
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 5: Advances in Reinforcement Learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Schedule

2

Schedule

2

Schedule

2

Swapped

Exam times

3

Clarification
• Two-step tasks

• Transitions are a property of the environment and the
participants choice

• The participant chooses or
• But then probabilistically (common=70% vs. rare = 30%),

transitions to either pink or blue on the 2nd step
• The key takeaway is that MF vs MB have different responses to

the same outcome
• MF: If rewarded —> stay

 if not rewarded —> go
• MB: depends on whether reward followed a common or rare

transition… you shouldn’t expect a rare transition to occur again
 if (common & reward | rare & no reward) —> stay
 if (common & no reward| rare & reward) —> stay

4

Model-free

Last week…

5

Reinforcement Learning

6

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

• Governs the transition between
states

• Provides rewards

st → st+1

R(at, st)

• Selects actions

• Receives feedback from the
environment in terms of new states

 and rewards

at

st+1 R(at, st)

The Agent:

The Environment:

7

A B

Q-Learning in a bandit task
Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

Qt(a) ← Qt(a) + η [r − Qt(a)]

8

Model-free RL Model-based RL

• Habit
• Cheap

•
• Myopically selecting actions

that have been associated
with reward

Q(s, a)

• Goal-directed
• Computationally costly

•
• Planning and seeking of long term

outcomes

P(s′ , r |s, a)

Duarte et al,. (2020)

Monte carlo tree search

Today’s agenda
• Advances in …

• Model-free methods

• Deep Q-learning, policy gradient & Actor-Critic

• Model-based methods

• DYNA, World models, & Dreamer

• Something in between

• Successor representation

9

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Advances in Model-free RL

10

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Advances in Model-free RL
• Value-based methods

• Last week: Value iteration, Q-Learning &
TD-learning
• Problem: what if the state-space is too

large to visit?
• Deep Q-Learning for function approximation

10

Value-based
methods

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Advances in Model-free RL
• Value-based methods

• Last week: Value iteration, Q-Learning &
TD-learning
• Problem: what if the state-space is too

large to visit?
• Deep Q-Learning for function approximation

• Policy-based methods
• Policy-gradient for directly optimizing a policy

10

Value-based
methods

Policy-based
methods

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Advances in Model-free RL
• Value-based methods

• Last week: Value iteration, Q-Learning &
TD-learning
• Problem: what if the state-space is too

large to visit?
• Deep Q-Learning for function approximation

• Policy-based methods
• Policy-gradient for directly optimizing a policy

• Actor-Critic
• Modern version of Policy-iteration:

Value Policy
10

Value-based
methods

Policy-based
methods

Actor-Critic

Deep Q-learning

11

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)
• Weight updates:

wt+1 ← wt + αδ∇wQw(s, a)

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)
• Weight updates:

wt+1 ← wt + αδ∇wQw(s, a)

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

learning rate

Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)
• Weight updates:

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
a′

Qw(s′ , a′) − Qw(s, a)

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

δ
learning rate

Deep Q-learning

11

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)
• Weight updates:

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
a′

Qw(s′ , a′) − Qw(s, a)

• Gradient of Q-function w.r.t. to ,
trying to reduce prediction error!

w

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

δ∇wQw(s, a)
learning rate

Deep Q-learning

11Mnih et al,. (Nature, 2015)

Deep Q-Learning

Function approximation:
• Deep Q-Learning: use a deep ANN

to learn Qw(s, a)
• Weight updates:

wt+1 ← wt + αδ∇wQw(s, a)
• TD prediction error

δ = r + γ max
a′

Qw(s′ , a′) − Qw(s, a)

• Gradient of Q-function w.r.t. to ,
trying to reduce prediction error!

w

Tabular methods:
• Q-Learning: learn Q-values by updating

a look-up table

δ∇wQw(s, a)
learning rate

Universal Approximation Theorem
• What is a function?

•

•
• ANNs are also functions

• where are the
connection weights

• At least one neural network exists
that can approximate any continuous
function with arbitrary precision

•

y = f(x)
f : X → Y

gw(x) = σ(x) w

|gw(x) − f(x) | < ϵ
12

Cybenko (1989)

X Y

x1
y1

x2
xn y2

yn

f

https://www.youtube.com/watch?v=Ln8pV1AXAgQ

Universal Approximation Theorem
• What is a function?

•

•
• ANNs are also functions

• where are the
connection weights

• At least one neural network exists
that can approximate any continuous
function with arbitrary precision

•

y = f(x)
f : X → Y

gw(x) = σ(x) w

|gw(x) − f(x) | < ϵ
12

Cybenko (1989)

X Y

x1
y1

x2
xn y2

yn

f

https://www.youtube.com/watch?v=Ln8pV1AXAgQ

Caveat: Approximation does not guarantee generalization

13

Possibilities

Experience

Generalization

Novel situation

Caveat: Approximation does not guarantee generalization

13

Possibilities

Experience

Generalization

Novel situation

Caveat: Approximation does not guarantee generalization

13

Possibilities

Experience

Generalization

Novel situation
Predicting

Fitting

Yet why do large ANNs work so well?

14

Belkin et al., (2019)• Double descent phenomena
• left: standard story
• right: over-parameterized models start to reduce

prediction error

Not on the exam but very cool

Yet why do large ANNs work so well?

14

Belkin et al., (2019)

Frankle & Carbin (2019)

*not actually good financial advice

• Double descent phenomena
• left: standard story
• right: over-parameterized models start to reduce

prediction error
• Lottery Ticket conjecture

• if you buy enough lottery tickets, one is bound to
be a winner*

• Large “over-parameterized” ANNs have a bunch
of different subnetworks that are randomly
initialized (i.e., lottery tickets)

• SGD focuses on training winning subnetworks
• Pruning connections not part of the winning ticket

can improve efficiency and even performance

• The effective complexity ≠ |θ |

Not on the exam but very cool

Policy Gradient
• Deep Q-learning uses an

ANN to approximate the value
function
• the policy is implicit (e.g., a

softmax over Q-values)

15

Policy Gradient
• Deep Q-learning uses an

ANN to approximate the value
function
• the policy is implicit (e.g., a

softmax over Q-values)
• Policy gradient uses a

function to approximate the
optimal policy
• the value function is implicit

15

Policy Gradient
• Deep Q-learning uses an

ANN to approximate the value
function
• the policy is implicit (e.g., a

softmax over Q-values)
• Policy gradient uses a

function to approximate the
optimal policy
• the value function is implicit

15

Action

Policy Gradient

16

Policy Gradient
• Use a neural network to parameterize a policy

• Objective: Maximize expected reward following a parameterized policy:

• Method: using gradient ascent

• Using the Markov principle, we can write the gradient as:

• Updates to follow the gradient to increase the probabability of highly rewarding actions:

• Here, is usually estimated through Monte Carlo sampling

πθ(a |s)
J(θ) = 𝔼τ∼πθ

[r(τ)]

θt+1 = θt + β∇θJ(θt)

∇J(θt) = 𝔼πθ [
|τ|

∑
t∈τ

∇log πθ(at |st)Q(at, st)]
θ

θt+1 = θt + α∇θlog πθ(at |st)Q(at, st)
Q(at, st)

Formulas not on exam, but you should understand the general concept!

learning rate

∇θlog πθ(at |st)Q(at, st)

Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based

methods and is a generalization of policy iteration

• Actor provides the policy parameterized by πθ(a |s) θ

• Critic provides the value function parameterized by Qw(s, a)
w

17

Value-
based
methods

Policy-
based
methods

Actor-
Critic

Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based

methods and is a generalization of policy iteration

• Actor provides the policy parameterized by πθ(a |s) θ

• Critic provides the value function parameterized by Qw(s, a)
w

• Simulate trajectories and compute TD errora ∼ πθ(a |s)
δ = r + γ max

a′

Qw(s′ , a′) − Qw(s, a)

17

Value-
based
methods

Policy-
based
methods

Actor-
Critic

Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based

methods and is a generalization of policy iteration

• Actor provides the policy parameterized by πθ(a |s) θ

• Critic provides the value function parameterized by Qw(s, a)
w

• Simulate trajectories and compute TD errora ∼ πθ(a |s)
δ = r + γ max

a′

Qw(s′ , a′) − Qw(s, a)

• Iteratively update actor and critic

17

Value-
based
methods

Policy-
based
methods

Actor-
Critic

Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based

methods and is a generalization of policy iteration

• Actor provides the policy parameterized by πθ(a |s) θ

• Critic provides the value function parameterized by Qw(s, a)
w

• Simulate trajectories and compute TD errora ∼ πθ(a |s)
δ = r + γ max

a′

Qw(s′ , a′) − Qw(s, a)

• Iteratively update actor and critic

• Critic update:
reduce prediction error

wt+1 = wt + αδ∇wQw(s, a)

17

Value-
based
methods

Policy-
based
methods

Actor-
Critic

Diederichs (2019)

Actor

Critic

Actor-Critic
• Actor-critic combines value-based and policy-based

methods and is a generalization of policy iteration

• Actor provides the policy parameterized by πθ(a |s) θ

• Critic provides the value function parameterized by Qw(s, a)
w

• Simulate trajectories and compute TD errora ∼ πθ(a |s)
δ = r + γ max

a′

Qw(s′ , a′) − Qw(s, a)

• Iteratively update actor and critic

• Critic update:
reduce prediction error

wt+1 = wt + αδ∇wQw(s, a)

• Actor update:
increase probability of highly rewarding actions

θt+1 = θt + βδ∇θlog πθ(a |s)Qw(s, a)
17

Value-
based
methods

Policy-
based
methods

Actor-
Critic

Model-free methods summary
• Just put ANNs everywhere!
• Value-based methods

• Deep Q Learning
• Policy-based methods

• Policy Gradient
• Actor-Critic

• Integration of both value-based and policy-based methods

18

Model-free methods summary
• Just put ANNs everywhere!
• Value-based methods

• Deep Q Learning
• Policy-based methods

• Policy Gradient
• Actor-Critic

• Integration of both value-based and policy-based methods

18

Value-based
methods

Policy-based
methods

Actor-Critic

Model-based methods
• Learning a “field map of the environment”

helps with planning and generalization
• But how is the model learned?
• And how is it used to in RL?
• We will discuss

• Learning transitions via Delta-Rule
• DYNA for simulating experiences
• World Models
• Dreamer V3

19

Model

s
a

s′

r

Learning the model through experience
• Follow whatever policy (e.g., random)

and update the transition matrix using
delta-rule

• Kronecker delta when
the transition occurs (i.e.,)

• provided by
learned transition matrix
and value function or

Tt+1(s′ |s, a) ← Tt(s′ |s, a) + α (δ(s′ , s) − Tt(s′ |s, a))
δ(s′ , s′) = 1

s → s′

Model(s, a) → [s′ , r]
T(s′ |s, a)

Q(s, a) V(s)

20

Model

s
a

s′

r

MDPTransition Matrix

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:
a. Update model of the environment Model(s, a)

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:
a. Update model of the environment Model(s, a)
b. Simulate experiences:

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:
a. Update model of the environment Model(s, a)
b. Simulate experiences:

• Give previously observed states and actions to model
[s, a] → Model(s, a) → [s′ , r]

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:
a. Update model of the environment Model(s, a)
b. Simulate experiences:

• Give previously observed states and actions to model
[s, a] → Model(s, a) → [s′ , r]

•Update value function with simulated experiences
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

Simulating experiences with DYNA

21

Sutton (1990)

• Models of the environment can be used for planning
• DYNA uses simulated experiences to update policy/value functions,

just like real experiences
1. Direct RL: Execute real actions and update value function
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

2. Model learning:
a. Update model of the environment Model(s, a)
b. Simulate experiences:

• Give previously observed states and actions to model
[s, a] → Model(s, a) → [s′ , r]

•Update value function with simulated experiences
Q(s, a) ← Q(s, a) + α[r + γ max

a′

Q(s′ , a′) − Q(s, a)]

• These simulations can be controlled for better efficiency
(e.g., prioritized sweeps of reward-relevant state visitations; Moore &
Atkeson, 1993)

Benefits of Model-based planning
• Model-based planning needs far fewer real

interactions with the environment (episodes) to
learn better policies
• Consider settings like self-driving cars, robotics,

financial systems… where it is very costly to get
real interaction data

22

Sutton & Barto Fig. 9.5

Benefits of Model-based planning
• Model-based planning needs far fewer real

interactions with the environment (episodes) to
learn better policies
• Consider settings like self-driving cars, robotics,

financial systems… where it is very costly to get
real interaction data

• Halfway through only the 2nd episode…
• Arrows show greedy action in each state and

no arrow if all actions are equal

22

Sutton & Barto Fig. 9.5

Sutton & Barto Fig. 9.6

23

David Ha

Jürgen 
Schmid- 
huber

23

Check out worldmodels.github.io/ for
iteractive demos and more details!

David Ha

Jürgen 
Schmid- 
huber

http://worldmodels.github.io/

World models

24

Ha & Schmidhuber (2018)

DreamingReal (after training)

Variational Autoencoder (VAE)

World models
• Vision Model (V) encodes high-dimensional

visual data into a low-dimensional latent vector z

24

Ha & Schmidhuber (2018)

DreamingReal (after training)

Variational Autoencoder (VAE)

World models
• Vision Model (V) encodes high-dimensional

visual data into a low-dimensional latent vector z
• Memory RNN (M) learns the temporal dynamics

and predicts future states where
 is a hidden state vector capturing dynamics

P(zt+1 |at, zt, ht)
h

24

Ha & Schmidhuber (2018)

DreamingReal (after training)

Variational Autoencoder (VAE)

World models
• Vision Model (V) encodes high-dimensional

visual data into a low-dimensional latent vector z
• Memory RNN (M) learns the temporal dynamics

and predicts future states where
 is a hidden state vector capturing dynamics

P(zt+1 |at, zt, ht)
h

• Linear controller (C) selects actions as a linear
function of and
 where and are
weights/bias

zt ht
at = Wc[zt ht] + bc Wc bc

24

Ha & Schmidhuber (2018)

DreamingReal (after training)

Variational Autoencoder (VAE)

World models
• Vision Model (V) encodes high-dimensional

visual data into a low-dimensional latent vector z
• Memory RNN (M) learns the temporal dynamics

and predicts future states where
 is a hidden state vector capturing dynamics

P(zt+1 |at, zt, ht)
h

• Linear controller (C) selects actions as a linear
function of and
 where and are
weights/bias

zt ht
at = Wc[zt ht] + bc Wc bc

• Training on dreams by simulating future states and
treating them as real
• Used to update controller weights

24

Ha & Schmidhuber (2018)

DreamingReal (after training)

25

Hafner et al., (2023)

25

Hafner et al., (2023)

26

First algorithm to collect diamonds in Minecraft without human data or training curricula

26

First algorithm to collect diamonds in Minecraft without human data or training curricula

Dreamer
Similar concept to World Models

• Encoder given hidden
state and observations

• Sequence model and
dynamics predictor

Actor-critic architecture

• Actor where

• Critic

zt ∼ qϕ(zt |ht, xt)
ht xt

ht+1 = fϕ(ht, zt, at)
̂zt ∼ pϕ(̂zt |ht)

at ∼ πθ(at |st) st = {ht, zt}
vψ(Rt |st)

27

Hafner et al., (2023)

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

28

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

28

Imagination

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

• It’s ok that the model predictions don’t perfectly
match the true visual state of the world
• only needs to be useful for training the actor

and critic

28

Imagination

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

• It’s ok that the model predictions don’t perfectly
match the true visual state of the world
• only needs to be useful for training the actor

and critic
• While similar performance for easier goals (iron

ingot + pickaxe), first RL model to reliably find
diamonds
• But still very short of human performance

28

Imagination

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

• It’s ok that the model predictions don’t perfectly
match the true visual state of the world
• only needs to be useful for training the actor

and critic
• While similar performance for easier goals (iron

ingot + pickaxe), first RL model to reliably find
diamonds
• But still very short of human performance

28

humans

Imagination

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

• It’s ok that the model predictions don’t perfectly
match the true visual state of the world
• only needs to be useful for training the actor

and critic
• While similar performance for easier goals (iron

ingot + pickaxe), first RL model to reliably find
diamonds
• But still very short of human performance

28

~20 m
inutes

humans

Imagination

Model-based planning
via simulating the future
• Main purpose of the model is to supplement real

training experiences (direct RL) by simulating
(imagining) future experiences

• It’s ok that the model predictions don’t perfectly
match the true visual state of the world
• only needs to be useful for training the actor

and critic
• While similar performance for easier goals (iron

ingot + pickaxe), first RL model to reliably find
diamonds
• But still very short of human performance

28

~20 m
inutes

humans~4.7 ye
ars

Imagination

Model-based methods summary
How is the model learned?
• Through trial-and-error learning using delta-rule updates
• With modern ML techniques

• Encode high-dimensional stimuli into a low-dimensional representation

• Learn the temporal dynamics
How is the model used?
• Use simulated experiences to augment direct RL (i.e., learning from real

experiences)
• Model-free methods (e.g., actor-critic) can also be combined with model-based

learning to great effect (Dreamer)

z
P(zt+1 |zt)

29

5 minute break

30

Balancing flexibility and efficiency
• Model-free methods are more

computationally efficient
• But lack flexibility to changes in the

environment
• Model-based methods are highly

flexible (local changes in environment
lead to local changes in model)
• But computationally costly

when it comes to performing
simulations

• Is there nothing in between?

31

Gershman (2018)

Balancing flexibility and efficiency
• Model-free methods are more

computationally efficient
• But lack flexibility to changes in the

environment
• Model-based methods are highly

flexible (local changes in environment
lead to local changes in model)
• But computationally costly

when it comes to performing
simulations

• Is there nothing in between?

31

Gershman (2018)

Balancing flexibility and efficiency
• Model-free methods are more

computationally efficient
• But lack flexibility to changes in the

environment
• Model-based methods are highly

flexible (local changes in environment
lead to local changes in model)
• But computationally costly

when it comes to performing
simulations

• Is there nothing in between?

31

Gershman (2018)

Balancing flexibility and efficiency
• Model-free methods are more

computationally efficient
• But lack flexibility to changes in the

environment
• Model-based methods are highly

flexible (local changes in environment
lead to local changes in model)
• But computationally costly

when it comes to performing
simulations

• Is there nothing in between?

31

Gershman (2018)

32

“Successor” as in succession

Which states are likely to follow our current state?

SR as a decomposition of the TD value function

Vπ(s) = 𝔼a∼π [
∞

∑
t=0

γtrt]

Dayan (1993)

Value function from TD
Learning

SR as a decomposition of the TD value function

Vπ(s) = 𝔼a∼π [
∞

∑
t=0

γtrt]
Vπ(s) = ∑

s′

M(s, s′)r(s′)
Dayan (1993)

Value function from TD
Learning

SR decomposition

SR as a decomposition of the TD value function

Vπ(s) = 𝔼a∼π [
∞

∑
t=0

γtrt]
Vπ(s) = ∑

s′

M(s, s′)r(s′)
Dayan (1993)

Value function from TD
Learning

…

States

Re
w

ar
d

…

Reward Values
S by S matrix of future
discounted state
occupancies

Successor Representation
vector of singular
rewards for each state

SR decomposition

Successor Representation
Not just a map…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

Herr
en

berg

Böb
ling

en

Stut
tga

rt-
 

Va
ihin

ge
n…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

M(s, s′) = 𝔼π [∑
t=0

γtδ(st = s′) |s0 = s]
where 𝛿(*) is the Kronecker delta and equal to 1 when the argument is true, and 0
otherwise

From a trajectory initiated in state , the SR encodes the expected discounted
future occupancy of state :

s
s′

Herr
en

berg

Böb
ling

en

Stut
tga

rt-
 

Va
ihin

ge
n…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

M(s, s′) = 𝔼π [∑
t=0

γtδ(st = s′) |s0 = s]
where 𝛿(*) is the Kronecker delta and equal to 1 when the argument is true, and 0
otherwise

From a trajectory initiated in state , the SR encodes the expected discounted
future occupancy of state :

s
s′

s

s′

Tübingen

St
ut

tg
ar

t

Herr
en

berg

Böb
ling

en

Stut
tga

rt-
 

Va
ihin

ge
n…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

M(s, s′) = 𝔼π [∑
t=0

γtδ(st = s′) |s0 = s]
where 𝛿(*) is the Kronecker delta and equal to 1 when the argument is true, and 0
otherwise

From a trajectory initiated in state , the SR encodes the expected discounted
future occupancy of state :

s
s′

s

s′

Tübingen

St
ut

tg
ar

t

Herr
en

berg

Böb
ling

en

Stut
tga

rt-
 

Va
ihin

ge
n…

Successor Representation
… but a goal-directed representation about which
states are likely to encountered given a policy

Tü
bing

en

Reu
tlin

ge
n

Metz
ing

en

Stut
tga

rt

Nürt
ing

en

Wen
dling

en …

Not just a map…

M(s, s′) = 𝔼π [∑
t=0

γtδ(st = s′) |s0 = s]
where 𝛿(*) is the Kronecker delta and equal to 1 when the argument is true, and 0
otherwise

From a trajectory initiated in state , the SR encodes the expected discounted
future occupancy of state :

s
s′

s

s′

Tübingen

St
ut

tg
ar

t

Herr
en

berg

Böb
ling

en

Stut
tga

rt-
 

Va
ihin

ge
n…

Computing the Successor Representation (off-policy)

M(s, s′) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix, is the temporal discount factorI γ

T(s, s′) = ∑
a

π(a |s)P(s′ |s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in
closed form:

T = D−1A

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

Computing the Successor Representation (off-policy)

M(s, s′) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix, is the temporal discount factorI γ

T(s, s′) = ∑
a

π(a |s)P(s′ |s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in
closed form:

T = D−1A

T

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

s

s′

Computing the Successor Representation (off-policy)

M(s, s′) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix, is the temporal discount factorI γ

T(s, s′) = ∑
a

π(a |s)P(s′ |s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in
closed form:

T = D−1A

T

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

s

s′

Computing the Successor Representation (off-policy)

M(s, s′) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix, is the temporal discount factorI γ

T(s, s′) = ∑
a

π(a |s)P(s′ |s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in
closed form:

T = D−1A

T

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

Mγ=.9(s, s′)

s

s′

Computing the Successor Representation (off-policy)

M(s, s′) =
∞

∑
t=0

γtTt = (I − γT)−1

 is the identity matrix, is the temporal discount factorI γ

T(s, s′) = ∑
a

π(a |s)P(s′ |s, a) is the transition matrix under a policy:T

If the state space is fully known, we can compute the SR in
closed form:

T = D−1A

T

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

Mγ=.9(s, s′)

s

s′

Computing the Successor Representation (on policy)
If the state space is not known, we can compute the SR using the
delta-rule:

 

where is the learning rate and is the kronecker delta when
true, 0 otherwise

• This update is identical to the temporal difference learning rule
for value functions

• The successor representation is updated based on the
successor prediction error instead of the reward prediction error

M̂t+1(st, s′) = M̂t(st, s′) + α [δ(st = s′) + γM̂t+1(st, s′) − M̂t(st, s′)]
α δ δ = 1

Russek et al., (2017)

Computing the Successor Representation (on policy)
If the state space is not known, we can compute the SR using the
delta-rule:

 

where is the learning rate and is the kronecker delta when
true, 0 otherwise

• This update is identical to the temporal difference learning rule
for value functions

• The successor representation is updated based on the
successor prediction error instead of the reward prediction error

M̂t+1(st, s′) = M̂t(st, s′) + α [δ(st = s′) + γM̂t+1(st, s′) − M̂t(st, s′)]
α δ δ = 1

Russek et al., (2017)

Computing the Successor Representation (on policy)
If the state space is not known, we can compute the SR using the
delta-rule:

 

where is the learning rate and is the kronecker delta when
true, 0 otherwise

• This update is identical to the temporal difference learning rule
for value functions

• The successor representation is updated based on the
successor prediction error instead of the reward prediction error

M̂t+1(st, s′) = M̂t(st, s′) + α [δ(st = s′) + γM̂t+1(st, s′) − M̂t(st, s′)]
α δ δ = 1

M̂(st, s′)

Russek et al., (2017)

Computing the Successor Representation (on policy)
If the state space is not known, we can compute the SR using the
delta-rule:

 

where is the learning rate and is the kronecker delta when
true, 0 otherwise

• This update is identical to the temporal difference learning rule
for value functions

• The successor representation is updated based on the
successor prediction error instead of the reward prediction error

M̂t+1(st, s′) = M̂t(st, s′) + α [δ(st = s′) + γM̂t+1(st, s′) − M̂t(st, s′)]
α δ δ = 1

M̂(st, s′)

37

SR generalizes for changes in reward
• If the location of rewards

change, only the part
needs to be re-learned while

 remains the same

• This leads to faster
generalization to changes in
the environment

r(s′)

M(s, s′)

Vπ(s) = ∑
s′

M(s, s′)r(s′)

Stachenfeld, Botvinick & Gershman (2017)

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

• For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

• For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

• In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Stachenfeld, Botvinick, & Gershman (2017)

Eigenvectors

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

• For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

• In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Stachenfeld, Botvinick, & Gershman (2017)

Eigenvectors

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

• For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

• In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Stachenfeld, Botvinick, & Gershman (2017)

Eigenvectors

Environment Machado et al., (2023)

Eigenvectors
v2 v3v1

The Eigenvalues of the SR
• Eigenvectors capture different dimensions of variability

• where are Eigenvectors and are the EigenvaluesM = VΛV−1 vi ∈ V λi ∈ Λ

• For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

• In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Stachenfeld, Botvinick, & Gershman (2017)

Eigenvectors

Environment Machado et al., (2023)

* Not unique to the SR, but any
similarity metric that captures
transition structure

• Eigenvectors capture subgoals (i.e., compartments in
the environment)

SR naturally identifies subgoals
Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

v1

v2
v3

• Eigenvectors capture subgoals (i.e., compartments in
the environment)

• These connectivity-based representations correspond
to Hippocampal activity found in Schapiro et al. (2015)
and Garvert et al. (2017)

SR naturally identifies subgoals
Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

v1

v2
v3

• Eigenvectors capture subgoals (i.e., compartments in
the environment)

• These connectivity-based representations correspond
to Hippocampal activity found in Schapiro et al. (2015)
and Garvert et al. (2017)

SR naturally identifies subgoals
Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

v1

v2
v3

M(s, s′)

• Eigenvectors capture subgoals (i.e., compartments in
the environment)

• These connectivity-based representations correspond
to Hippocampal activity found in Schapiro et al. (2015)
and Garvert et al. (2017)

SR naturally identifies subgoals
Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

v1

v2
v3

M(s, s′)

Stachenfeld (Phd thesis, 2018)• SR learned under different policies learn different
representations

• Under a softmax-optimal policy seeking the goal state, states
become organized according to their distance from the goal

• But it also makes them less grid-like

SR is sensitive to policy

Stachenfeld et al., (2017)

SR for option discovery
• “Options framework” in RL corresponds to learning extended sequences of

actions instead of only a single action at a time
• Options: Make coffee vs. make tea
• Actions: move left leg, move right leg, …. move wrist 34 degrees

• SR naturally discovers Eigenoptions
• More recent work has identified functional sequences of actions this way

41

SR for option discovery
• “Options framework” in RL corresponds to learning extended sequences of

actions instead of only a single action at a time
• Options: Make coffee vs. make tea
• Actions: move left leg, move right leg, …. move wrist 34 degrees

• SR naturally discovers Eigenoptions
• More recent work has identified functional sequences of actions this way

41

Eigenoptions

Eigenvector

SR for option discovery
• “Options framework” in RL corresponds to learning extended sequences of

actions instead of only a single action at a time
• Options: Make coffee vs. make tea
• Actions: move left leg, move right leg, …. move wrist 34 degrees

• SR naturally discovers Eigenoptions
• More recent work has identified functional sequences of actions this way

41

Machado et al., (2018)

Eigenoptions

Eigenvector

SR for option discovery
• “Options framework” in RL corresponds to learning extended sequences of

actions instead of only a single action at a time
• Options: Make coffee vs. make tea
• Actions: move left leg, move right leg, …. move wrist 34 degrees

• SR naturally discovers Eigenoptions
• More recent work has identified functional sequences of actions this way

41

Machado et al., (2018)

Eigenoptions

Eigenvector

Klissarov & Machado (2023)

Summary

42

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

42

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

42

Value-based
methods

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

42

Value-based
methods

Policy-based
methods

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

42

Value-based
methods

Policy-based
methods

Actor-
Critic

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

• Model-based methods
• DYNA (Model & Value)
• World Models (Model & Policy)
• Dreamer (Model & Actor-Critic)

42

Value-based
methods

Policy-based
methods

Actor-
Critic

Model-based 
methods

Summary
• Model-free methods

• Value-based Deep Q-Learning
• Policy-based Policy Gradient
• Actor-Critic

• Model-based methods
• DYNA (Model & Value)
• World Models (Model & Policy)
• Dreamer (Model & Actor-Critic)

• Successor representation
• Balancing flexibility and efficiency

42

Value-based
methods

Policy-based
methods

Actor-
Critic

Model-based 
methods

Gershman
(2018)

43

Physical
Herrmann et al., (Science 2007)Herrmann et al., (Science 2007)

Social

Witt et al., (PNAS 2024)

Wu et al., (2022)

43

Next week:
Social learning

Alexandra Witt

