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Teaching evaluations

® You will receive an emall to subomit your evaluations of this course between
06.01. to 20.01

® Your feedback will be very helpful Tor us, particularly Alex and David who
guite new to teaching

® None of us are paid to teach, and we are organizing this course entirely
from our own Interest

® [nis will also be my last class at Uni Tubingen



Rules
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® (Concepts are mental representations of categories in the worlo
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Today’s agenda

Supervised learning (for classification)

 Multilayer Perceptrons

o 3\
o i 4 CLASSIFICATION
* Decision trees and random forests ey / . )
. Develop predictive
» Support vector machines r e ey i \ )
\ ), REGRESSION
N MACHINE LEARNING L )
* Nalve Bayes \ i UNSUPERVISED ) s o5
LEARNING
: : . ﬁ CLUSTERING
Unsupervised Learning gt et oy ! )
on input data

e k-Means

e (Gaussian Mixture models



Supervised vs. unsupervised learning

® (Classification probler

h

poiNts INto one of N d

® Supervised leaming:

S™: classy

Vv data

fferent categories

® [raining data provides category labels

® (lassifiers usually try to leam a
decision-boundary

e Unsupervised leaming:

® [raining data lacks category labels

e (Classifiers usually try to leam clusters

*Note that regression is another class of ML
oroplems, which we will discuss next week

Variable 1

Variable 1

Supervised

Variable 2

Variable 1

Variable 1

Unsupervised

Variable 2




Notation:

] ] a scalar a vector of set
Supervised learning A constant A Matrix
Two general classes: Discriminative Generative
* Discriminitive directly map features to class labels, often by learning . ® ° O
a decision-boundary (rule-like) T .‘.
® . O O O
O O
* Generative approaches learn the probability distribution of the data .. N @ . 0. e
(similarity-like) e 0 0 [ g, 0
© e® + © 9 e® @
" o0 " o ©

Example problem: Spam detector

» Data U = {X,y}

e« each X € X are the features of an email
(e.g., length, date, sender, content, etc...)

< — - Spam Detector |

A y

S "

 eachy € y is the label (1 if spam, O otherwise) Mai

Discrimitive models identify the boundaries that separate spam from
non-spam

Generative models learn the distributions of spam and non-spam emails



Perceptrons and Neural Networks

® Pcrceptrons were the first ML classifiers

® \\lore generally, Multilayer

Perceptrons (ML

=3

can leam any abitrary decision boundary (1.e.,
non-linear) by adding more hidden layers

® Universal approximation theorem

(Cybenko, 1989)

® [raining via backpropogation

MSE Loss

Weight updates

out(t)
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DeCISIOn bOundarleS Training data Decision boundary

® [ecision boundaries can correspond to logical rules, even when .
' »
- *®_ o
non-linear (e.g., XOR) :-',‘?..'.‘.' .3

® Sut most decision-boundaries are Not easily explainale using “-.";, ° V¢
SYMoolic operations S o

e Rather, the feature space Is carved up based on similanty to
trained exemplars

alpha 1.00

® [)ecisions can e propabilistic rather than all-or-nothing category
membership, based on the activation of the final layer

alpha 1.00

OR XOR '



Decision-trees

Survival of passengers on the Titanic

Qe

® Decision Trees are the guintessential rule-based clasifier % e
® —asy to interpret, but can be prone to bias and overtitting o a m R
e |D3 algoritnm: Build the tree by maximizing Information gain PR
e IGIX,f)=HX)—-HX]|f) e
where H(X) = — Z P(x)log P(x) is Shannon Entropy
e How much does feature f reduce entropy”? H.
® [he more the feature can even split the data (across labels), -
the greater the reduction of entropy and the greater the 1G p(x)
e [f not naturally a binary feature, define a threshold that .
maximizes Entropy (e.g., 9.0 yrs of age) - ' A|Ne O ¥ /\
e \ake a decision node using the feature with max(G) | & - @G 2 /\/\/\ /\/\/\
® Repeat until we run out of features ~ & g ! QIQ R L " /m -

| Sophe 10
Nelson et al., (Cognition 2014)



Random forests

® Random forests arc an ensemble method combining
random, uncorrelated decision trees

® —ach tree uses "feature bagging” to sample a random

subset of features, ensuring low correlation among | 1 |
rees 1

FINAL RESULT

® \/oting or averaging to make the final decision

® nsemble methods are common N ML

® Do brains also combine “opinions” from multiple
decision-making systems"

® Aggregation over multiple trees is similar to how Bayesian

concept learning operates over a distribution of rules,
oroducing generalization patterns consistent with similarity-
Dased theories

Random Farest

11



Support Vector Machines

T

® | cam a decision boundary w ' x — b = () that best separates

the data

® | cf's start with the simplest setting, where we assume the data IS
nearly separaple

e Hard-margin: withy, € [—1,1], we want e
4

e y(w' x—>b) > 1 (e, al data classified correctly)

by minimizing [|w||
® [Nis gives us a constrained optimization problem:
Z(w,b) = ||w| subjectto y:(w'x —b) > 1

e [he solution is completely determined by the X; closest to the
decision-boundary (1.e., support vectors)
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T

® | cam a decision boundary w ' x — b = () that best separates

the data

® | cf's start with the simplest setting, where we assume the data IS
nearly separaple

e Hard-margin: withy, € [—1,1], we want

e y(w' x—>b) > 1 (e, al data classified correctly)

by minimizing [|w||
® [Nis gives us a constrained optimization problem:
Z(w,b) = ||w| subjectto y:(w'x —b) > 1

e [he solution is completely determined by the X; closest to the
decision-boundary (1.e., support vectors)

/

cfk‘
Y/
/,/>

from sklearn.svm import SVC # "Support vector
classifier™"

model = SVC(kernel='linear', C=1)# By setting
kernel= linear and C=1, we use hard margin
classifier

model.fit(X, y)
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Support Vector Machines

® | cam a decision boundary w'x — b = 0 that best separates
the data
® | cf's start with the simplest setting, where we assume the data IS
nearly separable
e Hard-margin: withy; € [—1,1], we want N
4
o y(w x—>b)>1 (e, al data classified correctly) fron sklearn.sun inport SUC # "Support. vector

model = SVC(kernel='linear', C=1)# By setting
kernel= linear and C=1, we use hard margin

e And to maximize theimargin:between classes —, which we do i

model.fit (X, y)

.................... Iwll
by minimizing [|w]|| , 1 I O
® This gives us a constrained optimization problem: 4 T : f 0% e ..

Z(w,b) = ||w|| subject to y(w'x —b) > 1 | T
e The solution is completely determined by the x; closest tothe -
decision-boundary (I.e., support vectors) 0

05 00 05 1.0 15 20 25 30




Support Vector Machines

e Soft-margin: Since data might not be linearly separable, use a soft-
constraint

N
Fw.b) =|wll-CY ¢

e ( is a penalty term definining how much we care about errors vs. a
large margin large C

e Slack variable {; = max(0,1 — y; (wal- + b))

e (. = (0 for correctly classified points

o 1 > {. > 0 formargin viclations

e ( > 1 forincorrect classifications

e ©o A A
®e o A A,
, | ®* 0 A AAA 4
e Smaller C allows for more errors in exchange for larger margins (and *°. o Aata

petter generalization) g




Kernel SVMs

e \/\Vnat apout problems with non-linear decision

boundaries”?

e Kernel trick "projects” the data to a higher dinr

such that we can still learm a linear decision bou

T

e Rather than leaming w

to map X onto a feature space ® = @(X)
e.g., polynomial kemel p(x) = (1,x, x%, x°, ...)

ensIon,
ndary

x—b =0, we use akeme

e \Ve then substitute @(x) for x and use all the same
eqguations, e.g., decision poundary becomes

ngb(x) —bHb=0

® [here are many types of kemels, In

fact, every

network leamed by gradient desce

Nt IS approx

h

neural

na
<ermel machine (ile., y = f (¢(x)); Domingos, 2020)

ely a

PR
O
O

.!/ .0

<

Input Space

Linear

vanable 2

2nd polynomial

&
variable 2

Feature Space

variable 2

variable 2

vanable 1

Radial basis

varnable 1

vanable 1

vanable 2

A 3 i
variable 1
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Generative
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Naive Bayes classifier

® st generative model: rather than learing a decision boundary, leams the distribution of the each
category (which can be used to generate new data)

® Called naive because we assume all features are independent

® asy and fast to leam
® (Can generalize to new feature values outside the data, although naive assumption may e unrealistic

® \\/e use Bayes' theorem to compute the posterior probability of an datapoint belonging to some class
C;, given It's features X:

o>
P(x)
\_ W, \

likelihood * class prior denominator removed, because
it is the same for all data

a ) /‘ @
P(c,|x) = P IcP(e) o p (Ck)HP (%] c) <>

posterior =

evidence



Naive Bayes classifier

e Computing the prior and likelihnood

® Prior is just how frequent the category Is in the data
P(Ck) = COUHJ[(Ck)/N

e Likelihood:

e \\\hen the data is continous, \Wwe can assume a
(Gaussian distribution

P(x; |c) =

exp
V @nr 1%

2

(Xj — )

lel(xj — ﬂk))

where u, and 2., are the mean vector and covariance

matrix of the k-th category and d is the dimensionality of

the data

® | kellhood Is a function of distance from the mean of the
¢, Gaussian

P(ci|x) o< P(cy) | | Px; 1 )
J

p(x|A)

The probability

of observing x,
if x came from

the Class A
distribution

Naive Bayes Model

o0 % o ® o
o ©
.'*ﬁ’ 3
® a
" Py ® e
I a
.~ ® o
3 L
& ,)o; e ®
8o *°
2 2 4 8
R
fh & &
[\
o~ |\
/. / \ p(x|B)
/AR BN \ The probability
' X \ of observing x,
: \ \ if x came from
| / \\ the Class B
| / \ distribution
N \, \
I /l \\ \\
w4 ' \ \\
/ ' ~
—% @ o S
X



P(ci|x) o< P(cy) | | Px; 1 )
J

Naive Bayes classifier

e or text classification (c.g., spam filters), P
wnere we have discrete variaples, we can use f;d; i;isw{i?und :
a "ag of words” representation - | |
® Fom data, extract vocabulary V, where cach S A=

X: = (X1, X, ...Xy) represents the counts
for each possible word

® | kelhood with Laplacian smoothing (to avoid
divide by O)

Coum(x-, Ck) | Frequency of word | within category

Pixl|c)= ————
j 1%k
erv count(x, ¢;) + 1 Frequency of all words

17



Supervised learning summary

® Supervised leaming is a classification problem - el | Decision Tree J
® —ach method yields a corresponding decision t o sipet
. . L aa =
boundary (rule-based interpretation) N T o
o o = @aSp B
® However, only decision trees operate on explicit S e g

ru | e S —'4 —'3 —'2 —'1 b i '2 5 A ! P _'3 _'2 1 6 1 '2 é ;4
® |\ost discriminative approaches use similarity-
pased mechanisms (e.g., MLPs and SVMS) to .-
arrive at a decision-boundaries based on carving -

Jp self-similar regions based on labeleo “1
exemplars

® However, generative methods learm explicit
‘epresentations of each category

e Naive Bayes learns distributions for each
category (prototype interpretation) L T,

18



5 MiN dreak



. . e . ewee
Unsupervised learning  ®2@ = So3

-

i é 6 r\v.a.o;i’;.l " ¥

® \/\V/ithout supervised labels, the goal Is to

leamn clusters based on similarity Centroid
® [ypes of clustering algorthms: oe S, S
RRST I ST Distribution
e Centroid-based clustering PR B
® c.g., k-means V5

® [istribution-based clustering

® c.g., Gaussian mixture models
® Hicrarcnical clustering

® c.g., Agglomerative

20



k-means clustering

L eam k centroids that minimize within-cluster variance
Pick the

Randomly select the centroid for each cluster

nuMmper of clusters k

dimension 2

Assign all points to the closest centroio

Recompute centroid based on assigned points (i.e., mean)

OB W

Repeat until centroids do not change or max numiber of iterations reached

How do we pick the number of clusters?

Elbow method: 250000 -
® \Vithin-cluster sum of squares (\WCSS) as a goodness-of-fit metric: 200000 -
for each cluster ¢ € 1,..., k compute the squared distance from each v ..., |
assigned datapoint x; to the centroid y.. =
k m 100000 -
WCSS — Z Z (xl B 'uc)z 50000 -
C l

® Pick the number of clusters where WCSS begins 1o level off

1.5

1.0

0.5

0.0

-0.5

dimension 1

Elbow Point

4

6
Number of clusters

10
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k-means clustering

® \an Imitations are also wnhat makes It

efficient

® Assumption of spherical clusters

® [he
—UC]

centroid Is defined by the
dean mean

® Assumption that clusters are of similar

S|Ze

® Assignment of data to the nearest
cluster

® [Nhese simplitying assumptions mear

that It wo
NOt ON Ot

that

ks well on some datasets,

erS
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Gaussian mixture models (GMMs)

® |nstead of learming a centroid (prototype), where similarity IS
equivalent across feature dimensions. ..

® .. |cam a distribution for each cluster, where each teature
dimension can have a different variance

® Ovals instead of spheres

® Assume data X; is generated by a latent variable z; In the form of a

Gaussian distribution with unknown means y;, and covariance 2,

Gaussian likelihood Prior Graphical representation

p(x) = ) P(x;|z,=kP(z; = k)

n P(c,)
— Z ./V(Xl ‘//lk, Zk)P(Ck)
k

1
where A (X| g, 2) = _E(Xj — /’tk)Tz:]:l(Xj — ﬂk)>

exp (
V@il

~

23



Expectation-Maximization (EM)

® [terative method to compute a maximum likelihood when the data depends on latent variables

e Expectation: Compute “expected” classes for all data points, given current parameter values

N (X; | g 1) P(cy)
> A | ZHP(e)

“Responsibility” of ¢, for generating X;

P(x; =) =

e Maximization: Re-estimate parameters given current
class assignments

b2

1 -2 0 2
/41? W= — Z P (Xi — Ck)Xi Centroid @
'y Covariance -z J;m
ZHGVV _ Z P(X — Ck)(X _ HGW)(X _ Iunevv T | . /;“
L&
/YA
P(Ck)nevv = Nk/N Prior on classes | &
2 0 @ 2

Bishop (2006)

h

-2 0 (b) 2 -2 0 (c) 2
2 . ' ] 2t B
L=5 . .‘:ifrg L=2 .'{0:;62}
.8 ) .8.)
0
ot :. ‘8.‘- . . 0 :0 .'8.‘ .
® T e *, T
¥ =
, .-.~ ’ ey
2y A Y.




What other algorithms we’ve
covered also use similar iterative

Expectation-Maximization (EM) metnoos?

® [terative method to compute a maximum likelihood when the data depends on latent variables

e Expectation: Compute “expected” classes for all data points, given current parameter values

N (X; | g 1) P(cy)
> A | ZHP(e)

“Responsibility” of ¢, for generating X;

P(x; =) =

e Maximization: Re-estimate parameters given current
class assignments

1
/41? W= — Z P(X; = ¢, )X; Centroid

l Covariance

ZHGW — _ZP(X — Ck)(X . HGW)(X _Iunevv T |

P(c)"®" = Nk/N Prior on classes

ko

2 L

Bishop (2006)

h

-2 0 (a) 2 -2 0 (b) 2 -2 0 (c) 2
| . ] 2t . ] 2t B
L=2 ..éefr‘ L=25 . .‘:ifrg L =20 {fﬂ"
& 7))] .r
7 40).
5 [/ 0t ..0 ‘30~' 0 . 30.
. T e & e
."' Jo‘ ,s .o‘ ’ ] ey
(f" -y 15 -2 1]




GMMs

e Advantages over k-means due to
® | cams the covariance of the data, rather than assuming it is spherica

® | camns prior class probabllities, to account for unequal cluster sizes

® [hese advances could also tum into Imitations, It the covariance/priors cannot be reliably
estimateo

Original Data k-Means Clustering EM Clustering
0.9 _ 0.9 , i 0.9 ) i
+ 4 x
" ﬁz 030 @ * {)‘t
0.7 s s X - 0.7 0.7
Y nggocgeefrg”"é’*:
06 | ‘E%)oo & ‘W’ﬁ@%:f 06 | 06 |
8 8PP ,
0.5 %ﬁdgg ® %oo 0.5 - 0.5
R a0 % ngo fo A x A x
R o S0OF © o
04 | & RS ?808(5‘ c;f " 04 ] 04 ]
&0 gf %a 8 4.0
0.3 0598 obb 28 0.3 0.3
°% 450 Qg
02| 0.2 | 0.2 |
0.1 0.1 ' 0.1

0 01 02 03 04 05 06 07 08 09 1 0 01 02z 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1



Summary of unsupervised learning

e Unsupervised leaming is a clustering prob

lem

® k-means performs "hard” assignment of data to clusters, with equivariant similarity across
dimensions, and clusters defined by a centroid (prototype)

e Gaussian mixture models perform “so

skewed clusters, which are defined as ar
exemplar)

Hard vs. soft clustering | !

Hard clustering: a
| datapointis
assigned only one
| cluster.

2t

N

-2 0 2 of

0

Soft clustering: c
data pointis

| assigned multiple
‘;»'.8'- e Gaussians
orobzbhilistically.

2

F
lw )

nixture of Gaussian densities (neithe

Skewed data

KMeans

1" assignment, where learned covar

ance allows ftor

" prototype or

GaussianMixture

26



Data wrangling

¢ Feature scaling
® Min-Max normalization so feature values

® Standarization so feature values have mean =0 and stdev=1 Y —

® Normalization vs. standardization”

e Normalization is useful when the distribution of t
the shape of the original distribution. However, it is sensitive to outlie

e Standardization is useful when the da
(Gaussian) and is less sensitive to outl

® Feature engineering by crafting new feat

»
L
\’
>

N W

Seyond only iImplementing models, a big part of making ML work is data wrangling

X — a*\'.'m'n

are in the range [0, 1]

a is Gaussian (but with enoug

Ures

axmm T JYNM‘N

X — o where i is the mean and o
S the standard deviation

o

Ne data iIs unknown or not (Gaussian, since It retains

S

N data, everything becomes

lers. But may change the shape of the original distribution

® c.g., # of siblings/spouses In the titanic dataset combines two separate features

® Requires some domain understanading

27



Assessing performance

® \\le need to balance both precision and recall

True Positives (TPs): 1

False Negatives (FNs): 8

False Positives (FPs): 1

True Negatives (TNs): 90

® Precision is the proportion of items predicted TRUE that were actually TRUE

=1/1+1=50%

" TP+ FP

I'P

® Recall (also known as sensitivity) is the proportion of positives that were identified
correctly (l.e., labeled as TRUE)

=1/1+8=11%

"~ TP+ EN

I'P

® Precision and recall can be a tug-of-war based on how liberal or conservative your

® F1 score is the harmonic mean of precision and recall

-1

classification algorithm is

2

1

1

Precision

Recall

2 X Precision X Recal

Precision

Recall

=2 x.5x.11)/(.5+.11) = 18%

relevant elements

[alse negalives Lrue negalives

retrieved elements

How many retrieved
Items are relevant?

How many relevant
Items are retrieved?

Precision = Recall = ——

TP TP
- TP+FP TP+ FN

o 2 X Precision x Recall
" Precision + Recall




Discussion

® Both supervised and unsupervised leaming methods provide tools for classitying data:

® Explicit category boundaries (decision trees, SVVIS)

® |mplicit boundaries based on similarity of examples (MLPS)
® Summary statistics of the data, based on a centroid (k-means) or a generative

distribution (Naive Bayes, GMM)

® Discriminative models simply leam to recognize the category labels (decision trees,

SVMs, k-means)

® Generative models (Naive Bayes, GMM) learn the data distribution and can e used to

generate new datapoints consistent with each category

® Nany ML methods combine both (e.g., GANS, Bayesian adversarial networks)

® Discriminative models are cheap to leam, but require a

® (Generative models are more computationally costly, bu

data

ot of data

- can generate additional training

® Discriminative model provides an additional training signal to generative model, while

generative model can s

® "Analysis by synthesis” (Yu

imulate more training data (similar to model-based planning in RL)
e & Kersten, 20006) suggests humans do something similar,

through an interaction between between top-down generative processes and bottom-up

descrimination

Discriminative Generative
+ O )
\‘ .. O
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Bring your laptops for the tutorial on Friday

® \/\le will provide 1 supervised and 1 unsupervised classification dataset

® (Given the training data, iImplement one model of your choice

® \/\le will provide code examples In

“vthon and R for each model covered today

® [hen, test your models on the test set. Best test performance on each

dataset wins a prize!

® \\Ve will use F1 score as the performance metric
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