtual environments that incorpo-

rated teleportation shortcuts, HC BOLD pattern similar-

ity increased with both spatial and temporal proximity,

consistent with a predictive map [34]. Supporting a more

general role outside of space, BOLD adaptation and

pattern similarity in HP/EC has likewise been shown

to reflect the predictability of implicitly learned statistical

transitions between visual stimuli, which can be captured

by the SR [35,36]. Interestingly, the eigenvectors of both

the SR and the covariance of HC place cell population

activity resemble EC grid cell activity, which in combi-

nation with other identified HC/EC cell types, can theo-

retically be used to find new routes and shortcuts during

spatial navigation [4,33,37�].

Another recent convergence across species has indicated

that both dopamine recordings in the VTA [38] and

BOLD activity in the dopamine-rich midbrain [39–41]

reflect not only reward prediction errors, but also value-

neutral state or identity prediction errors, and are both

necessary and sufficient for learning about state-state (or

sensory) associations [27], pointing to a more general role

for dopamine in updating beliefs, and in a manner that

may even incorporate uncertainty in belief distributions

[42]. These signals could theoretically underlie updating

of both predictions about future states and rewards,

thereby informing both transition and reward functions.

Online planning in ‘model-based’ behavior
Unlike the SR, online planning (e.g. Monte Carlo

tree search) makes use of a full model of the transitions

between states given actions to compute an estimate

of the action value function iteratively Q s; að Þ ¼
Ra
s þ g

P
s0 2S T

a
ss0 maxa0 Q s

0
; a

0� �
where Ra

s is the reward

function and Ta
s;s0ð Þ is the transition function that specifies

the probability of transitioning from state, s to some future

successor state s
0
(also referred to as the ‘model’ in model-

based RL). This formalization allows for tremendous

flexibility for re-planning when either the goal or the

environment changes but suffers from heavy online

computational demands as the number of states consid-

ered increases exponentially with planning steps [43]

(Figure 2c). A wealth of evidence also suggests critical

roles for the HC-EC system, and OFC/vmPFC (among

other areas) in the creation, updating, and flexible

use of a cognitive map for online planning, central to

‘model-based’ behaviors [29] (Figure 2c). Consistent with

a role in look-ahead online planning, hippocampal place

cell sequences ‘pre-play’ future traveled routes during
s into an explicit representation of relationships. This enables the

rarchical relationships in a social hierarchy (middle), and generalize

lem (right). Structural inference thus affords high flexibility using

www.sciencedirect.com
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Figure 3

(a) (b)

(c) (d)

(f)(e)

(g) (h)

(i)
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Novel inferences in a social hierarchy use a cognitive map. (a) The behavioral training procedure [72]. Participants learned the relative status in the

social hierarchy between two individuals through a series of binary decisions, having never seen the true structure. During training participants learned

every possible relationship between within-group pairs (8 people) who had one rank difference in a given dimension, with each dimension learned on a

separate day. They then experienced only limited between-group pairs involving ‘hubs’ on day 3. During fMRI participants were asked to make novel

inferences of the relative rank between unlearned between-group pairs (F1 and F2) in only one dimension at a time. (b) An example decision trajectory

over a cognitive map. Participants could reinstate the hub who had been compared with both F1 and F2 and use the vector from the hub to F1 (purple

arrow) as an inferred decision trajectory. (c) The Euclidean distance of the inferred trajectory accounted for decision-related activity in the EC and

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 38:141–149



146 Computational cognitive neuroscience
so-called fictive trial-and-error at decision points [44,45],

can reflect locations distal from the animal, including

reward goal locations [46], and exhibit theta phase pre-

cession with further look-ahead sweeps for further goals

[47]. In humans, prospective activity representing future

goal locations [48] and future visited stimuli in sequential

decision-making tasks has been found in HC and

category-selective cortex [49], respectively, while magne-

toencephalography (MEG) decoding has revealed com-

pressed reversed pre-play of future sequences during

non-spatial planning [50], altogether consistent with a

role in forward planning and prospection [51,52]. Notably,

expected value and expected outcome identity signals,

computed using tree search or inferred from a model of

the task structure, have been consistently identified in

HC, OFC, and (in humans) vmPFC [40,53,54]. Moreover,

HC and mPFC suppression has been shown to reflect

imagined novel foods (e.g. tea–jelly) likely to be experi-

enced in the future that were constructed online from

past experiences with the constituent components sepa-

rately [55]. Recent studies further point to important

interactions between HC and both vmPFC and OFC

[40,56,57,58��], which harness theta phase coupling dur-

ing planning for spatial navigation [56] and value-guided

decisions [58��]. One intriguing possibility is that cogni-

tive maps of both spatial and non-spatial relationships in

HC/EC, and abstract relationships in OFC, may be lev-

eraged to infer expected outcomes and their subjective

values in lOFC and vmPFC, with more specific stimulus-

defined outcomes preferentially represented in lateral

OFC [59] and generalized values in vmPFC [60,61].

Structural inference
Even more impressive, animals, and humans in particular,

can infer new routes and solutions to new problems, and

rapidly transfer knowledge to similar problems in new

situations. Such behaviors can be formalized as hierarchi-

cal inference problems over graphs that capture different

structural forms [62]. There is emerging evidence that the

EC, HC, and OFC/(v)mPFC may play key roles in the

learning, abstraction, and use of explicit structural repre-

sentations that can guide both rapid, novel inferences and

generalization (Figure 2d). Building on models that rep-

resent spatial and non-spatial problems as a connected

graph (e.g. Refs. [33,36], recent proposals suggest that an
vmPFC/mOFC better than other alternative distances. (d) Suppression analys

dimension was specifically reinstated in the HC during inference decisions. (e
learned social dimensions and have a combined 2D representation (right), rath

dimension relevant to the current task (left). (f) Representational similarity anal

lateral OFC reflect the pairwise Euclidean distances (e) between individuals in 

task-relevant dimension (D) and irrelevant dimension (I). (g) The dissimilarity b

with not only D, but also with I, consistent with a 2D map, since E is decompo

effects of E. (i) A separate experiment [73��] tested for hexadirectional modula

consistent with a grid-like code, during discrete decisions. Activity in the EC a

direction of the inferred trajectory was aligned to the EC grid orientation (f) in 

trajectory is misaligned (e.g. gray trajectory, u1).
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environment or task’s structural form (e.g. spatial and

non-spatial transitions or relationships) can be factorized

from its content (e.g. items) [4,63–65]. One such model

formalizes and extends earlier theories proposing spatial

context is explicitly represented in posteromedial (retro-

splenial/posterior cingulate) and parahippocampal cortex

with connections to medial EC separately from its item

content in perirhinal cortex with connections to lateral

EC, which are bound together conjunctively in HC

[66,67]. When spatially navigating a 2-D topology,

abstracting the transition rules of similar spatial problems

would theoretically enable the direct shortcuts reported

in Tolman’s radial mazes (Figure 1c; Figure 2d). In spatial

navigation, these inferred direct routes are seen as the

defining feature of a genuine cognitive map of space [10].

In support of the proposal that cognitive maps can reflect

structural inferences, hippocampal replay in rodents has

been shown to reflect composed novel shortcuts that

stitch together separately traversed paths [68] and con-

struct trajectories through spaces that have been seen but

never visited [69], capabilities that can in principle be

achieved using an abstracted cognitive map [6��,37�].
Another recent study identified abstract temporal event

codes for traversed lap number in HC that generalized to

the same lap(s) across different track geometries, consis-

tent with an abstracted temporal task structure [70�]. In

humans, a recent study showed that the abstracted ordinal

position in a sequence could be decoded separately from

the content in the sequence during rapid offline replay

events from the distribution of activity over MEG sensors

[71��]. Intriguingly, the structural code preceded the

content code temporally during replay and replay-aligned

high-frequency oscillations consistent with sharp-wave

ripples were source-localized to the HP/EC.

Further support that cognitive maps reflect structural

inferences comes from two recent studies, where a 2D

social hierarchy defined by two independent social

dimensions of popularity and competence could be recon-

structed from the outcomes of binary comparisons

between pairs with 1-rank level difference learned on

one dimension at a time, with each dimension learned on

a different day (Figure 3a) [72]. The true 2D hierarchies

were never shown, nor were subjects ever asked to
es revealed the latent hub associated with both F1 and F2 in the given

) These findings suggest that participants integrate the two separately

er than alternating between two 1D cognitive maps according to the

ysis (RSA) showed that the activity patterns in HC, EC, and medial and

the 2D social hierarchy. Separate analyses showed effects of both the

etween activity patterns between two individuals increases in proportion

sed into D and I. (h) The whole-brain searchlight analysis showing the

tion of direct inferred trajectories over the same 2D social space,

nd mPFC (idealized hypothesized activity shown) was higher when the

sixfold symmetry (e.g. purple trajectory, u2), compared to when the

www.sciencedirect.com
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construct them spatially, but they could be reconstructed

through transitive inferences within a day and integration

between dimensions across days (Figure 3b). Although

the two dimensions never had to be combined for behav-

ior, pattern similarity analyses of BOLD in the HC, EC,

and OFC supported a 2D over a 1D cognitive map, such

that closer individuals in the true 2D social space

(measured by Euclidian distance) were represented pro-

gressively and linearly more similarly (Figure 3e–h). In

one study, the 16-person hierarchy was learned in two

separate groups of 8. Subjects then observed select com-

parisons of hubs who could be used to link the two groups

and potentially combine them into one hierarchy

(Figure 3a). During novel inferences about unlearned

pairs between the two groups, there was evidence for

both associative inferences through reactivation of the

hub that linked the groups and direct inferences from the

hub to the other pair in the hub’s group. Specifically,

decision-related activity in EC, lOFC, and vmPFC (but

not HC) reflected the Euclidian distance between people

and their hubs in the 2D map over alternative metrics

(Figure 3c), while suppression analyses indicated the hub

was reactivated in HC (Figure 3d) [72]. Moreover, a

second study using the same 4 � 4 social hierarchy found

evidence for grid-like coding in EC, mPFC, and PCC

(but not HC) for inferred direct trajectories over the

reconstructed 2D social space during novel decisions

(Figure 3i) [73��]. Importantly, these direct trajectories

were never learned during training, during which only

1-rank-level differences were ever compared on one

dimension at a time and on different days (Figure 3a-b),

but could be utilized if subjects had inferred a 2D space.

Taken together, these two studies suggest that local

observations sampled piecemeal may be reconstructed

into an explicitly represented global cognitive map in HC,

EC, and OFC, allowing for direct inferences to be com-

puted or used in EC and OFC/vmPFC during novel

decisions. These findings shed light onto why lesions/

inactivation of the HC-EC system, vmPFC, and/or OFC

impair inferences during classic inference paradigms

[12,15,17,24]. These direct inferences in abstract rela-

tional space are analogous to the direct shortcuts

Tolman’s rats traversed in physical space (Figure 1c).

In terms of a division of labor, these findings further

suggest that while cognitive map-like representations

are found in HC, EC, and OFC (and some studies that

are beyond the scope of this review additionally suggest

in parietal cortical regions [23,73��,74,75]), direct

inferences based on cognitive maps may be computed

efficiently in EC, OFC, and vmPFC based on these

precompiled cognitive maps. Furthermore, recent studies

point to a critical role for coordination between HC and

OFC, with causal manipulations of HC output impairing

OFC representations of the inferred latent context during
www.sciencedirect.com 
reversal learning [57], and closed loop HC theta stimula-

tion disrupting theta-locked value coding in OFC that has

a causal role in stimulus-reward learning [58��]. Thus, one

intriguing possibility is that the precompiled relational

map in the HC-EC system is used to guide efficient goal-

directed inferences for both learning and choice in pre-

frontal regions such as OFC and vmPFC.

Collectively, do these findings imply that the HC-EC

system and OFC/vmPFC always explicitly represent an

abstracted cognitive map for rapid generalization and

flexible behavior? Rather, the literature reviewed here

suggests these regions can reflect different representa-

tions along the proposed flexibility hierarchy (Figure 2a),

with a likely transition between processes that chain

together elemental associations on the one hand, and

an explicitly represented map on the other, such as those

requiring structural inference that can draw on a multi-

tude of previous experiences, depending on both the

demands for flexibility and degree of familiarity with

the problem type. This putative transition may be viewed

as analogous to the transition between route and survey

maps in spatial navigation [76]. Uncovering how the brain

balances the needs for flexibility and computational effi-

ciency, and how it transitions between different repre-

sentations through experience are likely to be fruitful

areas for further investigation [64].
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