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Lecture 7: Compression and resource constraints 

https://hmc-lab.com/GPHML.html 
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• quiz 
• maximum score for quiz #2 is reduced to 16 from 18 
• from now on, pop quizzes may contain content from the lecture in the 

same week 
 
 
 
 
 

• halfway feedback form on course, please submit at 
• https://forms.gle/BWBHobeVZniJKuKdA
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• focus on constraints on memory 

• lossless and lossy compression 

• generative compression 

• perception as bayesian 
inference 

• human memory distortions
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computational problem of memory



(Nickerson & Adams, 1979)
6



apple adidas burger 
king domino’s 7 

eleven

foot 
locker starbucks walmart target ikea

7



8

Also happens for logos of well known companies. Maybe people just aren’t good at drawing?



 9



near perfect 
drawing

forgot referee

referee facing the 
wrong way

added a hat

shoe instead of 
referee

8%

43%

40%

18%

14%

10



A B

P(
A)

P(
B)

recognition

Prasad & Bainbridge, 2023
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• is the lesson from this simply that human memory is poor? 

• memory resources are certainly bounded 

• but it is possible to do badly, do well or even optimally in 
relation to available resources
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theory of lossless compression



I walked my four legged animal that barks on the day before today after the huge 
glowing ball of fire left the sky

compression
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I walked my four legged animal that barks on the day before today after the huge 
glowing ball of fire left the sky

compression
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I walked my dog on the day before today after the huge glowing ball of fire left the 
sky

compression
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I walked my dog yesterday after the huge glowing ball of fire left the sky

compression
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I walked my dog yesterday after sunset

compression

18



00001001101

00000000000
00000000001
00000000011

11111111111

possible 
inputs

00001001101

11111111111

c

how should 
we choose 
the codes?

frequent inputs 
  

short codes
↓

19



00001001101

00000000000
00000000001
00000000011

11111111111

frequency
possible 

inputs c

frequent inputs 
  

short codes
↓

20

how should 
we choose 
the codes?



00000000000
00000000001
00000000011

00001001101

11111111111

101010

111111111…1111111111

00
001
010

c
frequency

possible 
inputs

21

note that using short codewords for frequent inputs means that the codewords for some inputs will have to be longer than the original input, so if our frequency estimates 
are wrong, the encoding might turn out to require more memory resources than just storing the original input directly
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probabilistic  
models

possible codes 
(languages)

pi = 2−li li = − log pi

p_i is the probability or relative frequency of an input string

l_i is the length of the code word that is used for the i-th input
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this is assuming prefix-free codes, meaning that if we use e.g. ’10’ as a codeword, we can’t use any other that begins the same way, otherwise after reading ’10’ we 
wouldn’t know if the codeword was ending or a if we should continue reading
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Kraft-McMillan inequality

proof: https://en.wikipedia.org/wiki/Kraft–McMillan_inequality#Proof_for_prefix_codes
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example coding function

- the grid is a probability distribution with 16 equally likely outcomes

- each element of the grid is given a unique codeword
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example coding function
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example coding function
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example coding function

if the two events in the bottom left become the same event with twice the probability, then substituting the new p_i=1/8 into the l_i=-log p_i equation will mean that we 
should find a length 3 codeword for it
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example coding function
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example coding function
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example coding function
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- it is possible to compress inputs (describe more concisely) without losing information

- the trick behind this is that if we know the frequencies/probability distribution of inputs, we can use short codewords for frequent inputs and on average we will then 

have a short description length

- there is a precise relationship between the frequencies and code lengths, see equations

- this establishes a correspondence between probabilistic models and encodings: in general if you have an encoding or description language, the description lengths 
imply a probability distribution, which is what the ‘creator’ of the language expects to happen
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𝔼[−log pi] ≤ 𝔼[li] < 𝔼[−log pi] + 1H(X) =

- the degree to which it is physically possible to compress without losing any details (lossless compression) is a property of the probability distribution of the input source 
(X). The numerical bound is given by the entropy H(X), which is the average of log(1/p_i).

- this quantity, H(X)=E[-log p_i], is the lower bound on the expected codeword length for an optimal lossless code

- for a detailed description of this and the tutorial’s material, see MacKay Chapter 3 (p 67-81): http://www.inference.org.uk/itprnn/book.pdf
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min
θ

D(x, ̂x) s . t . I(x, ̂x) ≤ R

- if we want to compress the input even further, we will have to accept some loss of information, that is, some distortion in the reconstruction

- this means that we now have two axes along which we measure compression algorithms: the amount of memory resources similarly to as before, but now we also 

measure the expected distortion in the input


*we did not end up going into this so this is just for interest, not for exam:

rate here is measured in I(A,B), meaning mutual information between A and B

- this is the information that A contains about B (or that B contains about A)

- I(A,B)=H(A)-H(A|B)=H(B)-H(B|A)

- that is, the reduction in entropy about A if we learn the value of B

- if B is the memory trace for A, this tells us how noisy vs reliable the memory device is
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≈ H(X)

 45 Prasad & Bainbridge, 2023
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̂P(x |θ) P(x)
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generative compression

generative model environment

a generative model is a probabilistic model of how the environment generates observations
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sensory experiencesemantic memory
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generative compression

x
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θ

perception as inference

what can we observe
• incoming photons 
• air vibrations 
• temperature fluctuations 
• certain molecules

what are we interested in 
• what objects are around us 
• how far 
• who are around us 
• what are they thinking 
• what is going to happen

inference
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Google

perception as inference
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brightness

coal/snow

perception as inference
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snow in the evening seems white



perception as inference
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coal in the sun still seems black, even though more photons arrive from it to our eyes than snow in the dark
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P(x |z)

perception as inference

• generative direction


• if the environment was in this state, 
what would I see?
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P(x |z)

perception as inference
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P(x |z)

P(z |x) ∝ P(x |z) P(z)
priorposterior likelihood

x

p(
x|

z)

z

p(
x|

z)

perception as inference
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• inverse direction


• if I see this, what state is the 
environment in?


• inverting the generative model


• “vision is inverse graphics”


• Bayesian inference


• recognition model



perception as inference
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• what we see is not the data but an interpretation of the data


• ‘unconscious inference’ over latent variables

perception as inference
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perception as inference

63 Kersten & Yuille, 2003




perception as inference

64 Kersten & Yuille, 2003




perception as inference

65 Kersten & Yuille, 2003




perception as inference

66 Kersten & Yuille, 2003




perception as inference

67 Kersten & Yuille, 2003




image data

perception as inference

68 Kersten & Yuille, 2003


hypotheses sampled 
from prior



image data

hypotheses with 
nonzero likelihood

perception as inference

69 Kersten & Yuille, 2003


hypotheses sampled 
from prior



image data

posterior

perception as inference

hypotheses with 
nonzero likelihood

hypotheses sampled 
from prior

70 Kersten & Yuille, 2003




“the girl saw the boy with the telescope”

j1 j2

perception as inference
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Goodman & Frank, 2016




u

P( m | u )

perception as inference
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Goodman & Frank, 2016




perception as inference

73 McGurk & MacDonald, 1976




x z ̂x

variational autoencoder

74 Kingma & Welling, 2014; Rezende et al, 2014


memory trace 
(code)

input reconstruction

beta-VAE can be seen as both as a generative model + an inference method for approximately inverting it, and also as a lossy compression algorithm



variational autoencoder 

x z ̂x



x ̂x

variational autoencoder 

76 Kingma & Welling, 2014; Rezende et al, 2014


inference

z

prior

Z generation

q(z |x) ≈ p(z |x)

compute 
approximate 

posterior

z ∼ q(z |x)
sample z ̂x ∼ p(x |z)

generate ̂x

1. compute an approximate posterior based on sample x

2. sample a single z from this posterior

3. conditioning the generative network on this sample z, generate a reconstruction 



x ̂x

variational autoencoder 

 77 Kingma & Welling, 2014; Rezende et al, 2014


different x-es will correspond to different posteriors and therefore different reconstructions, but in case the posteriors overlap, the memory traces for different stimuli 
might be confused
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variational autoencoder 

 78 Kingma & Welling, 2014; Rezende et al, 2014




x ̂x

variational autoencoder 

79 Kingma & Welling, 2014; Rezende et al, 2014




rate

distortion

variational autoencoder 

−β DKL[q(z |x, ϕ) | | p(z |θ)]

𝔼z∼q(z|x,ϕ) log p(x |z, θ)

x z ̂x

80 Kingma & Welling, 2014; Rezende et al, 2014


- in a VAE, both the inference method and the generative model are neural networks

- the objective function for training the beta-VAE consists of two terms, which in the compression view correspond to rate and distortion. In the generative modelling 

literature these are called ‘regularisation term’ and ‘reconstruction’ term respectively

- D_KL is KL-divergence, a form of (almost) distance between probability distributions
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prior
approx. 

posterior

high  β low  β

high  I(X, Z)low  I(X, Z)

high  β

low  β

- intuitively, when KL term is weighted more strongly (using beta), posteriors have to resemble the wide and spherical prior more

- this makes it more likely that they overlap and makes the variance of the sampled z larger

- this corresponds to a lower rate (less information in the memory trace about the original input)
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Nagy et al. 2020
Bates & Jacobs 2020,Hedayati et al.  

x z ̂x

variational autoencoder 
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domain expertise

83

reconstruct state of chess board after 5 seconds viewing time



Nagy et al. 2020

Gobet & Simon, 1995

domain expertise
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- accuracy increases with domain expertise, but only for configurations from actual chess games

- for randomly shuffled configurations, skill does not help much

- skill in model is amount of training of beta-VAE
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uniform 1st order 2nd order 3rd order full word
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domain congruence

- reconstruct words with statistics that are increasingly congruent with the statistics of english language

- very similar to chess example, but there we had two degrees of congruence - random and game



domain congruence
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(experiment: Baddeley et al., 1971, model: Frater et al., 2022)
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- accuracy increases with degree of congruence with english, and decreases with length of word
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- lure is a semantically related word that was not in the list
- lures are falsely recognised with comparable probability to studied items
- effect of regenerating the list from stored latent representation
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- subjects view ambiguous stimuli, with different labels for different subjects

- labels introduce label-specific distortions in recall



Carmichael et al., 1932
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gist-based distortions
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Carmichael et al., 1932

s1 s2

Nagy et al. 2020

gist-based distortions
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Nagy et al. 2020


delayed recall
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goals, tasks, value



d(x, ̂x) = (x − x)2

xt ̂xt

goals, tasks, value

see Bates & Jacobs, 202097

- in engineering contexts, typical distortion is MSE in pixel space

- for a robot that needs to manipulate a small white ball, removing this ball from the input leads to almost negligible reconstruction error

- need to overweight errors that are relevant to rewards



based on Hafner et al., 2023

atrt

xt ̂xt

goals, tasks, value
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- this can be incorporated in VAEs, for example this is the basis of the DREAMER v3 model that you’ve seen in lecture 5



Bates & Jacobs, 2020 99

* goals, tasks, value

- humans are also sensitive to reward-relevance in memory accuracy



* goals, tasks, value

 100 Lai & Gershman, 2021
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* goals, tasks, value

102 Lai & Gershman, 2021
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• lossless compression 

• lossy compression 

• generative compression 

• perception as bayesian 
inference 

• human memory distortions



can information capture all constraints?
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