
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 9: Supervised and Unsupervised Learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Any clarification questions from
previous weeks?

2

Teaching evaluations
• You will receive an email to submit your evaluations of this course between

06.01. to 20.01
• Your feedback will be very helpful for us, particularly Alex and David who

quite new to teaching
• None of us are paid to teach, and we are organizing this course entirely

from our own interest
• This will also be my last class at Uni Tübingen

3

Last week …
• Concepts are mental representations of categories in the world

• Classical view used rules to describe the necessary and sufficient
conditions for category membership

• More psychological approaches used similarity, compared to a learned
prototypes or past exemplars

• Bayesian concept learning is a hybrid approach, that uses distributions over
rules, and recreating patterns consistent with similarity-based approaches

4

Rules

Similarity

Today’s agenda

5

Supervised learning (for classification)

• Multilayer Perceptrons

• Decision trees and random forests

• Support vector machines

• Naïve Bayes

Unsupervised Learning

• k-Means

• Gaussian Mixture models

Supervised vs. unsupervised learning
• Classification problems*: classify data

points into one of n different categories
• Supervised learning:

• Training data provides category labels
• Classifiers usually try to learn a

decision-boundary
• Unsupervised learning:

• Training data lacks category labels
• Classifiers usually try to learn clusters

*Note that regression is another class of ML
problems, which we will discuss next week

6

Supervised Unsupervised

Supervised learning

7

• Two general classes:

• Discriminitive directly map features to class labels, often by learning
a decision-boundary (rule-like)

• Generative approaches learn the probability distribution of the data
(similarity-like)

• Example problem: Spam detector

• Data

• each are the features of an email  
(e.g., length, date, sender, content, etc…)

• each is the label (1 if spam, 0 otherwise)

• Discrimitive models identify the boundaries that separate spam from
non-spam

• Generative models learn the distributions of spam and non-spam emails

𝒟 = {X, y}
x ∈ X

y ∈ y

 
 scalar 
 constant 

a
A

 vector 
 Matrix

a
A

Notation:
 set 𝒜

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons (MLPs)

can learn any abitrary decision boundary (i.e.,
non-linear) by adding more hidden layers
• Universal approximation theorem

(Cybenko, 1989)
• Training via backpropogation

8

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons (MLPs)

can learn any abitrary decision boundary (i.e.,
non-linear) by adding more hidden layers
• Universal approximation theorem

(Cybenko, 1989)
• Training via backpropogation

8

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons (MLPs)

can learn any abitrary decision boundary (i.e.,
non-linear) by adding more hidden layers
• Universal approximation theorem

(Cybenko, 1989)
• Training via backpropogation

8

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction learning rate

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons (MLPs)

can learn any abitrary decision boundary (i.e.,
non-linear) by adding more hidden layers
• Universal approximation theorem

(Cybenko, 1989)
• Training via backpropogation

8

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

where

prediction learning rate Chain rule is used to pass
derivatives over layers

Perceptrons and Neural Networks
• Perceptrons were the first ML classifiers
• More generally, Multilayer Perceptrons (MLPs)

can learn any abitrary decision boundary (i.e.,
non-linear) by adding more hidden layers
• Universal approximation theorem

(Cybenko, 1989)
• Training via backpropogation

8

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

MSE Loss Weight updates

w ← w − α
∂ℒ
∂w

∂ℒ
∂w

=
∂ℒ
∂u

∂u
∂w

u
w

where

prediction learning rate Chain rule is used to pass
derivatives over layers

Decision boundaries
• Decision boundaries can correspond to logical rules, even when

non-linear (e.g., XOR)
• But most decision-boundaries are not easily explainable using

symbolic operations
• Rather, the feature space is carved up based on similarity to

trained exemplars
• Decisions can be probabilistic rather than all-or-nothing category

membership, based on the activation of the final layer

9

Training data Decision boundary

Decision-trees
• Decision Trees are the quintessential rule-based clasifier

• Easy to interpret, but can be prone to bias and overfitting
• ID3 algorithm: Build the tree by maximizing Information gain

•
where is Shannon Entropy

• How much does feature reduce entropy?
• The more the feature can even split the data (across labels),

the greater the reduction of entropy and the greater the IG
• If not naturally a binary feature, define a threshold that

maximizes Entropy (e.g., 9.5 yrs of age)
• Make a decision node using the feature with max(IG)
• Repeat until we run out of features

IG(X, f) = H(X) − H(X | f)
H(X) = − ∑ P(x)log P(x)

f

10

H

P(x)

siblings/spouses

Nelson et al., (Cognition 2014)

Random forests
• Random forests are an ensemble method combining

random, uncorrelated decision trees
• Each tree uses “feature bagging” to sample a random

subset of features, ensuring low correlation among
trees

• Voting or averaging to make the final decision
• Ensemble methods are common in ML

• Do brains also combine “opinions” from multiple
decision-making systems?

• Aggregation over multiple trees is similar to how Bayesian
concept learning operates over a distribution of rules,
producing generalization patterns consistent with similarity-
based theories 11

• Learn a decision boundary that best separates
the data

• Let’s start with the simplest setting, where we assume the data is
linearly separable

• Hard-margin: with , we want

• (i.e., all data classified correctly)

• And to maximize the margin between classes , which we do

by minimizing
• This gives us a constrained optimization problem:

 subject to

• The solution is completely determined by the closest to the
decision-boundary (i.e., support vectors)

w⊤x − b = 0

yi ∈ [−1,1]
yi(w⊤x − b) ≥ 1

2
∥w∥

∥w∥

ℒ(w, b) = ∥w∥ yi(w⊤x − b) ≥ 1
xi

Support Vector Machines

12

• Learn a decision boundary that best separates
the data

• Let’s start with the simplest setting, where we assume the data is
linearly separable

• Hard-margin: with , we want

• (i.e., all data classified correctly)

• And to maximize the margin between classes , which we do

by minimizing
• This gives us a constrained optimization problem:

 subject to

• The solution is completely determined by the closest to the
decision-boundary (i.e., support vectors)

w⊤x − b = 0

yi ∈ [−1,1]
yi(w⊤x − b) ≥ 1

2
∥w∥

∥w∥

ℒ(w, b) = ∥w∥ yi(w⊤x − b) ≥ 1
xi

Support Vector Machines

12

from sklearn.svm import SVC # "Support vector
classifier"
model = SVC(kernel='linear', C=1)# By setting
kernel= linear and C=1, we use hard margin
classifier
model.fit(X, y)

• Learn a decision boundary that best separates
the data

• Let’s start with the simplest setting, where we assume the data is
linearly separable

• Hard-margin: with , we want

• (i.e., all data classified correctly)

• And to maximize the margin between classes , which we do

by minimizing
• This gives us a constrained optimization problem:

 subject to

• The solution is completely determined by the closest to the
decision-boundary (i.e., support vectors)

w⊤x − b = 0

yi ∈ [−1,1]
yi(w⊤x − b) ≥ 1

2
∥w∥

∥w∥

ℒ(w, b) = ∥w∥ yi(w⊤x − b) ≥ 1
xi

Support Vector Machines

12

from sklearn.svm import SVC # "Support vector
classifier"
model = SVC(kernel='linear', C=1)# By setting
kernel= linear and C=1, we use hard margin
classifier
model.fit(X, y)

Support Vector Machines
• Soft-margin: Since data might not be linearly separable, use a soft-

constraint

• is a penalty term definining how much we care about errors vs. a
large margin

• Slack variable

• for correctly classified points

• for margin violations

• for incorrect classifications

• Smaller allows for more errors in exchange for larger margins (and
better generalization)

ℒ(w, b) = ∥w∥ − C
N

∑
i

ζi

C

ζi = max(0,1 − yi (w⊤xi + b))
ζi = 0
1 > ζi > 0
ζ > 1

C

13

large C

small C

Kernel SVMs
• What about problems with non-linear decision

boundaries?
• Kernel trick “projects” the data to a higher dimension,

such that we can still learn a linear decision boundary

• Rather than learning , we use a kernel
to map onto a feature space
e.g., polynomial kernel

• We then substitute for and use all the same
equations, e.g., decision boundary becomes

• There are many types of kernels, in fact, every neural

network learned by gradient descent is approximately a
kernel machine (i.e., ; Domingos, 2020)

w⊤x − b = 0
X Φ = ϕ(X)

ϕ(x) = (1,x, x2, x3, …)
ϕ(x) x

w⊤ϕ(x) − b = 0

y = f (ϕ(x))
14

Naïve Bayes classifier
• First generative model: rather than learning a decision boundary, learns the distribution of the each

category (which can be used to generate new data)
• Called naïve because we assume all features are independent

• Easy and fast to learn
• Can generalize to new feature values outside the data, although naïve assumption may be unrealistic

• We use Bayes’ theorem to compute the posterior probability of an datapoint belonging to some class
 given it’s features :ck x

15

P(ck |x) =
P(x |ck)P(ck)

P(x)
∝ P(ck)

n

∏
j

P(xj |ck)

posterior =
likelihood * class prior

evidence
denominator removed, because
it is the same for all data

Naïve Bayes classifier

16

• Computing the prior and likelihood
• Prior is just how frequent the category is in the data

• Likelihood:
• When the data is continous, we can assume a

Gaussian distribution

where and are the mean vector and covariance
matrix of the k-th category and is the dimensionality of
the data

• Likelihood is a function of distance from the mean of the
 Gaussian

P(ck) = count(ck)/N

μk Σk
d

ck

P(ck |x) ∝ P(ck)
n

∏
j

P(xj |ck)

P(xj |ck) =
1

(2π)d |Σk |
exp (−

1
2

(xj − μk)⊤Σ−1
k (xj − μk))

Naïve Bayes classifier

17

• For text classification (e.g., spam filters),
where we have discrete variables, we can use
a “bag of words” representation

• From data, extract vocabulary , where each
 represents the counts

for each possible word
• Likelihood with Laplacian smoothing (to avoid

divide by 0)

V
xi = (x1, x2, …xV)

P(xj |ck) =
count(xj, ck) + 1

∑x∈V count(x, ck) + 1

P(ck |x) ∝ P(ck)
n

∏
j

P(xj |ck)

Frequency of word j within category

Frequency of all words

Supervised learning summary
• Supervised learning is a classification problem
• Each method yields a corresponding decision

boundary (rule-based interpretation)
• However, only decision trees operate on explicit

rules
• Most discriminative approaches use similarity-

based mechanisms (e.g., MLPs and SVMs) to
arrive at a decision-boundaries based on carving
up self-similar regions based on labeled
exemplars

• However, generative methods learn explicit
representations of each category
• Naïve Bayes learns distributions for each

category (prototype interpretation)
18

5 min break

19

Unsupervised learning
• Without supervised labels, the goal is to

learn clusters based on similarity
• Types of clustering algorithms:

• Centroid-based clustering
• e.g., k-means

• Distribution-based clustering
• e.g., Gaussian mixture models

• Hierarchical clustering
• e.g., Agglomerative

20

Centroid

Distribution

Hierarchical

-means clusteringk
Learn centroids that minimize within-cluster variance
1. Pick the number of clusters k
2. Randomly select the centroid for each cluster
3. Assign all points to the closest centroid
4. Recompute centroid based on assigned points (i.e., mean)
5. Repeat until centroids do not change or max number of iterations reached

How do we pick the number of clusters?
Elbow method:

• Within-cluster sum of squares (WCSS) as a goodness-of-fit metric:
for each cluster compute the squared distance from each
assigned datapoint to the centroid

• Pick the number of clusters where WCSS begins to level off

k

c ∈ 1,…, k
xi μc

WCSS =
k

∑
c

m

∑
i

(xi − μc)2

21

-means clusteringk
Learn centroids that minimize within-cluster variance
1. Pick the number of clusters k
2. Randomly select the centroid for each cluster
3. Assign all points to the closest centroid
4. Recompute centroid based on assigned points (i.e., mean)
5. Repeat until centroids do not change or max number of iterations reached

How do we pick the number of clusters?
Elbow method:

• Within-cluster sum of squares (WCSS) as a goodness-of-fit metric:
for each cluster compute the squared distance from each
assigned datapoint to the centroid

• Pick the number of clusters where WCSS begins to level off

k

c ∈ 1,…, k
xi μc

WCSS =
k

∑
c

m

∑
i

(xi − μc)2

21

-means clusteringk

22

• Main limitations are also what makes it
efficient
• Assumption of spherical clusters

• The centroid is defined by the
Euclidean mean

• Assumption that clusters are of similar
size
• Assignment of data to the nearest

cluster
• These simplifying assumptions mean that

that it works well on some datasets, but
not on others

Gaussian mixture models (GMMs)
• Instead of learning a centroid (prototype), where similarity is

equivalent across feature dimensions…
• … learn a distribution for each cluster, where each feature

dimension can have a different variance
• ovals instead of spheres

• Assume data is generated by a latent variable in the form of a
Gaussian distribution with unknown means and covariance :

xi zi
μk Σk

p(xi) = ∑
k

P(xi |zi = k)P(zi = k)

= ∑
k

𝒩(xi |μk, Σk)P(ck)

23

xi

zi

Gaussian likelihood Prior

𝒩(x |μk, Σk) =
1

(2π)d |σ |
exp (−

1
2

(xj − μk)⊤Σ−1
k (xj − μk)) N

μ Σ

P(ck)

Graphical representation

where

Expectation-Maximization (EM)
• Iterative method to compute a maximum likelihood when the data depends on latent variables
• Expectation: Compute “expected” classes for all data points, given current parameter values

• Maximization: Re-estimate parameters given current
class assignments

P(xi = ck) =
𝒩(xi |μk, Σk)P(ck)

∑K
j 𝒩(xi |μj, Σj)P(cj)

μnew
k =

1
Nk

N

∑
i

P(xi = ck)xi

Σnew
k =

1
Nk

N

∑
i

P(xi = ck)(xi − μnew
k)(xi − μnew

k)⊤

P(ck)new = Nk /N
24

“Responsibility” of for generating ck xi

Centroid

Prior on classes

Covariance

Bishop (2006)

Expectation-Maximization (EM)
• Iterative method to compute a maximum likelihood when the data depends on latent variables
• Expectation: Compute “expected” classes for all data points, given current parameter values

• Maximization: Re-estimate parameters given current
class assignments

P(xi = ck) =
𝒩(xi |μk, Σk)P(ck)

∑K
j 𝒩(xi |μj, Σj)P(cj)

μnew
k =

1
Nk

N

∑
i

P(xi = ck)xi

Σnew
k =

1
Nk

N

∑
i

P(xi = ck)(xi − μnew
k)(xi − μnew

k)⊤

P(ck)new = Nk /N
24

“Responsibility” of for generating ck xi

Centroid

Prior on classes

Covariance

Bishop (2006)

What other algorithms we’ve
covered also use similar iterative
methods?

GMMs

25

• Advantages over -means due to
• Learns the covariance of the data, rather than assuming it is spherical
• Learns prior class probabilities, to account for unequal cluster sizes

• These advances could also turn into limitations, if the covariance/priors cannot be reliably
estimated

k

Summary of unsupervised learning
• Unsupervised learning is a clustering problem
• k-means performs “hard” assignment of data to clusters, with equivariant similarity across

dimensions, and clusters defined by a centroid (prototype)
• Gaussian mixture models perform “soft” assignment, where learned covariance allows for

skewed clusters, which are defined as a mixture of Gaussian densities (neither prototype or
exemplar)

26

Hard vs. soft clustering
Skewed data

Data wrangling
Beyond only implementing models, a big part of making ML work is data wrangling
• Feature scaling

• Min-Max normalization so feature values are in the range [0,1]

• Standarization so feature values have mean = 0 and stdev = 1

• Normalization vs. standardization?
• Normalization is useful when the distribution of the data is unknown or not Gaussian, since it retains

the shape of the original distribution. However, it is sensitive to outliers
• Standardization is useful when the data is Gaussian (but with enough data, everything becomes

Gaussian) and is less sensitive to outliers. But may change the shape of the original distribution
• Feature engineering by crafting new features

• e.g., # of siblings/spouses in the titanic dataset combines two separate features
• Requires some domain understanding

27

where is the mean and
is the standard deviation

μ σ

Assessing performance
• We need to balance both precision and recall 

• Precision is the proportion of items predicted TRUE that were actually TRUE

 = 1 / 1+1 = 50%

• Recall (also known as sensitivity) is the proportion of positives that were identified
correctly (i.e., labeled as TRUE)

 = 1 / 1 + 8 = 11%

• Precision and recall can be a tug-of-war based on how liberal or conservative your
classification algorithm is

• F1 score is the harmonic mean of precision and recall

 = (2 x .5 x .11)/(.5+.11) = 18%

=
TP

TP + FP

=
TP

TP + FN

F1 =
2

1
Precision + 1

Recall

=
2 × Precision × Recall

Precision + Recall
28

=
TP

TP + FP
=

TP
TP + FN

F1 =
2 × Precision × Recall

Precision + Recall

Discussion
• Both supervised and unsupervised learning methods provide tools for classifying data:

• Explicit category boundaries (decision trees, SVMs)
• Implicit boundaries based on similarity of examples (MLPs)
• Summary statistics of the data, based on a centroid (k-means) or a generative

distribution (Naïve Bayes, GMM)
• Discriminative models simply learn to recognize the category labels (decision trees,

SVMs, k-means)
• Generative models (Naïve Bayes, GMM) learn the data distribution and can be used to

generate new datapoints consistent with each category
• Many ML methods combine both (e.g., GANs, Bayesian adversarial networks)

• Discriminative models are cheap to learn, but require a lot of data
• Generative models are more computationally costly, but can generate additional training

data
• Discriminative model provides an additional training signal to generative model, while

generative model can simulate more training data (similar to model-based planning in RL)
• “Analysis by synthesis” (Yuille & Kersten, 2006) suggests humans do something similar,

through an interaction between between top-down generative processes and bottom-up
descrimination

29

Bring your laptops for the tutorial on Friday
• We will provide 1 supervised and 1 unsupervised classification dataset
• Given the training data, implement one model of your choice
• We will provide code examples in Python and R for each model covered today
• Then, test your models on the test set. Best test performance on each

dataset wins a prize!
• We will use F1 score as the performance metric

30

Next week

31

See you on Jan 14th for Function learning

