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Quiz #3? 

Quiz clarification
• Quiz #2 further reduced 

to be out of 16 


• Avg score = 83%


• Quizzes 


• try not to have 
overlapping content


• minimal content from 
the same week’s 
lecture



Exam times now confirmed
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Course feedback
• Randomness of when quizzes occur 

• My logic for the current format is that it should be less stressful than mid-term 
tests with fixed dates 

• The content is designed to be much easier since it is random, whereas fixed 
date tests would have to be much harder 

• Also means I don’t need to take attendance and can get a regular pulse about 
what people are struggling with and what is relatively easy 

• Take-home tests are not ideal in a post-GPT world and would not resemble exam 
• Ultimately, the pop quizzes are a small part of your grade (20% with a best 3 out 

of 4 evaluation scheme) and designed to help you get the best possible grade on 
the final exam
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Course feedback
• Slides with or without animations? 

• Current I export with animations since I sometimes rely on animations to 
tell some part of the story 

• But I guess the pdfs are bigger 
• Inconsistency of grading between quiz #1 and #2? 

• This was mentioned in the feedback 
• Let’s chat if you had this issue
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Recap of the story so far…
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Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward
Reinforcement 

Learning

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 



Reinforcement Learning 
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′ |s)

st → st+1

R(at, st)



Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)

Reinforcement Learning 

9

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′ |s)

st → st+1

R(at, st)



Model
s
a

s′ 

r

Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)

Reinforcement Learning 

9

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′ |s)

st → st+1

R(at, st)



10

Model-free Model-based



10

Model-free
S-R learning

Model-based



10

Model-free
S-R learning

Model-based

Model
s
a

s′ 

rS-S learning



10

Model-free
S-R learning

Model-based

Model
s
a

s′ 

rS-S learning

Tolman (1948)



10

Model-free
2-step task

Feher da Silva et al., (2023); Daw et al., (2011)

1st Step

2nd Step

S-R learning

Model-based

Model
s
a

s′ 

rS-S learning

Tolman (1948)



10

Model-free
2-step task

Feher da Silva et al., (2023); Daw et al., (2011)
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Model-free
2-step task

Feher da Silva et al., (2023); Daw et al., (2011)

1st Step

2nd Step

S-R learning

Only cares whether actions 
were rewarded

Sensitive to structure, whether reward 
followed common vs. rare transition

Model-based

Model
s
a

s′ 

rS-S learning

Vicarious trial and error (VTE): hesitating, 
looking-back-and-forth behavior observed in rats 
when confronted with a choice

VTE as active hypothesis testing 
 

VTE = Learning↑ ↑

Won’t come back for the exam

Tolman (1948)
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• Recall that model-free methods can be categorized 
as Value-based, Policy-based, or Actor-Critic 

• Model-based methods can as well…
• DYNA (Model & Value)
• World Models (Model & Policy)
• Dreamer (Model & Actor-Critic)

Model-based planning
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The model can be used to simulate experiences for updating the value/
policy


These simulations are computationally costly, but supplement direct 
RL, leading to faster learning and greater flexibility
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methods
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Balancing flexibility and efficiency
• Model-free methods 

• Computationally efficient 
• But lack flexibility to changes in the 

environment: value is coupled to 
policy 

• Model-based methods 
• Highly flexible: value and policy can 

be quickly recomputed via simulations 
• But performing simulations are 

computationally costly 
• SR falls in between

12

Gershman (2018)
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Successor Representation

13

“Successor” as in succession: which states are likely 
to follow the current state, under a given policy

Vπ(s) = ∑
s′ 

M(s, s′ )r(s′ )

…

States

Re
w
ar
d

…

Reward 
Values

Successor 
Representation

Decomposition of the TD value function into SR and 
reward components, allowing for faster generalization 
to changes in reward

The SR is sensitive to policy, with representations 
skewed towards goals

The SR naturally identifies subgoals (via Eigenvectors)

In practice, computed using either off-policy (assuming 
a random policy) or on-policy methods (using delta-rule)



Social learning
Learning is not only from environmental 
feedback, but also from social sources 
 
Imitation via observational learning, where 
social learning strategies (SLS)  define 
various who, what, when 
 
Theory of mind (ToM) involves inferring hidden 
mental states from observable behavior 
 
Various Bayesian formalisms of ToM, but typically 
intractable and a key limitation of current AI

14

Bandura (1961)

Wu, Vélez, & Cushman (2022



Compression

Lossless compression is without loss of 
information

15

R

optimal lossless code

≈ H(X)

raw data

|X |

The optimal lossless code is based on 
assigning the shortest codes to the most frequent 
inputs: source coding theorem

compression

rate 
(resource cost)

00000000000
00000000001
00000000011

00001001101

11111111111

101010

111111111…

00
001
010

c
frequency

possible 
inputs

Even greater compression is possible by allowing 
for distortions: lossy compression

Compression decreases the resources  
required to store data

R

codes



Agenda for today

1. What is a concept?


2. Rule-based theories


3. Similarity-based theories


4. Hybrid approaches
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What is a concept?

Maurizio Cattelan Marcel Duchamp

Conceptual art
Shutterstock
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What is a “Sandwich?” 
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What is a “Sandwich?” 

Is a hotdog a sandwich?



Concept learning is at the heart of many key aspects of intelligence

19

One-shot generalization Creative composition Rapid transfer

Lake et al., (2015); Lake et al., (2017)

Josh Tenenbaum



The study of categories and concepts
• A category is a set of objects in the world and a concept is a mental 

representation of a category 
• We will use the two interchangeably 

• Classical View (Bruner et al., 1967):  
1. Concepts defined based on necessary and sufficient conditions for category 

membership 
2. Membership is all-or-nothing. All members are equally good 

• This perspective dates to Aristotelian “forms” and Logical positivist philosophy 
(e.g., Quine, Popper, etc…) 

• What are the necessary and sufficient conditions for something to be a sandwich?

20
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Different approaches to defining concepts 

Structural starch
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Rule-based theories
• Category membership defined by explicit rule-

based boundaries (Ashby & Gott, 1988) 
• The specificity of rules facilitates rapid generalization 
• Rules can be combined compositionally, making 

them infinitely productive (Goodman et al., 2008) 
• Yet rigidity makes them inflexible 

• What about root beer? Or open-faced 
sandwiches? 

• Even when accounting for exceptions to rules 
(Nosofsky et al,. 1994), rule-based methods can 
only really explain human behavior when paired 
with other learning mechanisms (Erickson & 
Krushke, 1998; Ashby et al,. 1998; Love et al., 
2004)

22

Furthermore, we wish to emphasize that in future in all 
cities, market-towns and in the country, the only 
ingredients used for the brewing of beer must be 
Barley, Hops and Water. - Reinheitsgebot (1516)
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Borderline items
• Early psychological experiments showed that people didn’t have well-defined 

categories (Hampton, 1979; Rosch & Mervis, 1975) and were even inconsistent 
when labeling the same object twice (McCloskey & Glucksberg, 1978)  

• People’s intuitive category boundaries seem to be fuzzy, can shift over time, and 
are sensitive to context

23
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Is an olive a fruit?

• Concepts can be defined based on necessary and sufficient 
conditions for category membership



Typicality
• Some objects seem to fit better into categories than 

others 
• Some are more typical than others 

• Family resemblance theory (Rosch & Mervis, 1975): 
• Items are typical if they  

a) have features frequent in the category 
b) don’t have features frequent in other categories 

• Thus, rather than hard & fast rules, similarity to typical 
items seems to matters

24

Multi-dimensional scaling of similarity 
ratings from Rips, Shoben, & Smith (1973)

Armstrong, Gleitman, & Gleitman (1983)
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Typicality
• Some objects seem to fit better into categories than 

others 
• Some are more typical than others 

• Family resemblance theory (Rosch & Mervis, 1975): 
• Items are typical if they  

a) have features frequent in the category 
b) don’t have features frequent in other categories 
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items seems to matters
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Multi-dimensional scaling of similarity 
ratings from Rips, Shoben, & Smith (1973)
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Typical

Atypical

Armstrong, Gleitman, & Gleitman (1983)

• Membership is all-or-nothing. All members are equally 
good



Similarity-based theories
• Rather than hard and fast rules, perhaps we 

use similarity comparisons to make on 
the fly generalizations about new objects 

• Similarity theories: Stimuli with similar 
features are more likely to belong to the 
same category 
• Distance in feature space provides a 

simple quantification of similarity 
• Two main camps: 

• Category membership based on 
comparison to previously learned 
prototypes or exemplars 25

similar

dissimilar

Levering & Kurtz (2019)



Prototype theory
• Prototypes are summary representations of 

a category (Rosch, 1973) 
• Typicality can be explained by items 

being closer to our learned prototype 
• Prototypes can be constructed based 

weighted features (Smith & Medin, 1981) 
• Some features are more important: 

Birds have wings (1.0), usually fly (0.8), 
some sing songs (0.3), and a few eat 
worms (0.1)  

• Categories are thus defined by similarity to 
the prototype

26

Which is the most prototypical chair?

Brenden Lake

Constructing a prototype by weighing important features



Exemplar theory
• No summary representation 

• We remember each exemplar (i.e., each instance) of 
a concept, and we compare new instances to these 
past memories (Medin & Schaffer, 1978) 

• Close similarity to well-remembered stimuli has a 
strong effect on classification: 
• Participants were often fooled by the negative match 

(with spots), even when body and legs didn’t match 
• Interpreted as evidence the dots from training 

exemplars had a large influence, even when the rule 
was explicitly told to participants 

• Categories are thus defined by similarity to past 
exemplars

27Allen & Brooks (1991)
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5 min break
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How do we define similarity?

30



Generalization as a method to test different forms of similarity

• How do we generalize limited 
experience to novel situations? 
• The degree of generalization should 

be a function of our latent similarity 
computations 

• The best similarity metric for 
predicting generalization should also 
reveal something about how we 
represent concepts

31

Possibilities

Experience

Generalization  similarity∝

Novel situation



Two main approaches: Metric vs. Set

32

A ∩ BA − B B − Ax
Distance

x

x′ 

Metric Set

Embed data in some vector space and compute 
similarity as the inverse of distance

Compare which features are jointly 
shared vs. unique (i.e., disjoint)



Shepard’s (1987) Law 
of Generalization 
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Generalization in Psychological Space
• Shepard (1987) believed that representations about 

categories or natural kinds correspond to a 
consequential region in psychological space


• Generalization arises from uncertainty about the 
extent of these regions


• As representational distance between stimuli x and x’ 
increases (i.e., become less similar), they are less 
likely to belong to the same region, and thus produce 
less similar outcomes


• This produces the smooth gradient of generalization

34



35Shepard (Science, 1987)



Limitations of “metric” similarity

36

Triangle Inequality

A

B C

BC+AB>AC

AC+BC>AB

AB+AC>BC

Symmetry

d(x, x′ ) = d(x′ , x)

• Two definitive properties are symmetry and triangle inequality


• But they are often violated in human judgments of similarity (Tversky, 1977)

Amos Tversky 
(1937-1996)
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Contrast model

•  are free parameters 

• To translate into Shepard’s language, rather than consequential regions in 
psychological space, concepts are defined based on sets of features 

• Similar to family resemblance theory (Rosch & Mervis, 1975) 

• Common and disjoint features may be weighted differently 

• A more refined similarity theory that allows for asymmetric similarity judgments that can 
also violate triangle inequality

θ, α, β

37

A ∩ BA − B B − Asim(A, B) = θf(A ∩ B) − αf(A − B) − βf(B − A)



Bayesian concept learning as a hybrid approach

• Much of modern cognitive science is 
dominated by Bayesian inference 

• Josh Tenenbaum and Tom Griffiths are two 
individuals who are largely responsible for it’s 
popularity 

• The same basic concept can explain a huge 
host of problems, from language acquisition, to 
structure learning, to program induction 

• But it all started with a number game and a 
model of probablistic rule learning from Josh’s 
PhD thesis

38



Number concepts
• Examples: 

• X is an even number 

• X is between 30 and 45 

• X is a prime number

• A computer generates a random number from a 
chosen concept, and you need to guess another 
number that is likely to fit

39Tenenbaum (PhD thesis 1999)
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Number concepts
• Examples: 

• X is an even number 

• X is between 30 and 45 

• X is a prime number

• A computer generates a random number from a 
chosen concept, and you need to guess another 
number that is likely to fit

• Even restricting the game to natural numbers between 
1 and 100, there are more than a billion billion billion 
subsets of numbers that such a program could 
possibly have picked out and which are consistent with 
the observed “yes" examples of 16, 8, 2, and 64

39Tenenbaum (PhD thesis 1999)



Bayesian Concept Learning
• Example: The concept of healthy person

• Problem: Given a set of examples (x’s in the plot), what is the 
probablity that some new example y will fall within consequential 
region C defining a healthy person?

40
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Bayesian Concept Learning
• Example: The concept of healthy person

• Problem: Given a set of examples (x’s in the plot), what is the 
probablity that some new example y will fall within consequential 
region C defining a healthy person?

• Solution: It depends on a distribution over hypotheses h 
(illustrated as rectangles) about the boundaries ofC
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Bayesian Concept Learning
Likelihood:

41

x’es generated randomly
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Bayesian Concept Learning
Likelihood:
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Bayesian size principle: under strong sampling, 
smaller ’es (consistent with the data) are more likely
h

x’es generated randomly

y new example
x Data point

x’es generated to be positive examples

Easily extended for multiple x’es with multiple features:



Bayesian Concept Learning
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• To summarize….


• The probability of y being in the same category of x is 
based on summing over all hypotheses consistent with the 
data 




• Where narrower hypotheses are favored under strong 
sampling 

 



Hypotheses can capture structured and arbitrary 
subsets of the data
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Bayesian Concept Learning Subsumes Tversky’s 
Contrast Model

45

Ratio model (alternative form)

Contrast model Bayesian concept learning

(equivalent when =0 and =1)α β

𝒳 ∩ 𝒴𝒳 − 𝒴 𝒴 − 𝒳



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

46

Shepard’s 
Generalization 
Gradient



Bayesian Concept Learning Extends Shepard’s 
Law of Generalization to Multiple Examples

46

Range of generalization 
decreases with more 
examples

more examples = less 
uncertainty about the 
extent of consequential 
region

Shepard’s 
Generalization 
Gradient
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Causal learning

Griffiths & Tenenbaum (2005)

Structure learning

Kemp & Tenenbaum (2008)

Word learning

Xu & Tenenbaum (2007)Program Induction

Lake, Salakhutdinov, & Tenenbaum (2015)

… and many more

Dreamcoder: Ellis et al,. (2020)
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General principles
• Again, hybrid theories combining competiting mechanisms seem to 

provide the best answer 
• Rules have a symbolic flavor, offering rapid generalization and flexible 

composition 
• Similarity has a subsymbolic flavor, where previously encountered 

example exert influence on generalization based on similarity-weights 
• A hybrid using Bayesian inference combines the best of both worlds 

• Concepts are not just passively learned associations (model-free RL), but 
seem to point towards generative representations about the structure of 
the world (Model-based RL)
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Next weeks
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Supervised and unsupervised learning Function learning


