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Quiz clarification

Quiz #2 further reduced
to be out of 16

* Avg score = 83%

Quizzes

* try not to have
overlapping content

e minimal content from
the same week’s
lecture

Date

Week

Remarks

Guest lecturer: Alexandra

Guest lecturer: Dr. David
Nagy

Holiday break

Lecture Tutorial

Oct 16

Oct 15: Introduction (slides) i des

Oct 22: Origins of biological
and artificial leaming (slides,

Oct 29: Symbolic Al and Oct 30

Cognitive maps (slides) (Quiz #1)
Nov 5: Introduction to RL
(slides)

Nov 12: Advances in RL Nov 13
(slides) (Quiz #2)

Nov 19: Social leaming

sl T Mfalsld

Nov 26: Compression and
resource constraints (slides,

Dec 3: Concepts and
Categories

Dec 10: Supervised and

| Dec 11
Unsupervised leaming

Jan 14: Function leaming Jan 15

Jan 22: No

Jan 21: No Lecture .
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Jan 28: Language and
Jan 29
semantics

Feb 4: General Principles Feb 5

TA Readings
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18D Kamath et al., (2024)
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Course feedback

® Randomness of when quizzes occur

® \ly logic for the current format is that it should be less stresstul than mid-term

tests with fixed dates

® [he content Is designed to be much easier since it is random, whereas fixed
date tests would have to be much harder

® AISO means | don”

‘nNeed 1o 1a

what people are s

<e attendance and can get a regular pulse apout

ruggling wi

N and what Is relatively easy

® [ake-home tests are not Ideal In a post-GPT world and would not resemble exam

e Ultmately, the pop C

the final exam

Uizzes are a small part of your grade (20% with a best 3 out
of 4 evaluation scheme) and designed to help you get the best possible grade on




Course feedback

® Slides with or without animations”

® Current | export with animations since | sometimes rely on animations to
tell some part of the story

® BSut | guess the pdfs are bigger

® [hconsistency of grading between quiz #1 and #2
® [Nis was mentioned in the feedback
® | ct's chat it you had this issue



Recap of the story so far...
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distributed across
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Subsymbolic: the units of
representation (i.e., weights)
don’t represent anything
themselves
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Neuro-dynamic programing
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems




Reinforcement Learning

The Agent:

« lteratively selects actions a, based on a policy &

e Receives feedback from the environment in
terms of new states s, ; and rewards R(a,, s,)

 Updates internal representations

 value Q(s,a) or V(s)

>

Reward Action

e model of the environment State

e reward function R

e transitions 7(s’| s) . §<R(aza 5,)
_ Environment
The Environment: W

e governs the transition between states S, = S0

» provides rewards R(a,, s,) Sutton and Barto (2018 [1998])
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2-step task

Model-free n  Model-based *

S-R learning

S-S learning
T 2nd Step
S — =l L AN S 4
[ : !
a — | Feher da Silva et al., (2023); Daw et al., (2011)

Tolman (1 9&8)
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2-step task

Model-free =~ Model-based o e | 1S

S-R learning

S-S learning

2nd Step

L I & 4

Feher da Silva et al., (2023); Daw et al., (2011)
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rewarded unrewarded
rewarded unrewarded
Only cares whether actions Sensitive to structure, whether reward

were rewarded followed common vs. rare transition 0



Model-free

S-R learning

B common
B rare

rewarded unrewarded

stay probability
o
N
o

Only cares whether actions
were rewarded

Model-based

S-S learning

aa——

L

=g ~Corrain

Fososor

Tolman (1948)

rewarded unrewarded

Sensitive to structure, whether reward
followed common vs. rare transition

VTE as active hypothesis testing
TVTE = TLearning

2-step task

1st Step

2nd Step

Feher da Silva et al., (2023); Daw et al., (2011)

Vicarious trial and error (VTE): hesitating,

looking-back-and-forth behavior observed in rats
when confronted with a choice

Won’t come back for the exam 10



value/policy

simulating

= acting
Model-based planning
RL
The model can be used to simulate experiences for updating the value/ model experience
pOIiCy \—/
These simulations are computationally costly, but supplement direct model

RL, leading to faster learning and greater flexibility learning

11



Model-based planning

The model can be used to simulate experiences for updating the value/
policy

These simulations are computationally costly, but supplement direct
RL, leading to faster learning and greater flexibility

Recall that model-free methods can e categorized
as ., Policy-based, or Actor-

value/policy
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direct
RL
model experience
model
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value/policy

o simulating acting
Model-based planning -

RL
The model can be used to simulate experiences for updating the value/ model experience
pOIiCy \/
These simulations are computationally costly, but supplement direct |m°d.e'
RL, leading to faster learning and greater flexibility earning

e Recall that model-free methods can e categorized
as Value-based, Policy-based, or Actor-Critic Value-based
. . . methods

Deep Q-learning Policy gradient

® \odel-pased methods can as wall. ..
o DYNA (Model & Value)

o \Norld Models (Model & Policy)
® [Dreamer (Model & Actor-Critic)

Minecraft Diamond

10K 100K 1M 10M 100M
Environment Steps



Balancing flexibility and efficiency

® |\/lodel-free methods

e Computationally efficient i-”
e But lack flexibility to changes in the |
environment: value is coupled to
nolicy 2
e \odel-based methods f
e Highly flexible: value and policy can
be quickly recomputed via simulations
® Syt performing simulations are 2

computationally costly
L oW ——ERCIONCY (——

e SRR falls in between

Gershman (2018)
12
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Successor Representation V() = ), M(s,s)r(s)

S/
“Successor” as in succession: which states are likely / \
to follow the current state, under a given policy

Decomposition of the 1D value function into SR and
reward components, allowing for faster generalization

>

States

to changes in reward

Successor Reward

The SR is sensitive to policy, with representations _
Representation Values

skewed towards goals

N practice, computed using either off-policy (assuming ) |
a random policy) or on-policy methods (using delta-rule) ﬂ ﬁ
The SR naturally identifies subgoals (via Eigenvectors)

1 eigenvector 2 eigenvectors 3 eigenvectors

13



Social learning

_eaming Is not only from environmental
feediback, but also from social sources

Imitation via observational leamning, where
social learning strategies (SLS) define
various whno, what, when

Theory of mind (ToMV) involves inferring hidden
mental states rom observaple behavior

Various Bayesian formalisms of [oM, but typically
Ntractable and a key limitation of current Al

Bandura (1961)

Wu, Vélez, & Cushman (2022

Levels of social learning Decision-making hierarchy

Model-based
inference _.. — ‘#[ Belief ](Reward]
-

- N 7

'''''' ﬂ{ Value ]

Social
observations * 1
N Policy imitation

.
““~_—v[ActionJ

OpenToM Benchmark (Xu et al., 2024)

Q: What is Sam’s attitude toward’s Amy’s action?

~

Llama2 GPT Turbo

Accuracy (F1)

14



Compression

Compression decreases the resources R
required to store data

Lossless compression is without |0ss of
information

[he optimal lossless code is based on
assigning the shortest codes to the most frequent
nputs: source coding theorem

—\ven greater compression Is possiple by allowing
for distortions: lossy compression

optimal lossless code raw data

: compression
4—
! R
~ H(X) | X | rate
(resource cost)
possible
frequency nputs codes

Bl 00000000000 — 00
B 00000000001 =—» (001
B 00000000011 ——» 010

B 00001001101 — 101010

o111 —— 111111111
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Agenda for today

1. What is a concept?
2. Rule-based theories
3. Similarity-based theories

4. Hybrid approaches

16



What is a concept?



What is a concept?

Conceptual art

Maurizio Cattelan

Viarcel Duchamp

Shutterstock

17



What is a “Sandwich?”



What is a “Sandwich?”

Is a hotdog a sandwich?

18



Concept learning is at the heart of many key aspects of intelligence

One-shot generalization Creative composition Rapid transfer

)

U
-
-
-

Frostbite Score

Lake et al., (2()15); Lake et al., (2017) =0 160 260 300 400 566 660 766 800 900

Amount of game experience (in hours)

19



The study of categories and concepts

® A cateqgory is a set of objects in the world and a concept is a menta
representation of a category

e \\le will use the two interchangeably

e Classical View (Bruner et al., 1967):

1. Concepts defined based on necessary and sufficient conditions for category
memobersnip

2. Membership is all-or-nothing. All members are equally good

® [Nis perspective dates to Aristotelian "forms” and Logical positivist philosophy
(e.q., Quine, Popper, etc...)

e \\hat are the necessary and sufficient conditions for something to be a sandwich’

20



Different approaches to defining concepts
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Different approaches to defining concepts

Rule-based approaches

Similarity-bases approaches

Previous Experiences

Sandwich!

| & -

SALAD TORST SANDWICH

THE CUEE RULE
OF FOO0D
IDENTIFICATION

L

TACO

SUSHI

I Structural starch

N N
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=
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Different approaches to defining concepts
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Rule-based theories

e Category membership defined by explicit rule-
pased boundaries (Ashby & Gott, 1988)

® [he spe

cificity of rules facilitates rapid generalization

® Rules can be combined compositionally, making

them infinitely productive (Goodman et al., 2008)

® Yct rigidity makes them inflexible

e \/\/nat

about root beer? Or open-faced

sandwiches”?
® ven when accounting for exceptions to rules

(Nosofs

<y et al,. 1994), rule-based methods can

only rea

vy explain human behavior when paired

with other learing mechanisms (Erickson &

Krushke, 19938; Ashby et al,. 1993; Love et al.,

2004)

Furthermore, we wish to emphasize that in future in all

cities, market-towns and in the country, the only
ingredients used for the brewing of beer must be
Barley, Hops and Water. - Reinheitsgebot (1516)

22
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Rule-

based theories

e Category membership defined by explicit rule-

pbased boundaries (Ashby & Gott,
® [he specificity of rules facllitates rapid generalization

~ules car

them Infin

1988)

oe combined comypositionally, making

tely productive (Goodman et al., 2008)

® Yet rigiaity makes them inflexible

e \/hat about root beer? Or open-faced
sandwiches'”?

Krushke,
2004)

—ven when accounting for exceptions to rules

(Nosofsky et al,.
only really explain human behavior wnen paireo

with other learming mechanisms (Erickson &

1994), rule-based methods can

1998, Ashby et al,. 1998: Love et al.,

INGREDIEN’I PURIST INGREDIENT NEUTRAL INGREDIENT REBEL

|M eclas

d\\ ich toppings:  (Ca n(onta in 3 broader scope of  (Can contam literally any food
oury ingredicnts) products sandwiched together)

S‘I’RUCIURAL PURIST, STRUCTURAL PURIST,
INGREDIENT NEUTRAL INGREDIENT REBEL

L#\J
L

“Ice cream between
waffles is a sandwich.”

STRUCTURAL NEUTRAL,
INGREDIENT REBEL

hee le ondiments, etc)

HARDLINE

STRU(TURE PUR'ST TRADITIONALISTS
(A sandwich must have a classi

sadwhhp'NP“ of
bread/baked product, with

toppings in between)

STRUCTURAL NEUTRAL,
INGREDIENT PURIST

TRUE NEUTRAL
STRUCTURE NEUTRAL

(The container must be on
either side of the toppings, but
not necessarily two

separate pieces)

= =

“A hot dog Is a sandwich.”  “An ice aream taco is 2 sandwich.”

“Asubis a sandwich.”

STRUCTURAL REBEL,
INGREDIENT PURIST

STRUCTURAL REBEL, RADICAL

INGREDIENT NEUTRAL SANDWICH ANARCHY
STRUCTURE REBEL -
(tan contain any food iR

enveloped in any way by a
containing food)

Furthermore, we wish to emphasize that in future in all
cities, market-towns and in the country, the only
Ingredients used for the brewing of beer must be
Barley, Hops and Water. - Reinheitsgebot (1516)
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Borderline items
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ogical experiments showed that people did

ampton, 1979,
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e even INCo

when labeling the same object twice (McCloskey & Glucksberg, 1978)

® Pcople’s intur
are sensitive

Nned

NsIstent

Ve category boundaries seem to be fuzzy, can shift over time, and
O context
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Typicality

® SOoMme objects seem 1o fit better into categories than
others

® Some are more typical than others

® Family resemblance theory (Rosch & Mervis, 1975):

® [tcms are typical it they
a) have features frequent in the category
D) don't have features frequent in other categories

® [hus, rather than hard & fast rules, similarity to typica
tems seems to matters

900%° oduck

%hicken

oanimal | pigeon
® °parrot
] o parakeet

bird ,robin
o
o Sparrow

o .
bluejoy° cardinal

—— — e S TS * -

Multi-dimensional scaling of similarity
ratings from Rips, Shoben, & Smith (1973)

Armstrong, Gleitman, & Gleitman (1983) *
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Typicality

oanimal | pigeon

® Some objects seem to fit better into categories than ke
others TERE

oSparrow
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o hawk bluejay

® Some are more typical than others

oeagle

® Family resemblance theory (Rosch & Mervis, 1975):

—— — e S TS * -
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2) have features frequent in the category ratings from Rips, Shoben, & Smith (1979)
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tems seems to matters

Armstrong, Gleitman, & Gleitman (1983) *



goose - duck

Typicality

canimal pigeon

® SOoMme objects seem 1o fit better into categories than

o parakeet

others " Protdptype Typical

burd Jrobin

oSparrow

o hawk °cardinal

bluejoy°

® Some are more typical than others

oeagle

® Family resemblance theory (Rosch & Mervis, 1975):

— S e S S 7 T | T ' W M W A

® |t@m8 are WOica‘ HC J[h@y Mqlti-dimensiqnal scaling of simi!arity
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® [hus, rather than hard & fast rules, similarity to typica
tems seems to matters

Armstrong, Gleitman, & Gleitman (1983) *
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Similarity-based theories

® Rather than hard and fast rules, perhaps we
Use similarity comparisons to make on
the fly generalizations about new objects

e Similarity theories: Stimuli with similar
features are more likely to belong to the
same category

® [istance In feature space provides a
simple quantification of similarity

® [\WO main camps:

® (Category membership ased on
comparison to previously leamed
prototypes or exemplars

Tiger

o ..
Wolf similar™s @ Lion

Elephant

®
®

Giraffe
!

Hedgehog  Pig
® L

Prototype Approach Exemplar Approach

Levering & Kurtz (2019)
25



Which is the most prototypical chair?

Prototype theory

® Prototypes are summary representations ot
a category (Rosch, 1973)

® [ypicality can be explained by items
pbeing closer to our leamed prototype

® Prototypes can be constructed ased
welghted features (Smith & Medin, 1981)

ﬁj

Brenden Lake

® Some features are more important:
Sirds have wings (1.0), usually fly (0.8),
some sing songs (0.3), and a few eat
worms (0. 1)

® (Categories are thus defined by similarity to
the prototype



Exemp

® O summary representation

® \\le remember each exemplar (i.e., each instance) of
a concept, and we compare new instances to these
past memories (Medin & Schaffer, 1978)

® (Close simila

strong effec

® Participants were often fooled by the negative match

RULE: A1 LEAST TWO OF (LONG LEGS,
ANGULAR BODY, SPOTS) —— BUILDER

TRAINING

lar theory

POSITIVE MATGH

(BUILDER)
Wk
E ’

1ty to well-remembered stimuli has a
- oN classification:

(with spots), even when body and legs didn't match too (T
e Interpreted as evidence the dots from training I
exemplars had a large influence, even when the rule O
was explicitly tola to participants 201
e (Categories are thus defined by similarity to past T PoROO PORMATN  Wee.O5 NES. Maron
exemp‘ars Bl ruLe SV NO RULE

Allen & Brooks (1991) =7



Prototype or

Still an open debate

* Prototype was
dominant during the
final test

 But neural
signatures of both
throughout

exemplar?

Lareral panzial eorex
rPoster or Tppocampus
Vertroma:cial prafronkzl cortsx

A B . Artesor ipposarpus
\ / E I | | I \ Inferior frontzl oyrae
A 04 : :
‘ Learning phase: 15t half
= 02
E -
g o
£
Category A Category B Category A Category B 5 H
\_ representation representalion / \ representation representalion A S 1
02
VMFFC AHIP FHIP G Lat. Par.
C D E B Learning hase: 2 n3 half
Category A Category B Observational study Interim generalization test  Final generalization test 03 eI IQIRRIoR. = B
(2 runs) (1 run) (4 runs) _ 02
Y ( Al T i
e 0 , +‘
o 0.1
=
B o2
U3
Prototype A Prototype B Febble or Badoon? Febble or Badoon? VMPFC  AHIP  PHIP LO IFG  Lat Par,
| Lo 4 ) e \ / 4\ / C
Distance from category A prototype X 0.3 Learning ohase: combined
= 02
4]
e h e "
A Learning phase: 1% half B Learning phase: 2™ half C Final test g 0 ,i F* ’
S -0.1
30 30 30 = !
exemplar 0.2
- better . - - VMPFC AHIP PHIF LO IFG Lal Pa
1 <0 ® <0 § D o3 Final tesl
g g g
o1 o 10 © 10 T o1
& 0 prototype & a Q
better &S ! 4‘- ] -
£ 01
0 0 9 :
0 10 20 30 = 02
E Exemplar fit 03 -
exemplar fit Exemplar fit - VMFFC  AHIP PHIP G  Lat Par.
* " Prototype Exemplar
lower is better B Prowyp - P

Bowman, lwashita, & Zeithamova (2020)

. Latcral occipital corex




Prototype or exemplar?
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How do we define similarity?

Euclidean

Manhattan

Chebychev

Minkowski

A

C

®- >

®
4

.e

Cosine

Pearson

Mahalanobis

SED

Chocolate

o

(;\Candv

0.4 0 -0.4
*® W W
1 -1

./-" T \k.

0 0

A % »
4{5 =) Xy el o8 R "..";""? <
"% Yk S Aot S o
el T TN
N~ “

SRR q,’
Chbine™ b |

A

950 970 990 1010 1030 1050 1070

-3 -2 -1 H 2 43

azIpiepuels

Jaccard

Levenshtein

Serensen—Dice

Jensen-Shannon

A B

A B

2 X

A

Canberra

Hamming

Spearman

Chi-Square

ol111/olol1l0]

Ovdngl Data Quthers

/ S

Ve

Cem e

Intersection: 0.66 |
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Generalization as a method to test different forms of similarity

Experience

... Generalization o similarity

® How do we generalize limited
experience to novel situations”

® [he degree of generalization should
be a function of our latent similarity .
computations " Novel situation

® [he pbest similarity metric for
oredicting generalization should also
eveal something about how we
represent Concepts Possibilities




Two main approaches: Metric vs. Set

Metric

\4

Embed data in some vector space and compute
similarity as the inverse of distance

Set

Compare which features are jointly
shared vs. unique (i.e., disjoint)

32



Shepard’s (1987) Law
of Generalization

STIMULUS + RESPONSE = LEARNING

o0

\
Illustration. Skinner box as adapted for the pigeon.

Center
Key

Pannel

Key lights

Magazine light

Solenoid

/

ju—

e

i

om—

Food Tray

/

_Food
Storage

Counter weight

/

Empirical measure of generalization, 9j

A Sizes
(circles)

D Sizes & light-
nesses (squares)

(G.Sizes & shapes
(triangles)

« J Shapes (free-
form figures)

B Lightnesses &
saturations

E Spectral hues
[pigeon data]

H Spectra! hues
{pigeon date)

Spectiral hues
[human datal

C Positions (in
linear array)

F Consonant
phonemes

| Vowel
phonemes

| Morse caode
signals

Distance, d"l' In psychological space
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Generalization in Psychological Space

Shepard (1987) believed that representations about
categories or natural kinds correspond to a
consequential region in psychological space

Generalization arises from uncertainty about the
extent of these regions

As representational distance between stimuli X and X’
iIncreases (i.e., become less similar), they are less
likely to belong to the same region, and thus produce
less similar outcomes

This produces the smooth gradient of generalization

Psychologic:aA Space

/

X

.0 '
&
4

.Distance

Consequential
Region

Generalization gradient
1.00 -

0.75 1

Generalization
o
Ol
o

0.25+

0.00 -

Psychological Distance
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We generalize from one situation to another not because we
cannot tell the difference between the two situations but because we
judge that they are likely to belong to a set of situations having the
same consequence. Generalization, which stems from uncertainty
about the distribution of consequential stimuli in psychological
space, 1s thus to be distinguished from failure of discrimination,
which stems from uncertainty about the relative locations of individ-
ual sumuli 1n that space.

Shepard (Science, 1987) ..



Limitations of “metric” similarity

* [wo definitive properties are symmetry and triangle inequality Amos Tversky

(1937-1996)

 But they are often violated in human judgments of similarity (Tversky, 1977)

Symmetry Triangle Inequality

A BC+AB>AC
AC+BC>AB
AB+AC>BC

d(x,x") = dX/, X)

36
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Limitations of “metric” similarity

* [wo definitive properties are symmetry and triangle inequality ﬁ?é’? Igg;;ky

 But they are often violated in human judgments of similarity (Tversky, 1977)

Triangle Inequality

Symmetry

BC+AB>AC
AC+BC>AB
AB+AC>BC

02

d(x,x") = dX/, X)

d(==. 00 #a(h b, ==

=
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Contrast model

sim(A, B) = Of(A N B) — af(A — B) — Bf(B — A)

e 0, a, f} are free parameters

® [0 translate into Shepard’s language, rather than conseguential regions in
psychological space, concepts are defined based on sets of features

e Similar to family resemblance theory (Rosch & Mervis, 1975)
e Common and disjoint features may be weighted differently

® A more refined similarity theory that allows for asymmetric similarity judgments that can
also violate triangle inequality




Bayesian concept learning as a hybrid approach

e \uch of modern cognitive science IS
dominated by Bayesian inference

® Josh Tenenbaum and Tom Griffit
iNndividuals who are largely responsible for it's

popularity

NS are two

® [Ne same basic concept can explain a huge
host of problems, from language acquisition, to
structure learming, to program induction

e But it all started wit

PND thesis

N alr

model of probablis

C ru

C

Umber gar

earning

ne and a

from Josn's
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1 random "'yes' example:

Number concepts

yd
® X |S an even number m— 2
® X IS petween 30 and 45
(square #s2
® | | even #'s?
X IS a prime number o | orens o 22
N\ \numbers <207
® A computer generates a random number from a Gow : /
chosen concept, and you need to guess another 32 —» \,9_ S
numbber that is likely to fit 3] —» \| \ __ » .05
4 —» // \ — S
17 —>(/ = 2
87 —» e .0l

Tenenbaum (PhD thesis 1999) .,



4 random "yes" examples:

Number concepts

A 16
® -xamples: ,_\] . 8
| | 2
® X |S an even number  — 64
=
® X s petween 30 and 456
® X is a prime number O(powers of2a
@
® A computer generates a random number from a (’”O o )
chosen concept, and you need 1o guess another 32 —» \\\c, / —» YES
numbper that is likely to fit 3] > \l | _» No
\
4 —» /,// \\\ —» Yes
17 —>(/ \\) __» No
R7 » — No

Tenenbaum (PhD thesis 1999) .,



4 random "yes" examples:

Number concepts

/ / 16
® -xamples: ,_\] . 8
| 2
e X is an even number " 64
=
® X IS petween 30 and 45
® X Is a prime number . O(powers ofza
® A computer generates a random number from a (’;";\ )
chosen concept, and you need to guess another 32— A\ ¢ / —» Yes
numbper that is likely to fit 3] > \\l | __ » No
\
" 4 —» _/ .. —» Yes
® [~\ven restricting the game to natural numbers between / N
1 and 100, there are more than a billion billion billion 17 —»( \) —» No
subsets of numbers that such a program could Q7 - o No

DOSSIbly have picked out and which are consistent with
the observed "yes' examples of 16, 8, 2, and 64

Tenenbaum (PhD thesis 1999) .,



Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential
region C defining a healthy person?

Blood Pressure

BMI

Tenenbaum (N/PS 1999)
Tenenbaum & Griffiths (BBS 2001)

40



Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential
region C defining a healthy person?

Blood Pressure

BMI

Tenenbaum (N/PS 1999)
Tenenbaum & Griffiths (BBS 2001)

X Data point

40



Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential X Data point
region C defining a healthy person? y New example

Blood Pressure

BMI

Tenenbaum (N/PS 1999)

Tenenbaum & Griffiths (BBS 2001)
40



Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential X Data point
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e Solution: It depends on a distribution over hypotheses h
(illustrated as rectangles) about the boundaries ofC
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Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential X Data point
region C defining a healthy person? y New example

e Solution: It depends on a distribution over hypotheses h
(illustrated as rectangles) about the boundaries ofC

p(y € Clx) = 2 p(hlx). Sum over hypotheses that

include y

Blood Pressure

BMI

Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)
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Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential
region C defining a healthy person?

e Solution: It depends on a distribution over hypotheses h
(illustrated as rectangles) about the boundaries ofC

p(y € Clx) = 2 p(hlx). Sum over hypotheses that

include y

but some hypotheses are more likely than others

Bayes’ rule

p(h\x) _ p(x\ h)P(h) likelihood * prior /

P ( x) evidence

p(x|h)p(h)
Zh,eg{p (x|h")p(h’) -

Blood Pressure

BMI

Tenenbaum (N/PS 1999)
Tenenbaum & Griffiths (BBS 2001)

X Data point
VY New example
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Bayesian Concept Learning

 Example: The concept of healthy person

* Problem: Given a set of examples (x’s in the plot), what is the
probablity that some new example y will fall within consequential
region C defining a healthy person?

e Solution: It depends on a distribution over hypotheses h
(illustrated as rectangles) about the boundaries ofC

p(y € Clx) = 2 p(hlx). Sum over hypotheses that

include y

but some hypotheses are more likely than others

p(h\x) _ p(x\ h)P(h) likelihood * prior /

Bayes’ rule . (x) evidence
_ IpGlhpm)
D ar PElR)p(R)

Blood Pressure

BMI

Tenenbaum (N/PS 1999)
Tenenbaum & Griffiths (BBS 2001)

X Data point
VY New example
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Bayesian Concept Learning

Likelihood:

x’es generated randomly

p(x|h) = {1 St [weak sampling].

0 otherwise

X Data point
Y new example

Blood Pressure

BMI

Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)
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Bayesian Concept Learning

Likelihood:
x’es generated randomly

p(x|h) = {1 St [weak sampling].

0 otherwise ; E&?&ﬂpﬁme
1. Xx’es generated to be positive examples
ifx €h . p( X ‘ h)
p(x\h) ={ A . [strong samphng],
0 otherwise 1

Bayesian size principle: under strong sampling,
smaller i’es (consistent with the data) are more likely

Blood Pressure

BMI

Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)
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Bayesian Concept Learning

Likelihood:
x’es generated randomly

p(x|h) = {1 St [weak sampling].

0 otherwise ; E&?&ﬂpﬁme
1. Xx’es generated to be positive examples
ifx €h . p( X ‘ h)
p(x\h) ={ A . [strong samphng],
0 otherwise 1

Bayesian size principle: under strong sampling,
smaller i’es (consistent with the data) are more likely

Blood Pressure

Easily extended for multiple x’es with multiple features:

p(XIh) =] | p(xih)

BMI

Ulz_ln ifxp e Xy Eh Tenenbaum (NIPS 1999)
0 otherwise Tenenbaum & Griffiths (BBS 2001)
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Bayesian Concept Learning

e To summarize....

* The probabillity of y being in the same category of x is
based on summing over all hypotheses consistent with the
data

X Data point

p(x|h)

* Where narrower hypotheses are favored under strong
sampling

Blood Pressure

(il = PEIRp®

p(x)
[+ ifx€Eh : BMI
p(xlh) _{ |8 | otherwise [strong samphng], Tenenbaum (NIPS 1999)

Tenenbaum & Griffiths (BBS 2001)
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Hypotheses can capture structured and arbitrary

subsets of the data

\

\

A

M

A

|

/

J\

\

VA

1

M

/

J

piye Clx)
0
0 10

100

Figure 5. Bayesian generalization in the number game, given one example x = 60. The hypothesis space includes 33 mathematically
consequential subsets (with equal prior probabilities): even numbers, odd numbers, primes, perfect squares, perfect cubes, multiples of
a small number (3—10), powers of a small number (2—10), numbers ending in the same digit (1-9), numbers with both digits equal, and

all numbers less than 100.
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Bayesian Concept Learning Subsumes Tversky’s
Contrast Model

X Data point

p(h)

1

Blood Pressure

L-Y%Y InNY Y-

Y X
Contrast model Bayesian concept learning
=0f (YN X) —aof(Y = X)—BfFIX— V), plyeClx)= Y p(hlx).
Ratio model (alternative form) h:yeh

h,x)q
112 FY=20+OCY] equivatent whena<0and ft)  <1/| 1+ hachuei”
S(y,x)—l/[1+ Y ] (quivalent when =0 and f=1) |
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Bayesian Concept Learning Extends Shepard’s
Law of Generalization to Multiple Examples

Shepard’s
Generalization
Gradient

.79 1

5
plye ClX) 5
® 050
0 { I — 2 1 1 & L 1 T —d %
0 10 20 30 40 50 60 70 80 90 100 O 5.25-
1 -
J.00 4
piye ClX)
0 | PR — 1 | @ ® 1 — e ——
0 10 20 30 40 50 60 70 80 90 100
1
piye ClX) J —\’\
0 ' l ‘e o0 ‘ ‘
0 10 20 30 40 50 60 70 80 90 100
1
0 1 1 1 1 1 ._._‘ 1 1 1 J
0 10 20 30 40 50 60 70 80 90 100

Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, . = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples.

Psychological Distance
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Bayesian Concept Learning Extends Shepard’s
Law of Generalization to Multiple Examples

T Shepard’s
g 0751 Generalization
pive ClX) g - Gradient
0 | —— 4 1 L ‘ L A . - —— g
0 10 20 30 40 50 60 70 80 90 100 © 025
1
piye C1X) | Psychological Distance
) e O e S Range of generalization
10— 10 20 30 40 50 60 70 80 90 100 deCreaSGS With mOre
examples
piye ClX))|
%0 10 20 30 40 500 60 70 80 0 100 more e)sam pleS = less
r uncertainty about the
el extent of consequential
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00 110 210 310 410 510‘.& 710 810 910 1 (J)O

Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, i = 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose

of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples.
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Causal learning

Graph 0 Graph 1

T

Griffiths & Tenenbaum (2005)

Program Induction

Lake, Salakhutdinov, & Tenenbaum (2015)

Word learning Structure learning

Dalmatian goldhsh robin
Samon  Trout Alligator
ﬁzzn{ trout tlue jay Eag I eP .
. enguin
Labrador salmen sparrow RO bln g
Ilguana
Finch
dog ||+ fish [[* bird | animal //Whale\ Ant
Chicken — / RN
. Dolphin
Ostrich . P N\ KL—— Cockroach
ping rose apple Seal
oak violet ” crange _’/ \ Butterﬂy
s = Rhino Wolf Bee
orse
Elephantﬂ Cow | Dog
tree " flower || T fruit plant Deer Cat
living thing :
Glraffecame| Lion
Xu & Tenenbaum (2007 Gorilla - .. Tiger
( ) Chimp _ Squirrel S
use
Kemp & Tenenbaum (2008)
Initial Learned Library of Concepts
Primitives
map concept 13
fold concept_4 /1AUJ(car (concept 4 L )
. \/()\(; P) (fold | ml}/‘ (A(y) (nil? (concept_4 | (OHLCDtﬁlD
(A(z u) (if (P‘z) \jk(z) (> zy)))»))) \\l (A (L N)(concept 13 (concept 4
cons \(cons Z u) w))) [maximum)] [L (A (L)(> N (Llength( n wtwr 4
> [ﬁ'ter] L ()\ (W)(>z u))))))))

[nth largest element]

... and many more

(A (x) (map (A (y) (car (fold (fold x nil (A (z u) (if (gt? (+ y 1) (length (fold x nil (A (v
w) (if (gt? z v) (cons v w) wW))))) (cons z u) w))) nil (A (a b) (if (nil? (fold (fold x nil

(M (cd) (if (gt? (+ y 1) (length (fold x nil (A (e f) (if (gt? c e) (cons e f) f))))) (cons
cd) d))) nil (A (g h) (if (gt? g a) (cons g h) h)))) (cons a b) b))))) (range (length x))))

Dreamcoder: Ellis et al,. (2020)
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Wu, Meder & Schulz (Annual Reviews in Psychology, in press)

Theories of Concept Learning

Classification task

Previous Experiences

Sandwich!

\:i» 4
/!

\ Sandwich?

= 4
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Wu, Meder & Schulz (Annual Reviews in Psychology, in press)

Theories of Concept Learning

Classification task Rule-based
: : X Sandwich
Previous Experiences | 0 Not sandwich
Sandwich! 2 Query X
‘ — Rule
X
Dy
N <~ 9
Vs =3 o ? X
\ = :
Sandwich? L 0 0
— o

Bread Enclosure

* Rules describe the explicit boundaries of category boundaries

(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)
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Theories of Concept Learning

Classification task Rule-based
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Theories of Concept Learning

Classification task

Previous Experiences

Sandwich!

Flatness

Rule-based

X Sandwich

O Not sandwich
? Query

— Rule

Bread Enclosure

Flatness

Similarity-based
X Sandwich

O Not sandwich
?
4 Q_ue.ry | r X
<» Similarity 7
A
A
_____ » 9 e
& A . - X
O X
‘
o /0
y
O

Wu, Meder & Schulz (Annual Reviews in Psychology, in press)

Bread Enclosure

* Rules describe the explicit boundaries of category boundaries

(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)

* Similarity uses a comparison to previously encountered exemplars or a learned prototype
(aggregated over multiple experiences) as the basis of generalization

(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)
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Theories of Concept Learning

Classification task

Previous Experiences

Sandwich!

Flatness

Rule-based

X Sandwich

O Not sandwich
? Query

— Rule

Bread Enclosure

Flatness

Similarity-based

X Sandwich
O Not sandwich
?
2 Query X
<» Similarity 7
A
A
_____ » 9 e
& A . - X
Ol "« X
"‘n‘ ..: v-
0 e 0
y
O

Wu, Meder & Schulz (Annual Reviews in Psychology, in press)

Flatness

Bread Enclosure

* Rules describe the explicit boundaries of category boundaries

(Smith & Medin, 1981; Ashby & Gott, JEP:LMC 1988)

* Similarity uses a comparison to previously encountered exemplars or a learned prototype

(aggregated over multiple experiences) as the basis of generalization

(Rosch, CogPsy 1973; Medin & Schaffer, PsychRev 1978 ; Nosofsky, JEP:G 1986; Smith & Minda JEP:LMC 1998)

Hybrid

X Sandwich
? Query

— Hypothesis

?

Likelihood
1

Bread Enclosure

* Hybrids combine elements of both: Bayesian concept learning uses a distribution over rules,
while reproducing predictions of two influential similarity-based approaches

(Tenenbaum & Giriffiths, BBS 2001; Shepard, Science 1987; Tversky, PsychRev 1977)
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General principles

® Again, hybrid theories combining competiting mechanisms seem to
orovide the best answer

® Rules have a symbolic tlavor, offering rapid generalization and flexible

CcoMposItion

e Similarity has a subsymbolic flavor, where previously encounterec
example exert influence on generalization based on similarity-weignts

® A Nyorid using

Sayesian Inference combines the best of both worlds

® Concepts are not just passively learmed associations (model-free RL), but
seem to point towards generative representations about the structure of

the world (Model-based RL)
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Supervised and

Variable 1

Variable 1

Variable 2

Variable 1

Variable 1

Next weeks

unsupervised learning
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