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Clarification
• Two-step tasks 

• Transitions are a property of the environment and the 
participants choice 

• The participant chooses  or  
• But then probabilistically (common=70% vs. rare = 30%), 

transitions to either pink or blue on the 2nd step 
• The key takeaway is that MF vs MB have different responses to 

the same outcome  
• MF: If rewarded —> stay 

       if not rewarded —> go 
• MB: depends on whether reward followed a common or rare 

transition… you shouldn’t expect a rare transition to occur again  
        if (common & reward | rare & no reward) —> stay 
        if (common & no reward| rare & reward ) —> stay
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Model-free



Last week…
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Reinforcement Learning 
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

• Governs the transition between 
states 


• Provides rewards 

st → st+1

R(at, st)

• Selects actions  


• Receives feedback from the 
environment in terms of new states 

 and rewards 

at

st+1 R(at, st)

The Agent:

The Environment:



7

A B

Q-Learning in a bandit task
Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

Qt(a) ← Qt(a) + η [r − Qt(a)]
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Model-free RL Model-based RL

• Habit 
• Cheap 

•  
• Myopically selecting actions 

that have been associated 
with reward

Q(s, a)

• Goal-directed 
• Computationally costly 

•   
• Planning and seeking of long term 

outcomes 

P(s′￼, r |s, a)

Duarte et al,. (2020)

Monte carlo tree search



Today’s agenda
• Advances in … 

• Model-free methods 

• Deep Q-learning, policy gradient & Actor-Critic 

• Model-based methods 

• DYNA, World models, & Dreamer 

• Something in between 

• Successor representation
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Advances in Model-free RL
• Value-based methods 

• Last week: Value iteration, Q-Learning &  
TD-learning 
• Problem: what if the state-space is too 

large to visit? 
• Deep Q-Learning for function approximation

• Policy-based methods 
• Policy-gradient for directly optimizing a policy

•  Actor-Critic 
• Modern version of Policy-iteration: 

Value         Policy
10

Value-based 
methods

Policy-based 
methods

Actor-Critic



Deep Q-learning

11

Tabular methods: 
• Q-Learning: learn Q-values by updating 

a look-up table 



Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)

Tabular methods: 
• Q-Learning: learn Q-values by updating 

a look-up table 



Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)
• Weight updates: 

wt+1 ← wt + αδ∇wQw(s, a)

Tabular methods: 
• Q-Learning: learn Q-values by updating 

a look-up table 



Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)
• Weight updates: 

wt+1 ← wt + αδ∇wQw(s, a)

Tabular methods: 
• Q-Learning: learn Q-values by updating 

a look-up table 

learning rate



Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)
• Weight updates: 

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
a′￼

Qw(s′￼, a′￼) − Qw(s, a)

Tabular methods: 
• Q-Learning: learn Q-values by updating 

a look-up table 

δ
learning rate



Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)
• Weight updates: 

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
a′￼

Qw(s′￼, a′￼) − Qw(s, a)

• Gradient of Q-function w.r.t. to , 
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learning rate



Deep Q-learning

11Mnih et al,. (Nature, 2015)

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN 

to learn Qw(s, a)
• Weight updates: 

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
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• Gradient of Q-function w.r.t. to , 
trying to reduce prediction error!

w

Tabular methods: 
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learning rate



Universal Approximation Theorem
• What is a function? 

•  

•  
• ANNs are also functions 

•   where  are the 
connection weights 

• At least one neural network exists 
that can approximate any continuous 
function with arbitrary precision 

•

y = f(x)
f : X → Y

gw(x) = σ(x) w

|gw(x) − f(x) | < ϵ
12

Cybenko (1989)

X Y

x1
y1

x2
xn y2

yn

f

https://www.youtube.com/watch?v=Ln8pV1AXAgQ
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Caveat: Approximation does not guarantee generalization

13

Possibilities

Experience

Generalization

Novel situation
Predicting

Fitting



Yet why do large ANNs work so well?
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Belkin et al., (2019)• Double descent phenomena 
• left: standard story 
• right: over-parameterized models start to reduce 

prediction error
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Yet why do large ANNs work so well?

14

Belkin et al., (2019)

Frankle & Carbin (2019)

*not actually good financial advice

• Double descent phenomena 
• left: standard story 
• right: over-parameterized models start to reduce 

prediction error
• Lottery Ticket conjecture 

• if you buy enough lottery tickets, one is bound to 
be a winner* 

• Large “over-parameterized” ANNs have a bunch 
of different subnetworks that are randomly 
initialized (i.e., lottery tickets) 

• SGD focuses on training winning subnetworks 
• Pruning connections not part of the winning ticket 

can improve efficiency and even performance 

• The effective complexity  ≠ |θ |

Not on the exam but very cool



Policy Gradient
• Deep Q-learning uses an 
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function 
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softmax over Q-values)
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Action

Policy Gradient
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Policy Gradient
• Use a neural network to parameterize a policy   

• Objective: Maximize expected reward following a parameterized policy:  

• Method: using gradient ascent  

• Using the Markov principle, we can write the gradient as:

 

• Updates to  follow the gradient to increase the probabability of highly rewarding actions: 
 

• Here,  is usually estimated through Monte Carlo sampling

πθ(a |s)
J(θ) = 𝔼τ∼πθ

[r(τ)]

θt+1 = θt + β∇θJ(θt)

∇J(θt) = 𝔼πθ [
|τ|

∑
t∈τ

∇log πθ(at |st)Q(at, st)]
θ

θt+1 = θt + α∇θlog πθ(at |st)Q(at, st)
Q(at, st)

Formulas not on exam, but you should understand the general concept!

learning rate

∇θlog πθ(at |st)Q(at, st)



Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based 

methods and is a generalization of policy iteration

• Actor provides the policy  parameterized by πθ(a |s) θ

• Critic provides the value function  parameterized by Qw(s, a)
w

17
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methods
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based 
methods

Actor-
Critic
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Actor-Critic
• Actor-critic combines value-based and policy-based 

methods and is a generalization of policy iteration

• Actor provides the policy  parameterized by πθ(a |s) θ

• Critic provides the value function  parameterized by Qw(s, a)
w

• Simulate trajectories  and compute TD errora ∼ πθ(a |s)
δ = r + γ max

a′￼

Qw(s′￼, a′￼) − Qw(s, a)

• Iteratively update actor and critic

• Critic update:  
reduce prediction error

wt+1 = wt + αδ∇wQw(s, a)

• Actor update:  
increase probability of highly rewarding actions

θt+1 = θt + βδ∇θlog πθ(a |s)Qw(s, a)
17
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Model-free methods summary
• Just put ANNs everywhere! 
• Value-based methods 

• Deep Q Learning  
• Policy-based methods 

• Policy Gradient 
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• Integration of both value-based and policy-based methods
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Model-based methods
• Learning a “field map of the environment” 

helps with planning and generalization 
• But how is the model learned? 
• And how is it used to in RL? 
• We will discuss 

• Learning transitions via Delta-Rule 
• DYNA for simulating experiences 
• World Models 
• Dreamer V3

19

Model

s
a

s′￼

r



Learning the model through experience
• Follow whatever policy (e.g., random) 

and update the transition matrix using 
delta-rule 

 

• Kronecker delta  when 
the transition occurs (i.e.,  ) 

•  provided by 
learned transition matrix  
and value function  or 

Tt+1(s′￼|s, a) ← Tt(s′￼|s, a) + α (δ(s′￼, s) − Tt(s′￼|s, a))
δ(s′￼, s′￼) = 1

s → s′￼

Model(s, a) → [s′￼, r]
T(s′￼|s, a)

Q(s, a) V(s)

20

Model

s
a

s′￼

r

MDPTransition Matrix
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• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions, 

just like real experiences
1. Direct RL: Execute real actions and update value function 
Q(s, a) ← Q(s, a) + α[r + γ max

a′￼

Q(s′￼, a′￼) − Q(s, a)]

2. Model learning: 
a. Update model of the environment Model(s, a)
b. Simulate experiences:

• Give previously observed states and actions to model 
[s, a] → Model(s, a) → [s′￼, r]

•Update value function with simulated experiences 
Q(s, a) ← Q(s, a) + α[r + γ max

a′￼

Q(s′￼, a′￼) − Q(s, a)]

• These simulations can be controlled for better efficiency  
(e.g., prioritized sweeps of reward-relevant state visitations; Moore & 
Atkeson, 1993)



Benefits of Model-based planning
• Model-based planning needs far fewer real 

interactions with the environment (episodes) to 
learn better policies 
• Consider settings like self-driving cars, robotics, 

financial systems… where it is very costly to get 
real interaction data

22

Sutton & Barto Fig. 9.5



Benefits of Model-based planning
• Model-based planning needs far fewer real 

interactions with the environment (episodes) to 
learn better policies 
• Consider settings like self-driving cars, robotics, 

financial systems… where it is very costly to get 
real interaction data

• Halfway through only the 2nd episode… 
• Arrows show greedy action in each state and 

no arrow if all actions are equal

22

Sutton & Barto Fig. 9.5

Sutton & Barto Fig. 9.6
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Check out worldmodels.github.io/ for 
iteractive demos and more details!

David Ha

Jürgen 
Schmid- 
huber

http://worldmodels.github.io/


World models

24

Ha & Schmidhuber (2018)

DreamingReal (after training)
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Variational Autoencoder (VAE)

World models
• Vision Model (V) encodes high-dimensional 

visual data into a low-dimensional latent vector z
• Memory RNN (M) learns the temporal dynamics 

and predicts future states  where 
 is a hidden state vector capturing dynamics

P(zt+1 |at, zt, ht)
h

• Linear controller (C) selects actions as a linear 
function of  and  
   where  and  are 
weights/bias

zt ht
at = Wc[zt ht] + bc Wc bc

• Training on dreams by simulating future states and 
treating them as real 
• Used to update controller weights

24

Ha & Schmidhuber (2018)

DreamingReal (after training)
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Dreamer
Similar concept to World Models 

• Encoder  given hidden 
state  and observations  

• Sequence model  and 
dynamics predictor  

Actor-critic architecture 

• Actor  where  

• Critic 

zt ∼ qϕ(zt |ht, xt)
ht xt

ht+1 = fϕ(ht, zt, at)
̂zt ∼ pϕ( ̂zt |ht)

at ∼ πθ(at |st) st = {ht, zt}
vψ(Rt |st)

27

Hafner et al., (2023)
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via simulating the future
• Main purpose of the model is to supplement real 

training experiences (direct RL) by simulating 
(imagining) future experiences 

• It’s ok that the model predictions don’t perfectly 
match the true visual state of the world 
• only needs to be useful for training the actor 

and critic
• While similar performance for easier goals (iron 

ingot + pickaxe), first RL model to reliably find 
diamonds 
• But still very short of human performance 

28

~20 m
inutes

humans~4.7 ye
ars

Imagination



Model-based methods summary
How is the model learned? 
• Through trial-and-error learning using delta-rule updates 
• With modern ML techniques 

• Encode high-dimensional stimuli into a low-dimensional representation  

• Learn the temporal dynamics  
How is the model used? 
• Use simulated experiences to augment direct RL (i.e., learning from real 

experiences) 
• Model-free methods (e.g., actor-critic) can also be combined with model-based 

learning to great effect (Dreamer)

z
P(zt+1 |zt)

29



5 minute break

30



Balancing flexibility and efficiency
• Model-free methods are more 

computationally efficient 
• But lack flexibility to changes in the 

environment 
• Model-based methods are highly 

flexible (local changes in environment 
lead to local changes in model) 
• But computationally costly 

when it comes to performing 
simulations 

• Is there nothing in between?

31
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“Successor” as in succession

Which states are likely to follow our current state?



SR as a decomposition of the TD value function 

Vπ(s) = 𝔼a∼π [
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∑
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γtrt]
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Computing the Successor Representation (off-policy)

M(s, s′￼) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix,  is the temporal discount factorI γ

T(s, s′￼) = ∑
a

π(a |s)P(s′￼|s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in 
closed form:

T = D−1A

A further simplifcation that is often used is to assume a random policy, 
allowsing us to define T using the degree (D) and adjacency (A) matrices
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Computing the Successor Representation (on policy)
If the state space is not known, we can compute the SR using the 
delta-rule:


 

where  is the learning rate and  is the kronecker delta  when 
true, 0 otherwise


• This update is identical to the temporal difference learning rule 
for value functions


• The successor representation is updated based on the 
successor prediction error instead of the reward prediction error


M̂t+1(st, s′￼) = M̂t(st, s′￼) + α [δ(st = s′￼) + γM̂t+1(st, s′￼) − M̂t(st, s′￼)]
α δ δ = 1
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SR generalizes for changes in reward
• If the location of rewards 

change, only the  part 
needs to be re-learned while 

 remains the same 
 

 

• This leads to faster 
generalization to changes in 
the environment

r(s′￼)

M(s, s′￼)

Vπ(s) = ∑
s′￼

M(s, s′￼)r(s′￼)

Stachenfeld, Botvinick & Gershman (2017)
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* Not unique to the SR, but any 
similarity metric that captures 
transition structure 
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Stachenfeld (Phd thesis, 2018)• SR learned under different policies learn different 
representations


• Under a softmax-optimal policy seeking the goal state, states 
become organized according to their distance from the goal


• But it also makes them less grid-like

SR is sensitive to policy

Stachenfeld et al., (2017)



SR for option discovery
• “Options framework” in RL corresponds to learning extended sequences of 

actions instead of only a single action at a time 
• Options: Make coffee vs. make tea 
• Actions: move left leg, move right leg, …. move wrist 34 degrees 

• SR naturally discovers Eigenoptions 
• More recent work has identified functional sequences of actions this way
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Eigenoptions

Eigenvector

Klissarov & Machado (2023)
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methods
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Physical
Herrmann et al., (Science 2007)Herrmann et al., (Science 2007)

Social

Witt et al., (PNAS 2024)

Wu et al., (2022)
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Next week:  
Social learning

Alexandra Witt


