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Schedule

Week Guest lecturer: Alexandra
| Nov 19: Social leaming Nov 20 Alex Witt et al., (2024)
6: Witt
Week Guest lecturer: Dr. David Nov 26: Compression and | |
! P , S'AO : Nov 27 David Nagy et al,. (under review)
Ti- Nagy resource constraints
Week Dec 3: Concepts and | o
8. Categories Dec 4 Hanqi Viuphy (2023)
Week Dec 10: Supervised and
| - . , Dec 11 Hanqi Bishop (Ch. 4)
O: Unsupernvised leaming
Holiday break
Week | | - o
10: Jan 14: Function leaming Jan 15 Alex Wu, Meder, & Schulz (2024
Week Jan 22: No
Jan 21: No Lecture ,
11: Tutorial
Week Jan 28: Language and o
| o nouey Jan 29 TBD Kamath et al., (2024)
12: semantics
Week
Feb 4: General Principles Feb 5 Charley @ Gershman (2023)
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Clarification

® [\WO-Step tasks

® [ransitions are a property of the environment and the
participants choice

® e participant chooses l or . ey

e But then probabilistically (common=r0% vs. rare = 30%),
transitions to erther pink or blue on the 2nd step

® [he key takeaway Is that MF vs MB have different responses to
the same outcome

o M If rewarded —> stay
T not rewarded —> Qo

A reinforcement B model-based
M rare
°o \B: oepends on whether reward followed a common or rare
transition... you shouldn’t expect a rare transition to occur again

1
f (common & reward | rare & no reward) —> stay l I . . l . . I
5

T (common & no reward| rare & reward ) —> stay "®rewarded  unrewarded cowarded  unrewarded

B common

slay probability
o
\l
on
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Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

« Selects actions a,
| >
* Recelves feedback from the
environment in terms of new states

s,.1 and rewards R(a,, $,) State
5

The Environment;
| | I E
 Governs the transition between S

Action

» Provides rewards R(a,, s,)

PR R et
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Q-Learning in a bandit task

o Iearning tn tﬂ

Qt(a) < Qt(a) T 7] [I” o Qt(a)]
Policy

P(a) x exp(Q/a)/r)




Model-free RL - Model-based RL

® Habit ® (Soal-directed
® Cheap ® Computationally costly
* (s, a) ° P(s',rls,a)

® \lyopically selecting actions ® Planning and seeking of long term
that have been assoclateo outcomes

With reward Monte carlo tree search

Selection » Expansion » Simulation » Backup
I . > ® Q Q
‘-.T ST 3| } ) )(- ' -;,/
— O O O O O O O O
I SN S .
Js [ e —— O /g) (5/ O @ o) 6/ O
Selected state p g X
R T ) o %
T & : 4
- I ™ \ i
R [ Tree Policy | \ Rollout Policy |
Expanded state ! L

S e Tt ot of et e e Duarte et al,. (2020) 8




Today’s agenda

® Advances in ...

e Model-free methods

e Deep Q-leaming, policy gradient & Actor-Ciritic

e Model-based methods

e DYNA, World models, & Dreamer

 Something in between

® SUCCESSOr representation



Advances in Model-free RL
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Advances in Model-free RL

e | ast week: Value iteration, Q-Leamning &
[D-leamning

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation

State

Reward

<R(a,, S;)

» <
S

>
> Agent

Value-based

methods

<

Action
a4,
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> Agent

State Reward Action

Advances in Model-free RL

S, a4,

| | | §<R(at,st)
® | ast week: Value iteration, Q-Leaming & - <
: t+1

1D-leaming

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation
® Policy-based methods

® Policy-gradient for directly optimizing a policy Value-based Policy-based

methods methods
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>
> Agent

State Reward Action

Advances in Model-free RL

S, a4,

. . . R(at S,)
® | ast week: Value iteration, Q-Leaming & -
- r+1

1D-leaming

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation
® Policy-based methods

® Policy-gradient for directly optimizing a policy Value-based Policy-based
® Actor-

e \lodem version of Policy-iteration:
Value +—»olicy

methods methods
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Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

Q-Learning

Q Table

State

State-Action

Value

Action

Q-Value

11
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Q-Learning
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Deep Q-Learning
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Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:
® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

e \/\leight updates: /'eaming rate

W, < W+aoV,0.(s,a)

e TD prediction error
0 =r+ymax Q.(s’,a’) — Q,(s,a)

a

e Gradient of Q-function w.r.t. to W,
trying to reduce prediction error!

Q-Learning

—>  Q-Value

Q Table
State State-Action Value
Action
Deep Q-Learning
State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n
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Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating

a look-up table

-unction approximation

® Deep Q-Leamning: use a desp ANN

to leam Qy(s, a)

® \\eight Updates; leaming rate

/

W, < W+aoV,0.(s,a)

e TD prediction error

0 =r+ymax Q.(s’,a’) — Q,(s,a)

e Gradient of Q-functi
~

trying to reduce pred

O

NW.ILT. 1O W,

on error!

Q-Learning

Q Table
State State-Action Value
——>{ Q-Value
Action —
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Universal Approximation Theorem cybenko (1989)
f

e \\Vhat is a function? Y Y
e y = f(x)
o f. XY

e ANNS are also functions
o g (x) = o(x) where w are the
connection weignts

® At least one neural network exists
that can approximate any continuous
function with arbitrary precision

* [8w(¥) —f)| <e

12


https://www.youtube.com/watch?v=Ln8pV1AXAgQ
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https://www.youtube.com/watch?v=Ln8pV1AXAgQ

Caveat: Approximation does not guarantee generalization

Experience

.. Generalization

"4
Novel situation

Possibilities

13



Temperature (F)

Caveat: Approximation does not guarantee generalization

70

60

S0

40

London’s daily temperature in 2000

? - degree 12 polynomial
: - = degree 3 polynomial

100 200 300

Days since 1st January, 2000
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Temperature (F)

Caveat: Approximation does not guarantee generalization
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Yet why do large ANNs work so well?

Not on the exam but very cool

® Double descent phenomena Belkin et al., (2019)

under-fitting . over-fitting

. Test risk

under-parameterized

Test risk

over-parameterized

® |cft: standard story

e = “classical” “modern”
® rignt: over-parameterized models start to reduce & = Ny
prediction error h - Training risk - Training risk:
sweet spot_ v ~ _ - T~ D iltil'[i)l?ltiillilliesliulil L
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent™ risk curve

14



Yet why do large ANNs work so well?

Not on the exam but very cool
® [ouble descent phenomena
® |oft:

® rignt. over-parameterized models start to reduce
orediction error

standard story

® | ottery licket conjecture

® /f you buy enough lottery tickets, one is bound to
be a winher*

® | arge “over-parameterized” ANNS have a bunch
of different subnetworks that are randomly
nitialized (1.e., lottery tickets)

e S5GD focuses on training winning subnetworks

® Pruning connections Not part of the winning ticket
can Improve efficiency and even performance

e The effective complexity # | 6|

*not actually good financial advice

Belkin et al., (2019)

over-parameterized

under-parameterized [/

Test risk

under-fitting . over-fit ting

. Test risk

’% .MJ: “classical” “modern”
E a'_:' regime interpolating regime
N
\ .
~ o ‘Training risk ~ _Training I‘lbk
sweet spot_ . — ~ interpolation threshold

Complexity of H Complexity of H

(a) U-shaped “bias-variance™ risk curve (b) “double descent” risk curve

Frankle & Carbin (2019)

o* m e 6"
) (O ,\ —~
o, OO0,
X x\
‘ SGD i Prune (| \u)
s —» W
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Policy Gradient

® Deep Q-learning uses an
ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)

Deep Q-Learning

State

34

W, 0N
KX KRG \w
Nla%

TN
0=
Q \

Q-Value Action 1

Q-Value Action 2

Q-Value Action n
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Policy Gradient

® Deep Q-learning uses an

ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)
® Policy gradient uses a

function to approximate the
optimal policy

® the value function Is Implicit

Deep Q-Learning

State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n
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Policy Gradient

® Deep Q-learning uses an
ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)
® Policy gradient uses a

function to approximate the
optimal policy

® the value function Is Implicit

Deep Q-Learning

State

4

State

Q-Value Action 1

=y =
3707 @
A OQ\»

Q-Value Action 2

Q-Value Action n

\%, 0N
KX KRG \w
VAY

c{':‘}\‘v"/{’:\
N0
OO

/X

/ (V> .V[‘\v
2\
Nla%

— Action
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Policy Gradient

Formulas not on exam, but you should understand the general concept!

Use a neural network to parameterize a policy 71'6)(61 | 5)

Objective: Maximize expected reward following a parameterized policy: J(6) =

Method: using gradient ascent @, 1 = 0, + 'V »J(6,)

learning rate

Jsing the Markov principle, we can write the gradient as:
7|

VJ©O) =E, | ) Viegr/als)Oa,s)
et

State

Action

Updates to @ follow the gradient to increase the probabability of highly rewarding actions:

0,.1 =0+ aVylogmnya,|s,)0(a, s,

ere, J(a,, s,) is usually estimated through Monte Carlo sampling

16



Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

Diederichs (2019)
17



Actor-Critic

® Actor-critic combines value-based and policy-based

methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by

W

e Simulate trajectories a ~ my(a | s) and compute T
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

D) error

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

|
Valiles |

o=

* Diederichs (2019)
17




Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

|
Valiles |

o=

* Diederichs (2019)
17




Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

® Critic update: Wy = W, + a0
reduce prediction ernor S

Policy-
based
methods

Value-
based
methods

Reward

>~ Environment

Action

State

A
I
Valiles |

o=

* Diederichs (2019)
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Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy zy(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

e Critic update: w, L1 = W, + ad
reduce prediction ernor S

e Actor update: @, =6 + 6 V(glog ﬂ@(a | S)Q (s a)
INcrease probability of highly rewarding actions

Policy-
based
methods

Value-
based
methods

Reward

- Environment

State

Action

1
* Diederichs (2019)
17



Model-free methods summary

® Just put ANNSs everywhere!
® Methods

® Deep Q Leaming
® Policy-based methods

® Policy Gradient
® Actor-
® [ntegration of both value-based and policy-based methods

18



Model-free methods summary
® Just put ANNSs everywhere!

® methods

¢ Deep Q Learning Value-based Policy-based
® Policy-based methods

methods methods

® Policy Gradient
® Actor-
® [ntegration of both value-based and policy-based methods
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Model-based methods

® | carning a ‘fleld map of the environment”
Nelps with planning and generalization

e But how is the model leamed? 4 L
® And how is it used to in BL? e
e \\/e will discuss T mm——

® | caming transitions via Delta-Rule I

® DYNA for simulating experiences
® \/Vorld Models
® Dreamer V3

19



Learning the model through experience

_ | Transition Matrix MDP
® ollow whatever policy (e.g., random) A~
and update the transition matrix using .. —( 7\\\
i S 0.5 0.1 0.7 /R |
delta-rule ; |:0_3 - 0.2] {] \\\
T (s']s,a) < T(s'|s,a) + a (8(s', s) — T(s'| s, a)) i . o N " L .1

e Kronecker delta o(s’, ) = 1 when “ -
the transition occurs (i.e., s — §')

e Model(s,a) — [s', r]| provided by
learned transition matrix 7(s’| s, a) S —
and value function O(s, a) or V(s)

20



Sutton (1990)

Simulating experiences with DYNA

® \odels of the environment can e used for planning ,
planning

model » policy




Simulating experiences with DYNA

Sutton (1990)

Viodels of the environment can be used for planning lann
. . . , annin .
DYNA uses simulated experiences to update policy/value functions, model P = » policy
just like real experiences
model simulated backups » values » policy

= .
cXpericnce

21



Si

\]00
DYN

Sutton (1990)

Imulating experiences with DYNA

Just

els of the environment can e used for planning lann
. ] . , annin .
A uses simulated experiences to update policy/value functions, model P a » policy
ke real experiences
model simulated backups » values » policy

™ experience
value/policy

simulating acting
direct
RL

model experlence

model
learning

21
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Sutton (1990)

Imulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

value/policy

simulating acting
direct
RL

model experlence

model
learning
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Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning

SYNA | | | | planning .
uses simulated experiences to update policy/value functions, model » policy
just like real experiences
1. Direct RL: =xecute real actions and update value function o
simulate ackups '
Q(S, Cl) «— Q(S, CZ) + C([l/' + y max Q(S,, a/) _ Q(S, CZ)] model > experience D s values = policy
al
2. Model learning:
| value/policy
a. Update model of the environment Model(s, a)
b. Simulate experiences: simulating acting
* Give previously observed states and actions to model direct
[s,a] = Model(s,a) — [s’, 7] RL

model experlence

model
learning

21



Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

2. Model learning: lue/poli
value/policy
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* Give previously observed states and actions to model direct
[s,a] = Model(s,a) — [s’, 7] RL
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Sutton (1990)

Simulating experiences with DYNA

® \odels of the environment can e used for planning

lannin .
o DYNA uses simulated experiences to update policy/value functions, model P a » policy
just like real experiences
1. Direct RL: Execute real actions and update value function S
simulate ackups '
O(s,a) < QO(s,a) + alr+ ymax O(s’,a’) — O(s, a)] oGS > experience ——» values > policy
al
2. Model learning.
| value/policy
a. Update model of the environment Model(s, a)
D. Simulate experiences: simulating acting
e (5ive previously observed states and actions to model diract
[s,a] —» Model(s,a) — [s/, 7] RL
e Jpdate value function with simulated experiences

® [hese simulations can be controlled for better efficiency

O(s,a) < O(s,a)+alr+vy max O(s’,a’) — O(s,a)] model experlence

(e.q., prioritized sweeps of reward-relevant state visitations; Moore & mod’el
Atkeson, 1993) learning
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Benefits of Model-based planning
Sutton & Barto Fig. 9.5
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ap screen or use amow keys to override the agent's decisions
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Recurrent World Models e

Facilitate Policy Evolution Check out worldmodels.github.io/ for
iteractive demos and more details!

NIPS 2018
Oral Presentation

Thirty-Second Annual Conference on
Neural Information Processing Systems
Montreal, Canada

Interactive demo. Tap screen or use arrow keys to override the agent's decisions.


http://worldmodels.github.io/

Ha & Schmidhuber (2018)
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e Vision Model (V) encodes high-dimensional
visual data into a low-dimensional latent vector z

® Memory RNN (M) leams the temporal dynamics
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* Linear controller (C) selects actions as a linear
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Ha & Schmidhuber (2018)

World models

e Vision Model (V) encodes high-dimensional
visual data into a low-dimensional latent vector z

® Memory RNN (M) leams the temporal dynamics
and predicts future states P(z,,1 | a,, Z,, h,) where

h is a hidden state vector capturing dynamics

* Linear controller (C) selects actions as a linear
function of z, and A,
a,=W.lzh]+b. where W_and b,. are
weights/bias

e [raining on dreams by simulating future states and
treating them as real

» UUsed to update controller weights

Variational Autoencoder

T

»  Encoder

(VAE)

econstructed Frame

Real (after training)
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First algorithm to collect diamonds in Minecraft without human data or training curricula

Minecraft Diamond
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Dreamer' Hafner et al., (2023)

Similar concept to World Models

o Encoder z, ~ q,(z,| h;, x;) given hidden

state h, and observations x;,

o Sequence model h, | = f,(h, 2, a,) and

dynamics predictor Z, ~ p,(Z;| h,)
Actor-critic architecture
o Actora, ~ my(a,|s,) wheres, = {h, z}
o V(R | 5,)

1 27
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Model-based methods summary

How IS the model learmed”
® [Nnrougn trial-and-error leaming using delta-rule updates
e \/\/ith modem ML technigues

® —Ncode high-dimensional stmull iInto a low-dimensional representation z

e [ eam the temporal dynamics P(z,, |z,

How IS the model used”?

® [Jse simulated experiences to augment direct RL (.e., leaming from real
experiences)

® \odel-free methods (e.q., actor-critic) can also e combined with model-based
eamning to great effect (Dreamer)

29
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Balancing flexibility and efficiency

® |\/[odel-free methods are more
computationally efficient

e But lack flexibility to changes inthe
environment

e |\odel-based methods are highly >

flexible (local changes in environment 2

ead to local changes in model) =

e Sut computationally costly
when it comes to performing
simulations

Low +

® |s there nothing In between”? O s PIBCHICY et 1

Gershman (2018)
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\ " Which states are likely to follow our current state?
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SR as a decomposition of the TD value function

o0
- Value function from TD
I t
Vis)=Lk,., z 7 Tt| Learning
=0

Dayan (1993)
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SR as a decomposition of the TD value function

o0
- Value function from TD
I t
Vis)=Lk,., E 7 Tt| Learning
=0

Vi(s) = Z M(s, s")r(s’) SR decomposition

Dayan (1993) 5 / \
' ! 1
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Successor Representation
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I
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Outward journey: timetable change.
Due to timetable changes, your

Successor Representation
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Computing the Successor Representation (off-policy)

9
13 |

If the state space is fully known, we can compute the SR in : 5
closed form: ™ s ®  a
M( S, S/) — 2 : 7/l‘ Tt — (I o }/T)—l o /
=0 '4

[ is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A
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Computing the Successor Representation (on policy)

If the state space is not known, we can compute the SR using the
delta-rule:

A\

M, (s,5) = M(s,s) +a|5(s,=s)+yM_ (s,5) — Ms, s')]

where a is the learning rate and ¢ is the kronecker delta 0 = 1 when
true, 0 otherwise

e This update is identical to the temporal difference learning rule
for value functions

e The successor representation is updated based on the
successor prediction error instead of the reward prediction error
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SR generalizes for changes in reward

Model-Free and SR value computations with changing reward and noise

e |f the location of rewards Value function % difference TCL“:C;?)L:::
change, only the r(s") part 1507 y e YrewardSMF
needs to be re-learned while ) — MF noise
M(s, s) remains the same ? : — o .
= 100 Qe
Vi(s) = Y M(s,s)r(s)) , N
s’ % eq | = ~ -~
£ _ ~N .. reward2
* [his leads to faster = l
generalization to changes in 0 ;
the environment ’ : Timestep + a0t .

reward3

Stachenfeld, Botvinick & Gershman (2017)
37
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The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,
R

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex
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* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,

-

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex
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The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability
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e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,
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SR naturally identifies subgoals

e Eigenvectors capture subgoals (i.e., compartments in

the environment)

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

A Multi-compartment environment |

V3
1 eigenvector 2 eigenvectors VZI /
: >

B Multi-compartment environment Il

. ﬁ ._z :
{ ) a
(3 )

1 eigenvector 2 eigenvectors 3 eigenvectors

Subgoals
® 1-way partition

@ 2-way partition
® 3-way partition

C Normalized cuts on 2-step tree maze

1 eigenvector 2 eigenvectors 3 eigenvectors



SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)
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* [hese connectivity-based representations correspond - ® 3-way partition
to Hippocampal activity found in Schapiro et al. (2015)
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SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)
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SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)
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SR is sensitive to policy

A Environment Stachenfeld (Phd thesis, 2018)

* SR learned under different policies learn different
representations

 Under a softmax-optimal policy seeking the goal state, states
become organized according to their distance from the goal

discretized 32x32

e But it also makes them less grid-like 4%
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SR for option discovery

® “Options framework” IN RL corresponds to leaming extended seqguences of
actions instead of only a single action at a time

® Options: Make coffee vs. make tea
® Actions: move left leg, move right leg, .... move wrist 34 degrees
® SR naturally discovers Eigenoptions
® |\ore recent work has identified functional seguences of actions this way
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Machado et al., (2018)
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® |\/lodel-Tree methods

e Value-based Deep Q-Leaming

e Policy-based Policy Gradient
e Actor-Critic
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Summary

® |\/odel-free methods

e Value-based Deep Q-Leamning

® Policy-based Policy Gradient
e Actor-Critic
® |\/odel-based methods
o DYNA (Model & Value)
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® Dreamer (Model & Actor-Critic)

42



Summary

® |\/odel-free methods

e Value-based
e Policy-based

® Actor-Critic
® [\/[odel-based methods

DYNA (Model & Value)

Deep Q-Leaming
Solicy Gradient

e \\orld Models (Model & Policy)
Dreamer (Model & Actor-Critic)
® SUCCESSOor representation

Salancing flexibility and e

ficiency

Low <——— Flexibilty — High
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Efficiency
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