General Principles of
Human and Machine Learning

Lecture 7: Compression and resource constraints

David G. Nagy
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e quiz
o maximum score for quiz #2 is reduced to 16 from 18
« from now on, pop quizzes may contain content from the lecture in the
same week
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o halfway feedback form on course, please submit at
e https://forms.gle/BWBHobeVZniJKuKdA



https://forms.gle/BWBHobeVZniJKuKdA
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today

e focus on constraints on memory
¢ |ossless and lossy compression
® generative compression

® perception as bayesian
inference

® human memory distortions
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computational problem of memory

environment
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(Nickerson & Adams, 1979)
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Also happens for logos of well known companies. Maybe people just aren’t good at drawing?
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near perfect %
drawing é‘ .

Taad Loganl
forgot referee LU 4.3%,

referee facing the QP,
wrong way . 40%

e Tlan Ke.

added a hat ﬁ 18%

shoe instead of
referee

14%

O I




recognition

Prasad & Bainbridge, 2023




is the lesson from this simply that human memory is poor?
memory resources are certainly bounded

but it is possible to do badly, do well or even optimally in
relation to available resources




theory of lossless compression

compression
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| walked my four legged animal that barks on the day before today after the huge
glowing ball of fire left the sky
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possible
inputs
00000000000
00000000001
00000000011

00001001101

11111111111

19

how should
we choose
the codes?

frequent inputs

l

short codes




frequency

a

possible
inputs
00000000000
00000000001
00000000011

00001001101

11111111111

20

how should
we choose
the codes?

frequent inputs

1

short codes




possible

frequency inputs
I - 00000000000 =———> 00
B~ 00000000001 ——» 001
B - 00000000011 =——» 010

Bl 00001001101 = 101010
I 11111111111 —— 111111111 111111111
21

note that using short codewords for frequent inputs means that the codewords for some inputs will have to be longer than the original input, so if our frequency estimates
are wrong, the encoding might turn out to require more memory resources than just storing the original input directly
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probabilistic

models

possible
inputs

00000000000
00000000001
00000000011

22

—_— 001
—p 010

—

li

l; = —logp;

possible codes
(languages)

p_i is the probability or relative frequency of an input string
|_i is the length of the code word that is used for the i-th input




probability budget

probability

0.5

input
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codeword budget

how many codewords of length /;?

27




how many codewords of length /;?

10
11
00
01
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how many codewords of length /;?

100
101
10 110
11 111
00 000
01 001
010

011
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how many codewords of length /;?

10
11
00
01

px

30

100
101
110
111
000
001
010
011

1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111




1 11 111 1111
0 00 000 0000

01 001 0001
010 0010
011 0011

0100
0101
0110
31 0111

this is assuming prefix-free codes, meaning that if we use e.g. ’10’ as a codeword, we can’t use any other that begins the same way, otherwise after reading ’10’ we
wouldn’t know if the codeword was ending or a if we should continue reading
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00
01
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111
000
001
010
011

1111
0000
0001
0010
0011
0100
0101
0110
0111




00
01
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000
001
010
011

0000

0001
0010
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0110
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Kraft-McMillan inequality
proof: https://en.wikipedia.org/wiki/Kraft-McMillan_inequality#Proof_for_prefix_codes



p=1/16 > I, =4

1000
1001
1010

1011

example coding function

1100

1101

1110

1111

35

0000

0001

0010

0011

0100

0101

0110

0111

- the grid is a probability distribution with 16 equally likely outcomes
- each element of the grid is given a unique codeword




p=1/16 » I, =4

1000
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1100

1101
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p1=1/16 g ll=4

1000

1001

pi=1/8 > ;=3

1100

1101

1110

1111
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p=116 — [, =4
1000 1100 0000 0100
1001 1101 0001 0101
1110 0010 0110
1111 0011 0111
if the two events in the bottom left become the same event with twice the probability, then substituting the new p_i=1/8 into the |_i=-log p_i equation will mean that we

should find a length 3 codeword for it
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1000

1001

p3=1/18 - =3

1100

1101

1110

1111
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1000

1001

p3=1/18 - =3

1100

1101

1110

1111
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I - 00000000000  —— 00
B~ 00000000001  =——» 001
P~ 00000000011 =—— 010
pi i
— =l = —
pi=2"" — l;=—logp;
probabilistic possible codes
models (languages)
find.a model that find a ‘language’ in which
describes the world experiences can be described
well concisely
42

- it is possible to compress inputs (describe more concisely) without losing information
- the trick behind this is that if we know the frequencies/probability distribution of inputs, we can use short codewords for frequent inputs and on average we will then

have a short description length
- there is a precise relationship between the frequencies and code lengths, see equations
- this establishes a correspondence between probabilistic models and encodings: in general if you have an encoding or description language, the description lengths

imply a probability distribution, which is what the ‘creator’ of the language expects to happen



lossless compression

(source coding theorem)

H(X) = E[-logp;] < E[l] < E[-logp;]+ 1

optimal lossless code

\

L 2
~ H(X) R

rate
(resource cost)

43

- the degree to which it is physically possible to compress without losing any details (lossless compression) is a property of the probability distribution of the input source
(X). The numerical bound is given by the entropy H(X), which is the average of log(1/p_li).

- this quantity, H(X)=E[-log p_li], is the lower bound on the expected codeword length for an optimal lossless code
- for a detailed description of this and the tutorial’s material, see MacKay Chapter 3 (p 67-81): http://www.inference.org.uk/itprnn/book.pdf




lossy compression

distortion
(error)

D

realisable codes
min D(x,X) s.t.I(x,X) <R
0

optimal codes

~ H(X) R

rate
(resource cost)

44

- if we want to compress the input even further, we will have to accept some loss of information, that is, some distortion in the reconstruction
- this means that we now have two axes along which we measure compression algorithms: the amount of memory resources similarly to as before, but now we also
measure the expected distortion in the input

*we did not end up going into this so this is just for interest, not for exam:

rate here is measured in I[(A,B), meaning mutual information between A and B

- this is the information that A contains about B (or that B contains about A)

- 1(A,B)=H(A)-H(A|B)=H(B)-H(B|A)

- that is, the reduction in entropy about A if we learn the value of B

- if B is the memory trace for A, this tells us how noisy vs reliable the memory device is



rate distortion trade-off

distortion
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(error)
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(resource cost)

Prasad & Bainbridge, 2023
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generative compression

P(x|0)

generative model

48

P(x)

environment

a generative model is a probabilistic model of how the environment generates observations




generative compression

semantic memory

P(x|0)

49

sensory experience

X
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perception as inference

what are we interested in
what can we observe

* what objects are around us . .
* incoming photons

* how far

* who are around us

* what are they thinking

* whatis going to happen

* airvibrations
* temperature fluctuations
e certain molecules

50
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snow in the evening seems white



54

coal in the sun still seems black, even though more photons arrive from it to our eyes than snow in the dark
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lighting x reflectance = brightness

lightin reflectance
gnting (material)
brightness

O




56

lighting x reflectance = brightness

lightin reflectance
gnting (material)
brightness

O




reflectance I

lighting ]

iighting [

brightness .

brightness -

lighting x reflectance = brightness

lightin reflectance
gnting (material)
brightness
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generative direction

if the environment was in this state,
what would | see?







* inverse direction

* if | see this, what state is the
environment in?

* inverting the generative model

* ‘“vision is inverse graphics”

* Bayesian inference posterior  likelihood prior

%

* recognition model

L.

p(x|2)
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what we see is not the data but an interpretation of the data

‘unconscious inference’ over latent variables
62




Kersten & Yuille, 2003




Kersten & Yuille, 2003




Kersten & Yuille, 2003




Kersten & Yuille, 2003
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Kersten & Yuille, 2003




hypotheses sampled
from prior

68

Kersten & Yuille, 2003




hypotheses sampled hypotheses with
from prior nonzero likelihood

69 Kersten & Yuille, 2003
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hypotheses sampled hypotheses with
from prior nonzero likelihood

70 Kersten & Yuille, 2003




“the girl saw the boy with the telescope”
J 2
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Goodman & Frank, 2016




Goodman & Frank, 2016
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McGurk & MacDonald, 1976




variational autoencoder

iy, s,

“3 / N
NN M W NN AR
X Z X
input memory trace reconstruction
(code)
74 Kingma & Welling, 2014; Rezende et al, 2014

beta-VAE can be seen as both as a generative model + an inference method for approximately inverting it, and also as a lossy compression algorithm






generate X
sample z X ~ p(x|z)
2 <~ q(Z | .X) 2
~
X ~“~~_. __." _)2'
compute  Tteel__.a-
approximate 7 generation
posterior
q(z|x) = p(z|x)

7 Kingma & Welling, 2014; Rezende et al, 2014

1. compute an approximate posterior based on sample x
2. sample a single z from this posterior
3. conditioning the generative network on this sample z, generate a reconstruction



77 Kingma & Welling, 2014; Rezende et al, 2014

different x-es will correspond to different posteriors and therefore different reconstructions, but in case the posteriors overlap, the memory traces for different stimuli
might be confused
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Kingma & Welling, 2014; Rezende et al, 2014
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Kingma & Welling, 2014; Rezende et al, 2014
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30 Kingma & Welling, 2014; Rezende et al, 2014

- in a VAE, both the inference method and the generative model are neural networks

- the objective function for training the beta-VAE consists of two terms, which in the compression view correspond to rate and distortion. In the generative modelling
literature these are called ‘regularisation term’ and ‘reconstruction’ term respectively

- D_KL is KL-divergence, a form of (almost) distance between probability distributions



realisable
codes

..
.

highp ./ % lowp
low I(X,Z) ./ . high I(X,2)
% “a

approx.
posterior

g4z | x) “ L 2 L

| 7
81

- intuitively, when KL term is weighted more strongly (using beta), posteriors have to resemble the wide and spherical prior more
- this makes it more likely that they overlap and makes the variance of the sampled z larger
- this corresponds to a lower rate (less information in the memory trace about the original input)
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chess M g
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sketches s X Z X £ object pairs
food
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H food bread wikipedia
word lists cat sandwich
sandwich
x ~ P(x|x) D

Nagy et al. 2020

- Bates & Jacobs 2020,Hedayati et al.




domain expertise
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reconstruct state of chess board after 5 seconds viewing time
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Nagy et al. 2020

- accuracy increases with domain expertise, but only for configurations from actual chess games

- for randomly shuffled configurations, skill does not help much
- skill in model is amount of training of beta-VAE




uniform

RCIFODWVIL
GKTODKPENF
TZXKHAWCCEF
NGORHQIYWB
BVNJSYZXUA

domain congruence

1st order

TNEOOESHHE
INOLGGOLVN
PDOASLOTPP
AEOCAOIAON
IRCRENFCTN

2nd order

HIRTOCLENO
DOVEECOFOF
SESERAICCG
AREDAGORTZ
CUNSIGOSUR

85

3rd order

BETEREASYS
CRAGETTERS
TOWERSIBLE
DEEMEREANY
THERSERCHE

full word

PLANTATION
FLASHLIGHT
UNCOMMONLY
ALTENATION
PICKPOCKET

- reconstruct words with statistics that are increasingly congruent with the statistics of english language
- very similar to chess example, but there we had two degrees of congruence - random and game




uniform

RCIFODWVIL
GKTODKPENF
TZXKHAWCCEF
NGORHQIYWB
BVNJSYZXUA

experiment model
#] —e— 10 letters
7 —e— 9 letters
g 61 \\\ —eo— 8 letters
g 7 letters
g5
g N \\'\<
1]
® ot 1st 2nd 3rd oth 1st 2nd 3rd
1storder 2nd order  3rd order
TNEOOESHHE HIRTOCLENO BETEREASYS
INOLGGOLVN DOVEECOFOF CRAGETTERS
PDOASLOTPP SESERAICCG TOWERSIBLE
AEOCAOIAON AREDAGORTZ DEEMEREANY
IRCRENFCTN CUNSIGOSUR THERSERCHE

(experiment: Baddeley et al., 1971, model: Frater et al., 2022)

full word

PLANTATION
FLASHLIGHT
UNCOMMONLY
ALIENATION
PICKPOCKET

- accuracy increases with degree of congruence with english, and decreases with length of word




gist-based distortions

recognition probability

studied
avg

recall probability

87

0.8

o
IS
1

experiment

(Roediger &
McDermott
1995)

model

(Nagy et al.
2020,
see also Spens &
Burgess, 2023)

— lure is a semantically related word that was not in the list
— lures are falsely recognised with comparable probability to studied items
— effect of regenerating the list from stored latent representation
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“resembles
dumbbell”

-

‘resembles
eyeglasses”

i

S

88

)

- subjects view ambiguous stimuli, with different labels for different subjects
- labels introduce label-specific distortions in recall




S

e et Wi stet

-
W P Wal
o OU
nese P——
« X f
N - L
O v
n y -
7 )
Ly owv T
A
-4 =
e

o 9O 1R

Carmichael et al., 1932

89




1 5
onl with lubed et s A avh Lake
[} ygn
—~~ N ~
- oY a0
[P [ap—o
Y W
A L ﬁ
Lo * e
ey ~—~
b{ {
Lroon o
>
¥ o o=
SV W N
A - N
I /
@ Q &

Carmichael et al., 1932

90

ey ¥ e
recal with Label ot recall wich sbel
s L)

0

—

ayeghaenes

i~ 00

(o -0
vt 0O-

c—¢ C0
~

Nagy et al. 2020




delayed recall
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accuracy




2(0)
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distortion

(error)

rate
(resource cost)
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£t + Ar)
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distortion

(error)

t=t+At, > =5

\

rate
(resource cost)
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goals, tasks, value

perception

environment
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Xt

d(x, %) = (x — x)?

o7 see Bates & Jacobs, 2020

- in engineering contexts, typical distortion is MSE in pixel space
- for a robot that needs to manipulate a small white ball, removing this ball from the input leads to almost negligible reconstruction error
- need to overweight errors that are relevant to rewards
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based on Hafner et al., 2023

- this can be incorporated in VAEs, for example this is the basis of the DREAMER v3 model that you’ve seen in lecture 5
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Laal wickh

- humans are also sensitive to reward-relevance in memory accuracy
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Lai & Gershman, 2021
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Lai & Gershman, 2021
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Lai & Gershman, 2021
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Zaslavsky et al 2018




summary

e focus on constraints on memory
* |ossless compression

* |ossy compression

perception

® generative compression

® perception as bayesian
inference

e human memory distortions
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can information capture all constraints?
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Next week: Concepts & Categories

Is a hotdog a sandwich?
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