General Principles of
Human and Machine
Learning

Lecture 5: Advances in Reinforcement Learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Schedule

Week Guest lecturer: Alexandra
| Nov 19: Social leaming Nov 20 Alex Witt et al., (2024)
6: Witt
Week Guest lecturer: Dr. David Nov 26: Compression and | |
! P , S'AO : Nov 27 David Nagy et al,. (under review)
Ti- Nagy resource constraints
Week Dec 3: Concepts and | o
8. Categories Dec 4 Hanqi Viuphy (2023)
Week Dec 10: Supervised and
| - . , Dec 11 Hanqi Bishop (Ch. 4)
O: Unsupernvised leaming
Holiday break
Week | | - o
10: Jan 14: Function leaming Jan 15 Alex Wu, Meder, & Schulz (2024
Week Jan 22: No
Jan 21: No Lecture ,
11: Tutorial
Week Jan 28: Language and o
| o nouey Jan 29 TBD Kamath et al., (2024)
12: semantics
Week
Feb 4: General Principles Feb 5 Charley @ Gershman (2023)

13:

Week

Week

Week

Week

Week

ﬁ'
L

Week
11:

Week
12:

Week
13:

S e

Schedule

Guest lecturer: Alexandra

.'o"'o" | { '

Guest lecturer: Dr. David
Nagy

Holiday break

Nov 19: Social leaming

Nov 26: Compression and
resource constraints

Dec 3: Concepts and
Categories

Dec 10: Supervised and
Unsupervised leaming

Jan 14: Function leaming

Jan 21: No Lecture

Jan 28: Language and
semantics

Feb 4: General Principles

s

Nov 20

Nov 27

Jan 15

Jan 22: No
Tutorial

Jan 29

Alex

David

Hanql

Hanql

Alex

8D

Charley

Schedule

\A s . o . =T . A AN wr -y
Week Guest lecturer: Alexandra
~ N2

O .'o‘ VItt

Week Guest lecturer: Dr. David

7 - N Ao
. l."'—-1'23.1’.."

8:
Week
9.
Holiday break
Week

Jan 14: Functic

-~ -

I\ N/ ‘\ ._]‘ '—.\"'"r\i:' fo;rr\ rl]
NV s W '--’ A |.-‘

Nov 26: Compression and

resource constrants

Dec 3 S and

e N\ \ ' lr]l-.'

S
il P' '”

‘r* - 8t O o r - r
o 10: Supervised and

Unsupenised leaming

saming

~ew M) . \ |- . i .
Jan 21: No Lecture

Jan 28: Language and

Semarnucs

Feb 4: General Principles

\

i r

\"',' /l‘
.

\ , '-v >
W ’
NIV 2/

L 4
A 4
s

Jan 15

f)17)

Jan 22

Tutorial

|)

Jdll £

:: El"." d

T
(D
>

\‘\. -

TBD

A . .
"\':l'::;.'\" f,:’l“ CJI

(under review)

Swapped

Exam times

LI LA :;’_tiq-"ﬂ

N ot crimy

13:00-156:00 21.02.2025 TR
HoOrsaal 1 F119 (SAND

B o q S
U e A @

Ni‘r-‘n‘)" &fs

.

farry S,
»e - L3

12:00-14:00 11.042025 (EEEER

v

TUBIRGeR.

to be confimed

> . 3 .r'

s | @ M ackanmullar H Fa) AT an
- . .
I))

B3
h"-'“'l»ﬂ_l'ur}p

gt 1 |

Clarification

® [\WO-Step tasks

® [ransitions are a property of the environment and the
participants choice

® e participant chooses l or . ey

e But then probabilistically (common=r0% vs. rare = 30%),
transitions to erther pink or blue on the 2nd step

® [he key takeaway Is that MF vs MB have different responses to
the same outcome

o M If rewarded —> stay
T not rewarded —> Qo

A reinforcement B model-based
M rare
°o \B: oepends on whether reward followed a common or rare
transition... you shouldn’t expect a rare transition to occur again

1
f (common & reward | rare & no reward) —> stay l I . . l . . I
5

T (common & no reward| rare & reward) —> stay "®rewarded unrewarded cowarded unrewarded

B common

slay probability
o
\l
on

| ast week...

Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

« Selects actions a,
| >
* Recelves feedback from the
environment in terms of new states

s,.1 and rewards R(a,, $,) State
5

The Environment;
| | I E
 Governs the transition between S

Action

» Provides rewards R(a,, s,)

PR R et
S0 K. e
Sy

Q-Learning in a bandit task

o Iearning tn tﬂ

Qt(a) < Qt(a) T 7] [I” o Qt(a)]
Policy

P(a) x exp(Q/a)/r)

Model-free RL - Model-based RL

® Habit ® (Soal-directed
® Cheap ® Computationally costly
* (s, a) ° P(s',rls,a)

® \lyopically selecting actions ® Planning and seeking of long term
that have been assoclateo outcomes

With reward Monte carlo tree search

Selection » Expansion » Simulation » Backup
I . > ® Q Q
‘-.T ST 3| }))(- ' -;,/
— O O O O O O O O
I SN S .
Js [e —— O /g) (5/ O @ o) 6/ O
Selected state p g X
R T) o %
T & : 4
- I ™ \ i
R [Tree Policy | \ Rollout Policy |
Expanded state ! L

S e Tt ot of et e e Duarte et al,. (2020) 8

Today’s agenda

® Advances in ...

e Model-free methods

e Deep Q-leaming, policy gradient & Actor-Ciritic

e Model-based methods

e DYNA, World models, & Dreamer

 Something in between

® SUCCESSOr representation

Advances in Model-free RL

State
St

Action

Advances in Model-free RL

e | ast week: Value iteration, Q-Leamning &
[D-leamning

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation

State

Reward

<R(a,, S;)

» <
S

>
> Agent

Value-based

methods

<

Action
a4,

>
> Agent

State Reward Action

Advances in Model-free RL

S, a4,

| | | §<R(at,st)
® | ast week: Value iteration, Q-Leaming & - <
: t+1

1D-leaming

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation
® Policy-based methods

® Policy-gradient for directly optimizing a policy Value-based Policy-based

methods methods

10

>
> Agent

State Reward Action

Advances in Model-free RL

S, a4,

. . . R(at S,)
® | ast week: Value iteration, Q-Leaming & -
- r+1

1D-leaming

® Problem: what If the state-space Is too
arge to visit”

® Deep Q-Leaming for function approximation
® Policy-based methods

® Policy-gradient for directly optimizing a policy Value-based Policy-based
® Actor-

e \lodem version of Policy-iteration:
Value +—»olicy

methods methods

10

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

Q-Learning

Q Table

State

State-Action

Value

Action

Q-Value

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:
® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

Q-Learning

—> Q-Value

Q-Value Action 1

Q Table
State L State-Action Value
Action —
Deep Q-Learning
State

Q-Value Action 2

Q-Value Action n

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:

® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

e \\eight updates:

W, < W+aoV,0.(s,a)

Q-Learning

—> Q-Value

Q-Value Action 1

Q Table
State L State-Action Value
Action —
Deep Q-Learning
State

Q-Value Action 2

Q-Value Action n

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:
® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

e \/\leight updates: /'eaming rate

W, < W+aoV,0.(s, a)

Q-Learning

Q Table

State

State-Action

Value

Action

—> Q-Value

Deep Q-Learning

State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:
® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

e \/\leight updates: /'eaming rate

W, < W+aoV,0,(s,a)

e TD prediction error
0 =r+ymax Q.(s’,a’) — Q,(s,a)

a

Q-Learning

—> Q-Value

Q Table
State State-Action Value
Action
Deep Q-Learning
State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating
a look-up table

—-unction approximation:
® Deep Q-Leamning: use a desp ANN
to leam Qy(s, a)

e \/\leight updates: /'eaming rate

W, < W+aoV,0.(s,a)

e TD prediction error
0 =r+ymax Q.(s’,a’) — Q,(s,a)

a

e Gradient of Q-function w.r.t. to W,
trying to reduce prediction error!

Q-Learning

—> Q-Value

Q Table
State State-Action Value
Action
Deep Q-Learning
State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

11

Deep Q-learning

Tabular methods:

® ()-Leamning: learm Q-values by updating

a look-up table

-unction approximation

® Deep Q-Leamning: use a desp ANN

to leam Qy(s, a)

® \\eight Updates; leaming rate

/

W, < W+aoV,0.(s,a)

e TD prediction error

0 =r+ymax Q.(s’,a’) — Q,(s,a)

e Gradient of Q-functi
~

trying to reduce pred

O

NW.ILT. 1O W,

on error!

Q-Learning

Q Table
State State-Action Value
——>{ Q-Value
Action —
Convglution Convglution Fully cgnnected Fully cgnnected

{
f
|
I)
|
, "'l
|)
| |
| |
'y
A
' o
\ .I \\"-
\ "l
VY
\
| 'l

- ¥ (o

el -)/
a8 [/

o -)

£}
ddoodon ddoooob /QL'LTH‘LH:\ dinoann o

Deep Q-Learnin

\
5
\
\

o -
o -
’ -
v’ -
/ o~
. / -
\ / -
. -
> -
» - -
’ - -
- / - =
. / - -
\ / - -
< o r - o
- \ P - -
- \ o - -
X - . r - g
- N ” - -
- - \ / - -
- 0 . ,. > -
- - o P - -
- - \ / - -
e N i e
— P
—% P
o WS

-~ \
-~ N
. .
- \
- \
R - \

9

® ¢ o ¢ 9 o 0

2 & 0 & ¢ 9 0 0 0 0 % % 0 ° 5 0 % % 9 %
- N\) - -
- \ ” -
e \ P -
. - . , - -
- - \ ’ - -

o Sy, T s S s B
L e
alrslelev]y]> |3
B EX B B B BEX K 4+ & ¥ > 5
@] [¢] (] [¢] [e] (@] [e] [e] 5]

Mnih et al,. (Nature, 2015)

11

Universal Approximation Theorem cybenko (1989)
f

e \\Vhat is a function? Y Y
e y = f(x)
o f. XY

e ANNS are also functions
o g (x) = o(x) where w are the
connection weignts

® At least one neural network exists
that can approximate any continuous
function with arbitrary precision

* [8w(¥) —f)| <e

12

https://www.youtube.com/watch?v=Ln8pV1AXAgQ

Universal Approximation Theorem cybenko (1989)
f

e \\Vhat is a function? Y Y
e y = f(x)
o f. XY

e ANNS are also functions
o g (x) = o(x) where w are the
connection weignts

® At least one neural network exists
that can approximate any continuous
function with arbitrary precision

* [8w(¥) —f)| <e

12

https://www.youtube.com/watch?v=Ln8pV1AXAgQ

Caveat: Approximation does not guarantee generalization

Experience

.. Generalization

"4
Novel situation

Possibilities

13

Temperature (F)

Caveat: Approximation does not guarantee generalization

70

60

S0

40

London’s daily temperature in 2000

? - degree 12 polynomial
: - = degree 3 polynomial

100 200 300

Days since 1st January, 2000

13

Temperature (F)

Caveat: Approximation does not guarantee generalization

70

60

50

40

London’s daily temperature in 2000

? - degree 12 polynomial
? - = degree 3 polynomial

o

0 0go o
° b ?

o
o OO? ¢ °&$§° 8° o
o° o ..-' %0 o
o » P > -0 0‘6Q
o B8 S
& % o ¢_o “
) °’°g » .) .
2 0 0%8 o ° A T o0
® '3 oo \ %
8 o o c NG K
o % 3 v @ @ < 4 o°%
o, & o Lo ¢ \
oo g 00
2 °°f% { o L
0 . - “ %‘ \
'.' (=] v - o oo \
» a oo ."
: Ao °o°°°° *% o °
- °° o o) %
®° o o
o ° °
o® o
°
)
| | |
100 200 300

Days since 1st January, 2000

Error

Model performance for London 2000 temperatures

—e— error in fitting the sample Q

1~ 8- error in predicting the population

-
T
N
S - Predicting *
n ,
. o
8 - Tt B- n--0--8 -O
Fitting
® \\1}
'y
————6—06—0—o—a 5
“ T I ! I I !
2 4 6 G 10 12

Degree of polynomial

13

Yet why do large ANNs work so well?

Not on the exam but very cool

® Double descent phenomena Belkin et al., (2019)

under-fitting . over-fitting

. Test risk

under-parameterized

Test risk

over-parameterized

® |cft: standard story

e = “classical” “modern”
® rignt: over-parameterized models start to reduce & = Ny
prediction error h - Training risk - Training risk:
sweet spot_ v ~ _ - T~ D iltil'[i)l?ltiillilliesliulil L
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent™ risk curve

14

Yet why do large ANNs work so well?

Not on the exam but very cool
® [ouble descent phenomena
® |oft:

® rignt. over-parameterized models start to reduce
orediction error

standard story

® | ottery licket conjecture

® /f you buy enough lottery tickets, one is bound to
be a winher*

® | arge “over-parameterized” ANNS have a bunch
of different subnetworks that are randomly
nitialized (1.e., lottery tickets)

e S5GD focuses on training winning subnetworks

® Pruning connections Not part of the winning ticket
can Improve efficiency and even performance

e The effective complexity # | 6|

*not actually good financial advice

Belkin et al., (2019)

over-parameterized

under-parameterized [/

Test risk

under-fitting . over-fit ting

. Test risk

’% .MJ: “classical” “modern”
E a'_:' regime interpolating regime
N
\ .
~ o ‘Training risk ~ _Training I‘lbk
sweet spot_ . — ~ interpolation threshold

Complexity of H Complexity of H

(a) U-shaped “bias-variance™ risk curve (b) “double descent” risk curve

Frankle & Carbin (2019)

o* m e 6"
) (O ,\ —~
o, OO0,
X x\
‘ SGD i Prune (| \u)
s —» W
\

A. B2 1212 12 32 28

> —\\'
B. @] HL]H Nn2s 42 ‘:X:’ :/ V/V
|]]] e f:- 3 T - .:. 4 ,)__ : ;' \ B :

L.]I_ cc :5 E. 3639

\

V V /
‘5 o \

\ /

l— HCHf-]-J Hl_ } 3 T

0(0) m e 6(0) ‘

Policy Gradient

® Deep Q-learning uses an
ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)

Deep Q-Learning

State

34

W, 0N
KX KRG \w
Nla%

TN
0=
Q \

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

15

Policy Gradient

® Deep Q-learning uses an

ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)
® Policy gradient uses a

function to approximate the
optimal policy

® the value function Is Implicit

Deep Q-Learning

State

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

15

Policy Gradient

® Deep Q-learning uses an
ANN to approximate the value
function

® the policy Is Implicit (e.q., a
softmax over Q-values)
® Policy gradient uses a

function to approximate the
optimal policy

® the value function Is Implicit

Deep Q-Learning

State

4

State

Q-Value Action 1

=y =
3707 @
A OQ\»

Q-Value Action 2

Q-Value Action n

\%, 0N
KX KRG \w
VAY

c{':‘}\‘v"/{’:\
N0
OO

/X

/ (V> .V[‘\v
2\
Nla%

— Action

15

Policy Gradient

Formulas not on exam, but you should understand the general concept!

Use a neural network to parameterize a policy 71'6)(61 | 5)

Objective: Maximize expected reward following a parameterized policy: J(6) =

Method: using gradient ascent @, 1 = 0, + 'V »J(6,)

learning rate

Jsing the Markov principle, we can write the gradient as:
7|

VJ©O) =E, |) Viegr/als)Oa,s)
et

State

Action

Updates to @ follow the gradient to increase the probabability of highly rewarding actions:

0,.1 =0+ aVylogmnya,|s,)0(a, s,

ere, J(a,, s,) is usually estimated through Monte Carlo sampling

16

Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

Diederichs (2019)
17

Actor-Critic

® Actor-critic combines value-based and policy-based

methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by

W

e Simulate trajectories a ~ my(a | s) and compute T
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

D) error

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

|
Valiles |

o=

* Diederichs (2019)
17

Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

Policy-
based
methods

Value-
based
methods

Reward

> Environment

Action

State

|
Valiles |

o=

* Diederichs (2019)
17

Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy my(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

® Critic update: Wy = W, + a0
reduce prediction ernor S

Policy-
based
methods

Value-
based
methods

Reward

>~ Environment

Action

State

A
I
Valiles |

o=

* Diederichs (2019)
17

Actor-Critic

® Actor-critic combines value-based and policy-based
methods and Is a generalization of policy iteration

e Actor provides the policy zy(a | s) parameterized by @

e Critic provides the value function Q(s, @) parameterized by
Y%

e Simulate trajectories a ~ my(a | s) and compute TD error
0 =r+ymax Q.(s,a’) — Q.(s,a)
al

® [teratively update actor and critic

e Critic update: w, L1 = W, + ad
reduce prediction ernor S

e Actor update: @, =6 + 6 V(glog ﬂ@(a | S)Q (s a)
INcrease probability of highly rewarding actions

Policy-
based
methods

Value-
based
methods

Reward

- Environment

State

Action

1
* Diederichs (2019)
17

Model-free methods summary

® Just put ANNSs everywhere!
® Methods

® Deep Q Leaming
® Policy-based methods

® Policy Gradient
® Actor-
® [ntegration of both value-based and policy-based methods

18

Model-free methods summary
® Just put ANNSs everywhere!

® methods

¢ Deep Q Learning Value-based Policy-based
® Policy-based methods

methods methods

® Policy Gradient
® Actor-
® [ntegration of both value-based and policy-based methods

18

Model-based methods

® | carning a ‘fleld map of the environment”
Nelps with planning and generalization

e But how is the model leamed? 4 L
® And how is it used to in BL? e
e \\/e will discuss T mm——

® | caming transitions via Delta-Rule I

® DYNA for simulating experiences
® \/Vorld Models
® Dreamer V3

19

Learning the model through experience

_ | Transition Matrix MDP
® ollow whatever policy (e.g., random) A~
and update the transition matrix using .. —(7\\\
i S 0.5 0.1 0.7 /R |
delta-rule ; |:0_3 - 0.2] {] \\\
T (s']s,a) < T(s'|s,a) + a (8(s', s) — T(s'| s, a)) i . o N " L .1

e Kronecker delta o(s’,) = 1 when “ -
the transition occurs (i.e., s — §')

e Model(s,a) — [s', r]| provided by
learned transition matrix 7(s’| s, a) S —
and value function O(s, a) or V(s)

20

Sutton (1990)

Simulating experiences with DYNA

® \odels of the environment can e used for planning ,
planning

model » policy

Simulating experiences with DYNA

Sutton (1990)

Viodels of the environment can be used for planning lann
. . . , annin .
DYNA uses simulated experiences to update policy/value functions, model P = » policy
just like real experiences
model simulated backups » values » policy

= .
cXpericnce

21

Si

\]00
DYN

Sutton (1990)

Imulating experiences with DYNA

Just

els of the environment can e used for planning lann
.] . , annin .
A uses simulated experiences to update policy/value functions, model P a » policy
ke real experiences
model simulated backups » values » policy

™ experience
value/policy

simulating acting
direct
RL

model experlence

model
learning

21

Si

Sutton (1990)

Imulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

value/policy

simulating acting
direct
RL

model experlence

model
learning

21

Si

Sutton (1990)

Imulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

2. Model learning.

value/policy

simulating acting
direct
RL

model experlence

model
learning

21

Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

2. Model learning.

value/policy

simulating acting
direct
RL

model experlence

a. Update model of the environment Model(s, a)

model
learning

21

Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

2. Model learning.

value/policy

a. Update model of the environment Model(s, a)
b. Simulate experiences: simulating acting
direct
RL

model experlence

model
learning

21

Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning

SYNA | | | | planning .
uses simulated experiences to update policy/value functions, model » policy
just like real experiences
1. Direct RL: =xecute real actions and update value function o
simulate ackups '
Q(S, Cl) «— Q(S, CZ) + C([l/' + y max Q(S,, a/) _ Q(S, CZ)] model > experience D s values = policy
al
2. Model learning:
| value/policy
a. Update model of the environment Model(s, a)
b. Simulate experiences: simulating acting
* Give previously observed states and actions to model direct
[s,a] = Model(s,a) — [s’, 7] RL

model experlence

model
learning

21

Sutton (1990)

Simulating experiences with DYNA

Viodels of the environment can be used for planning ,
DYNA uses simulated experiences to update policy/value functions, model planning » policy
just like real experiences
1. Direct RL: Execute real actions and update value tunction
O(s,a) < O(s,a) + alr + ymax Q(s',a’) — O(s, a)] model ~ experience o values = policy
o

2. Model learning: lue/poli
value/policy

a. Update model of the environment Model(s, a)
b. Simulate experiences: simulating \acmg
* Give previously observed states and actions to model direct
[s,a] = Model(s,a) — [s’, 7] RL
e Jpdate value function with simulated experiences

O(s,a) < O(s,a)+alr+vy max O(s’,a’) — O(s,a)] model experlence

model
learning

Sutton (1990)

Simulating experiences with DYNA

® \odels of the environment can e used for planning

lannin .
o DYNA uses simulated experiences to update policy/value functions, model P a » policy
just like real experiences
1. Direct RL: Execute real actions and update value function S
simulate ackups '
O(s,a) < QO(s,a) + alr+ ymax O(s’,a’) — O(s, a)] oGS > experience ——» values > policy
al
2. Model learning.
| value/policy
a. Update model of the environment Model(s, a)
D. Simulate experiences: simulating acting
e (5ive previously observed states and actions to model diract
[s,a] —» Model(s,a) — [s/, 7] RL
e Jpdate value function with simulated experiences

® [hese simulations can be controlled for better efficiency

O(s,a) < O(s,a)+alr+vy max O(s’,a’) — O(s,a)] model experlence

(e.q., prioritized sweeps of reward-relevant state visitations; Moore & mod’el
Atkeson, 1993) learning

21

Benefits of Model-based planning
Sutton & Barto Fig. 9.5

\Vlodel-based planning needs far fewer real
Nteractions with the environment (episodes) to

eam better policies
® (Consider settings like self-driving cars, robotics,

financial syste
eal INteraction data

ms... where it s very costly to get

Steps
per
episode

R00 =

600

400+

200+

14

G
A

'

‘ actions

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

b ™

1 l
50

Episodes

22

® [\/[odel-

Dased p

anning needs far fewer real

Nteract

ons with the environment (episodes) 1o

eam be

ter policies

® (Consider setl

financia

syste

Ngs like self-driving cars, robotics,
ms... where it s very costly to get

real Interaction data

® Halfway through only the 2nd episode. ..

® Arrows show greedy action in each state an

no arrow It all actions are eqgual

WITHOUT PLANNING (N=0) WITH PLANNING (N=50)
. G sanahiRAnaBl (S

* N nsnn ok

S S aablnal, }
e et et

m -

~ ==

Sutton & Barto Fig. 9.6

Steps
per

o episode

R00 =

600

400+

200+

14 ™

Benefits of Model-based planning

Sutton & Barto Fig. 9.5

G
1 |

'

actions

n

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

b ———

10 20 30 40 50

Episodes

22

ap screen or use amow keys to override the agent's decisions

23

Screenshot Image Reccenstruction

Z
=1
[
e
o
=
—
e
T
]
—_—
T
=0
e
]
—

g
o
o
E
N
o
N

Recurrent World Models e

Facilitate Policy Evolution Check out worldmodels.github.io/ for
iteractive demos and more details!

NIPS 2018
Oral Presentation

Thirty-Second Annual Conference on
Neural Information Processing Systems
Montreal, Canada

Interactive demo. Tap screen or use arrow keys to override the agent's decisions.

http://worldmodels.github.io/

Ha & Schmidhuber (2018)

World models

Ha & Schmidhuber (2018)

World models

e Vision Model (V) encodes high-dimensional
visual data into a low-dimensional latent vector z

Varlatlonal Autoencoder (VAE)

Original Observed Frame

» Encoder

Decoder

oooo ed Frame

Varlatlonal Autoencoder (VAE)

Original Observed Frame ... Reconstructe d Frame

Ha & Schmidhuber (2018)

World models

» Encoder — z | Decoder

e Vision Model (V) encodes high-dimensional

visual data into a low-dimensional latent vector z Pt et

¢ Memory RNN (M) learms the temporal dynamics [M 1o | | M |
and predicts future states P(z,,1 | a,, Z,, h,) where - T
h is a hidden state vector capturing dynamics \ " \

Ha & Schmidhuber (2018)

World models

e Vision Model (V) encodes high-dimensional
visual data into a low-dimensional latent vector z

® Memory RNN (M) leams the temporal dynamics
and predicts future states P(z,,1 | a,, Z,, h,) where
h is a hidden state vector capturing dynamics

* Linear controller (C) selects actions as a linear

function of z, and A,
= W.lz,h]+ b,. where W.and b, are
weights/bias

Variational Autoencoder (VAE)

Reconstructed Frame

Original Observed Frame

T

» Encoder —>®—' ecoder

Real (after training)

Ha & Schmidhuber (2018)

World models

e Vision Model (V) encodes high-dimensional
visual data into a low-dimensional latent vector z

® Memory RNN (M) leams the temporal dynamics
and predicts future states P(z,,1 | a,, Z,, h,) where

h is a hidden state vector capturing dynamics

* Linear controller (C) selects actions as a linear
function of z, and A,
a,=W.lzh]+b. where W_and b,. are
weights/bias

e [raining on dreams by simulating future states and
treating them as real

» UUsed to update controller weights

Variational Autoencoder

T

» Encoder

(VAE)

econstructed Frame

Real (after training)

Z
G
n >
\.

M

Dreaming

24

\

DreamerV3 —

.
FFF I3
A D G S
TN T8 09 69 4 9

P
N b
o f‘
a»
- - - " o0
- - - - .

\

DreamerV3 —

.
FFF I3
A D G S
TN T8 09 69 4 9

P
N b
o f‘
a»
- - - " o0
- - - - .

First algorithm to collect diamonds in Minecraft without human data or training curricula

Minecraft Diamond

S DBreamerV3

— X ; 2 g
First.Diamond
— Max from Scratch

Mean

Episode Return

1

T T T
10K 100K 1M 10M 100M
Environment Steps

First algorithm to collect diamonds in Minecraft without human data or training curricula

Minecraft Diamond

S DBreamerV3

— X ; 2 g
First.Diamond
— Max from Scratch

Mean

Episode Return

1

T T T
10K 100K 1M 10M 100M
Environment Steps

Dreamer' Hafner et al., (2023)

Similar concept to World Models

o Encoder z, ~ q,(z,| h;, x;) given hidden

state h, and observations x;,

o Sequence model h, | = f,(h, 2, a,) and

dynamics predictor Z, ~ p,(Z;| h,)
Actor-critic architecture
o Actora, ~ my(a,|s,) wheres, = {h, z}
o V(R | 5,)

1 27

MOdel_based planning Context Input pe Loo redicti :
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

True Model True Model True Model True Model

Model

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

True Model True Model True Model True Model

Model

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

Model

True

® [t's ok that the model predictions don't perfectly
match the true visual state of the world

Model

® Only needs to e useful for training the actor
and critic

True Model True Model True

Model

Agents with
item (%)

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

Model

True

® [t's ok that the model predictions don't perfectly
match the true visual state of the world

Model

® Only needs to e useful for training the actor
and critic

True

® \/\nile similar performance for easier goals (iron
INgot + pickaxe), first RL model to reliably fino
diamonds

Model

True

® Byt still very short of human performance

Model

100
751
50+

True

lron Ingot Iron Pickaxe Diamond
251 25

100 ; 100 ;
75 pALA
50 — Rainbow
_ 251 — PPO
0 0 . 0 ;

757
501

OM 50M 100M OM 50M 100M OM 50M 100M

Env steps Env steps Env steps

Model

Agents with
item (%)

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

Model

True

® [t's ok that the model predictions don't perfectly
match the true visual state of the world

Model

® Only needs to e useful for training the actor
and critic

True

® \/\nile similar performance for easier goals (iron
INgot + pickaxe), first RL model to reliably fino
diamonds

Model

True

® Byt still very short of human performance

Model

100
751
50+

True

lron Ingot Iron Pickaxe Diamond
251 25

100 100 -
75 MEALA
50 — Rainbow
_ 251 — PPO
0 0 : 0 4 humans

757
501

OM 50M 100M OM 50M 100M 0 50M 100M

Env steps Env steps Env steps

Model

Agents with
item (%)

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

Model

True

® [t's ok that the model predictions don't perfectly
match the true visual state of the world

Model

® Only needs to e useful for training the actor
and critic

True

® \/\nile similar performance for easier goals (iron
INgot + pickaxe), first RL model to reliably fino
diamonds

Model

True

® Byt still very short of human performance

Sl
@Q

D

Model

100
751
50+

True

lron Ingot Iron Pickaxe Diamond
251 25

100 100 -
75 MEALA
50 — Rainbow
_ 251 — PPO
0 0 : 0 4 humans

757
501

OM 50M 100M OM 50M 100M 0 50M 100M

Env steps Env steps Env steps

Model

Agents with
item (%)

Imagination

Model-based planning
via simulating the future

® |\ain purpose of the model is to supplement real
training experiences (direct RL) by simulating
(IMmagining) future experiences

True

Model

True

® [t's ok that the model predictions don't perfectly
match the true visual state of the world

Model

® Only needs to e useful for training the actor
and critic

True

® \/\nile similar performance for easier goals (iron
INgot + pickaxe), first RL model to reliably fino
diamonds

Model

True

® Byt still very short of human performance

Sl
@Q

D

Model

100
751
50+

True

lron Ingot Iron Pickaxe Diamond
251 25

100 - 100,
75, & — Dreamer
50 @@(IMPALA
/* — Rainbow
_ 257 U — PPO
0 04— Q A = humans

757
501

OM 50M 100M OM 50M 100M 0 50M 100M

Env steps Env steps Env steps

Model

Model-based methods summary

How IS the model learmed”
® [Nnrougn trial-and-error leaming using delta-rule updates
e \/\/ith modem ML technigues

® —Ncode high-dimensional stmull iInto a low-dimensional representation z

e [eam the temporal dynamics P(z,, |z,

How IS the model used”?

® [Jse simulated experiences to augment direct RL (.e., leaming from real
experiences)

® \odel-free methods (e.q., actor-critic) can also e combined with model-based
eamning to great effect (Dreamer)

29

5 MiNute break

Balancing flexibility and efficiency

® |\/[odel-free methods are more
computationally efficient

e But lack flexibility to changes inthe
environment

e |\odel-based methods are highly >

flexible (local changes in environment 2

ead to local changes in model) =

e Sut computationally costly
when it comes to performing
simulations

Low +

® |s there nothing In between”? O s PIBCHICY et 1

Gershman (2018)
31

Balancing flexibility and efficiency

® |\/[odel-free methods are more
computationally efficient

e But lack flexibility to changes inthe
environment

e |\odel-based methods are highly >

flexible (local changes in environment 2

ead to local changes in model) =

e Sut computationally costly
when it comes to performing
simulations

Model-free

Low +

® |s there nothing In between”? O s PIBCHICY et 1

Gershman (2018)
31

Balancing flexibility and efficiency

® |\/odel-free methods are more

computationally efficient
Model-based

*» High

o Byt lack flexibility to changes in the
environment

® |\odel-based methods are hignly
flexible (local changes in environment
ead to local changes in model)

Flexibility

e Sut computationally costly
when it comes to performing
simulations

Model-free

LOow

® |s there nothing In between”? W s PECIONICY

High

Gershman (2018)
31

Balancing flexibility and efficiency

® |\/odel-free methods are more

computationally efficient
Model-based

* High

o Byt lack flexibility to changes in the
environment

® |\odel-based methods are hignly
flexible (local changes in environment
ead to local changes in model)

SUCCeSSor representation

Flexibility

e Sut computationally costly
when it comes to performing
simulations

Model-free

LOow

® |s there nothing In between”? W s PECIONICY

High

Gershman (2018)
31

\ " Which states are likely to follow our current state?

L B 32

SR as a decomposition of the TD value function

o0
- Value function from TD
I t
Vis)=Lk,., z 7 Tt| Learning
=0

Dayan (1993)

SR as a decomposition of the TD value function

o0
- Value function from TD
I t
Vis)=Lk,., z 7 Tt| Learning
=0

V(s) = Z M(s, s")r(s’) SR decomposition
§

Dayan (1993)

SR as a decomposition of the TD value function

o0
- Value function from TD
I t
Vis)=Lk,., E 7 Tt| Learning
=0

Vi(s) = Z M(s, s")r(s’) SR decomposition

Dayan (1993) 5 / \
' ! 1

Successor Representation Reward Values

S by S matrix of future
discounted state
occupancies

vector of singular
rewards for each state

Successor Representation

Not just a map...

L : J_.
ot b
!

Successor Representation

Not just a map...

— _
- 1 [

... but a goal-directed representation about which
states are likely to encountered given a policy

Q 23 N N) x.
¥ O Q@Q’ & O >
o & & S
& N\ & S

......

Successor Representation

Not just a map... ... but a goal-directed representation about which

I

—

states are likely to encountered given a policy

Outward journey: timetable change.
Due to timetable changes, your

nnecuon 1s n«

check the curren

t travel options.

) longer current. Please

Successor Representation

Not just a map... ... but a goal-directed representation about which

I

—

Due to timetable changes, your

check the current travel options.

Outward journey: timetable change.

nnection is no longer current, Please

states are likely to encountered given a policy

Successor Representation

Not just a map...

I

From a trajectory initiated in state s, the SR encodes the expected discounted

... but a goal-directed representation about which
states are likely to encountered given a policy

Q Q X/ X,
X O > >
Q \S N\ O A2 S
O Q N 2O >
S N L c}o N c}\)
Q¥ 2% Q0

future occupancy of state s

M(s,s’) =k Z y'o(s, = s")| sy =s
=0

Outward journey: timetable change.

Due to timetable changes, your

nnection 1S NO 1onger « en ‘lease

where 6(*) is the Kronecker delta and equal to 1 when the argument is true, and O

otherwise

......

Successor Representation

Not just a map...

I

Outward journey: timetable change.
Due to timetable changes, your

nnection is no longer current. Please

check the current travel options

... but a goal-directed representation about which
states are likely to encountered given a policy

Q O Qo X X
) N 2 \ \
*\g &3@ ‘\\QQ X & N
P ¢ S S
A & Q 20 S
From a trajectory initiated in state s, the SR encodes the expected discounted <
25’

future occupancy of state s

M(S9 S,) — -:71- Z }/té(‘gt — /) ‘ S() — TUbingei

where 6(*) is the Kronecker delta and equal to 1 when the argument is true, and O

otherwise

Successor Representation

Not just a map...

I

Outward journey: timetable change.
Due to timetable changes, your

nnection is no longer current. Please

check the current travel options

... but a goal-directed representation about which
states are likely to encountered given a policy

Q O Qo X X
) N 2 \ \
*\g &3@ ‘\\QQ X & N
P ¢ S S
A & Q 20 S
From a trajectory initiated in state s, the SR encodes the expected discounted <
25’

future occupancy of state s

M(S9 S,) — -:71- Z }/té(‘gt — /) ‘ S() — TUbingei

where 6(*) is the Kronecker delta and equal to 1 when the argument is true, and O

otherwise

Outward journey: timetable change.
Due to timetable changes, your

Successor Representation

nnection is no longer current. Please

check the current travel options

Not just a map... ... but a goal-directed representation about which
: states are likely to encountered given a policy

4
= [_
| | o N N &
T . Q>® soéq . QQ > o3 >
. © N © SRS
Tk L] K & Q;éo S > :
- O Q2 -
From a trajectory initiated in state s, the SR encodes the expected discounted <
@)
future occupancy of state s =

M(S, S,) — -:ﬁ- Z }/té(st — ,) ‘ 50 = TUbingei::

=

where 6(*) is the Kronecker delta and equal to 1 when the argument is true, and O
otherwise

Computing the Successor Representation (off-policy)

9
13 |

If the state space is fully known, we can compute the SR in : 5
closed form: ™ s ® a
M(S, S/) — 2 : 7/l‘ Tt — (I o }/T)—l o /
=0 '4

[is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A

Computing the Successor Representation (off-policy)

If the state space is fully known, we can compute the SR in
closed form:

M(s,s) =) y'T'= (I —yT)"!
=0

[is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A

\)

10 — =

15

13

=
10
P

15

Computing the Successor Representation (off-policy)

If the state space is fully known, we can compute the SR in
closed form:

M(s,s) =) y'T'= (I —yT)"!
=0

[is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A

\)

10 — =

15

9.
13 /
ul | 5

=
10
P

15

Computing the Successor Representation (off-policy)

If the state space is fully known, we can compute the SR in
closed form:

M(s,s) =) y'T'= (I —yT)"!
=0

[is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A

110

115 -

[| ,Igl -
13
|l 5
14 __

1 B .
o 3
i =
16 12
4
y=9\>
|
. -
S EuEE
||
- : |
.
N
| I l
5 , T :

Computing the Successor Representation (off-policy)

If the state space is fully known, we can compute the SR in
closed form:

M(s,s) =) y'T'= (I —yT)"!
=0

[is the identity matrix, y is the temporal discount factor

I is the transition matrix under a policy: T(S, S’) — Z 71'(61 ‘ S)P(S’l S, CZ)
a

A further simplifcation that is often used is to assume a random policy,
allowsing us to define T using the degree (D) and adjacency (A) matrices

T=D"1A

110

115 -

[| ,Igl -
13
|l 5
14 __

10 .
o 3
Y =
16 G2
4
y=9\>
|
. .
. E
. - |
.
N
| I l
5 , T :

Computing the Successor Representation (on policy)

If the state space is not known, we can compute the SR using the
delta-rule:

A\

M, (s,5) = M(s,s) +a|5(s,=s)+yM_ (s,5) — Ms, s')]

where a is the learning rate and ¢ is the kronecker delta 0 = 1 when
true, 0 otherwise

e This update is identical to the temporal difference learning rule
for value functions

e The successor representation is updated based on the
successor prediction error instead of the reward prediction error

Computing the Successor Representation (on policy)

Russek et al., (2017)

If the state space is not known, we can compute the SR using the
delta-rule:

A\

M., (s,5) = M(s,s) +a|5(s,=s)+yM_ (s.5) — Ms, s')]

where a is the learning rate and ¢ is the kronecker delta 0 = 1 when
true, 0 otherwise

e This update is identical to the temporal difference learning rule
for value functions

e The successor representation is updated based on the
successor prediction error instead of the reward prediction error

Computing the Successor Representation (on policy)

Russek et al., (2017)

If the state space is not known, we can compute the SR using the
delta-rule:

A\

M, (s,5) = M(s,s) +a|5(s,=s)+yM_ (s,5) — Ms, s')]

where a is the learning rate and ¢ is the kronecker delta 0 = 1 when
true, 0 otherwise

e This update is identical to the temporal difference learning rule
for value functions

e The successor representation is updated based on the
successor prediction error instead of the reward prediction error

Computing the Successor Representation (on policy)

Russek et al., (2017)

If the state space is not known, we can compute the SR using the
delta-rule:

A\

M, (s,5) = M(s,s) +a|5(s,=s)+yM_ (s,5) — Ms, s')]

where a is the learning rate and ¢ is the kronecker delta 0 = 1 when
true, 0 otherwise

e This update is identical to the temporal difference learning rule
for value functions

e The successor representation is updated based on the
successor prediction error instead of the reward prediction error

SR generalizes for changes in reward

Model-Free and SR value computations with changing reward and noise

e |f the location of rewards Value function % difference TCL“:C;?)L:::
change, only the r(s") part 1507 y e YrewardSMF
needs to be re-learned while) — MF noise
M(s, s) remains the same ? : — o .
= 100 Qe
Vi(s) = Y M(s,s)r(s)) , N
s’ % eq | = ~ -~
£ _ ~N .. reward2
* [his leads to faster = l
generalization to changes in 0 ;
the environment ’ : Timestep + a0t .

reward3

Stachenfeld, Botvinick & Gershman (2017)
37

The Eigenvalues of the SR

 Eigenvectors capture different dimensions of variability

e M = VAV~ where v, € V are Eigenvectors and 1, € A are the Eigenvalues

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

e M = VAV~ where v, € V are Eigenvectors and 1, € A are the Eigenvalues

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Ei t
e M = VAV~!where v; € V are Eigenvectors and 4; € A are the Eigenvalues 'g‘??vec o

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

FEAdATYEFPFAY
FALAFYEIFMFALA
AAAPPEEEALALLA

AAAPFPAANIFMAALA

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,
R

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Eigenvectors TR (ITY
rALArYRIFPAL

= DS = N EE aaidriEead

Square Lattice — — AR AAAPAAN FrAA
Soiisaisaisassssssassssss =il = B0 ES s s
= i ES B N = RS
ma = 281 B NN ESE B S
R R R R R R B
B OEE W =2 NN = EE EE
R OB ESE S (WM B

Stachenfeld, Botvinick, & Gershman (2017) =

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,
-

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Eigenvectors TYYFEl T
rALArYRIFPAL

Pl DI = DS I =S S saapriiiis
........... Tanguiar Lattice W EEE NN == B EE N S
= Ty rINy
e 5 EH =MW ES M EE
o 8 8 B F R B OB
= [BS W ST BN BN Em
e e LR R RN
""""""""""""""""""""""""""""""""""""" mEOPED NN OB LEE MO oSS

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,

-

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

EigenveCtors YYYYTYALYYYY TYYTEEI IO Y
YYTYYHA4RYYYTY FAAAFPY FPAA

A—_—— &
—l".—b,‘ {'.‘;'a TYYTYVYTAAAAAAA AAAPBERALLA
et N y ! eal SN AEEELE] [EEE AAAprAlrraa
Random Points e Bl T= IBY s « SR s T bbbl CLELE AALpAAlgrrid
PP I — "A‘-.‘l"l.:: _—— . ™
= e) R AR e SIS S
' [- - ’ ~
}(‘ B Ly ¥ ‘.‘v‘ ’ o—; ;‘.‘ AL
N el W) B 5 A=
> . M o e, e L T —
" A eIl LS5 IR BN U S 2
Y 1192 A=V S8l AN LD sl ==
S S Pe YR DS 6 TR e
= ok Wk 2 AS P s
S S - P I LRl e s B S
D A~ Ny W '.."o. % ..3 .': ! _"l _"' of .:: ’:
R AR &5 o R EER G

Stachenfeld, Botvinick, & Gershman (2017) =52 © SO B DN BNE RN N 255

Environment Machado et al., (2023)

The Eigenvalues of the SR

* Eigenvectors capture different dimensions of variability

Eigenvectors

e M = VAV~ where v; € V are Eigenvectors and A, € A are the Eigenvalues v,

 For the SR, the different Eigenvectors capture different orthogonal patterns of
state visitation

* |In more regular environments, the Eigenvectors of the SR are gridded*, just like
grid cells in the Entorhinal Cortex

Eigenvectors YYTYTALFYYY TR OO
pu— l‘ L _—' ., YYYYH44RYYrYy Yy FAAAFPY FPAA
‘ [-

FYYYYdddd4d4d4 AAAPEprpLLLA
Random Points e (B »== IRy
. , B repete - ” ‘ -

-

FY4444 8 A444
bl LEEE. AAAPAANFPMLA

- ¥ ‘
=0
- W
LR
- e

¥
'
Y

|
A
[ncw*;':q b8

bari
lasl
L
' 'o.‘. ‘ ‘.‘.‘ ...‘

P Ta N ="
}(‘ :..'.:', l'A:

O

l .: .
- ';
N
:
i
Yi
4

A A

|

.
ses I
o —
-
S~
'C
-~
p— g
-
1
1
»
1
-
TN
.
4

ch
-
T M PRl e

’
\
.. " ‘ v
.
. .0'

|

* Not unique to the SR, but any
similarity metric that captures
transition structure

Iy
W ol

'.':""4;’ <
)

, (B

‘

(]

)
0

Stachenfeld, Botvinick, & Gershman (2017) =52 © 5O O At BN RRY Wt =S

SR naturally identifies subgoals

e Eigenvectors capture subgoals (i.e., compartments in

the environment)

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

A Multi-compartment environment |

V3
1 eigenvector 2 eigenvectors VZI /
: >

B Multi-compartment environment Il

. ﬁ ._z :
{) a
(3)

1 eigenvector 2 eigenvectors 3 eigenvectors

Subgoals
® 1-way partition

@ 2-way partition
® 3-way partition

C Normalized cuts on 2-step tree maze

1 eigenvector 2 eigenvectors 3 eigenvectors

SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)

A Multi-compartment environment |
Subgoals
® 1-way partition
& O @ 2-way partition
* [hese connectivity-based representations correspond - ® 3-way partition
to Hippocampal activity found in Schapiro et al. (2015)

an d G ary er.t e.t al . (201 7) 1 eigenvector 2 eigenvectors VZI / R

B Multi-compartment environment Il

O
Schapiro et al. (2015) O
Task
a S 0 0
1 eigenvector 2 eigenvectors 3 eigenvectors
C Normalized cuts on 2-step tree maze
g/\ /\g
X \@

1 eigenvector 2 eigenvectors 3 eigenvectors

SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)

A Multi- -compartment environment |
Subgoals
® 1-way partition
& 2-way partition
 These connectivity-based representations correspond ® 3-way partition
to Hippocampal activity found in Schapiro et al. (2015))

and Garvert et al. (2017) 1 eigenvector 2e'c.venvectors

M(s, s") B Multi-compartment environment |l

: 1 30 O -
]) ir
Schaplro et al. (2015) 2 o § = @) O '
= . 1 1=
Task g I : b+ 0 .
e § 3 8 O
5 @ 8 =
e < At
: % 9 O 1 eigenvector 2 eigenvectors
o
0
o O < l : .
eesrcesscaesen -1 0 L C Normalized cuts on 2-step tree maze

Visited states MSDS dim 2

‘52? vﬁ' I

1 eigenvector 2 eigenvectors 3 eigenvectors

SR naturally identifies subgoals

Stachenfeld, Botvinick, & Gershman (NatNeuro 2017)

e Eigenvectors capture subgoals (i.e., compartments in
the environment)

A Multi-compartment environment |
Subgoals

® 1-way partition
@ 2-way partition
® 3-way partition

 [hese connectivity-based representations correspond
to Hippocampal activity found in Schapiro et al. (2015)

1 eigenvector 2 eigenvectors
and Garvert et al. (2017)
M(s, s") 2 B Multi-compartment environment Il
o 1 30
o) ir
Schapiro et al. (2015) 20 § - ®
ad Task e S __ a0 @
se0 3 ? '
&» : 1 =
o g M| 9 O 1 eigenvector 2 eigenvectors
-
Y J 1
eeercesencesen a 0 ‘ C Normalized cuts on 2-step tree maze
Visited states MSDS dim 2

1 eigenvector 2 eigenvectors 3 eigenvectors

SR is sensitive to policy

A Environment Stachenfeld (Phd thesis, 2018)

* SR learned under different policies learn different
representations

 Under a softmax-optimal policy seeking the goal state, states
become organized according to their distance from the goal

discretized 32x32

e But it also makes them less grid-like 4%

A Random walk policy B Reward in center goal

- A
— . - B d lk C f imal
: o = Sottmax-opt SR
Random walk SR ottmax-optima
- " ' ' — - - - 1 ' \l B - ‘ — ‘
l — . . € (D ‘
- - 48N - - « 3N, 1] 0 ® .
- v T - f— - ' ! - = ¥ - % " = : !
[y a | — - . K § 1/ ‘ K :
Bmﬁ-—WQME OHAEEA®R A
- - : - « — T— - ‘ = ' i “-.‘
- z 1 - ~ - = T u - - 5 - " . ‘ ': . '-.f y at
' 1 ’ J " | ; : E ’ !)) - qQ _R‘. “'. ‘-“d 2 .: ‘ l'l‘-‘ * -.‘: . L .-j -
: A > - - r .d ! &) ‘ - 9 QQI ' . \ I (R I"'R‘F % ‘ - . .
"'-“ - g —-'.-I an
'¢'~' .,. g .- , - & ’). - ‘- . ..\ -l - . .: 5 3 ‘ s vy S]
& E a m . “ ‘ : M "’ . " e "i ﬂ"’- '_”’r.'-“r zsh o e -'|._ " l.- .
1 A | ! . " — ,.u ._..- l.‘ - l-lx- L |_ - - -"n~ 1-
— _ . o e g, i : i R
‘ st - - OC.OGO ° ¢ 21.)24; .6:7:“ ° ‘ :- a o - ’-.. 1 X ! z e b :'.'
-- o ! A A = : : C’Q E'Q p o O ® /q fﬁ : . - x '
\ e R ARk o o iy S5 o V<
. - i Y b _o_d 209 P p’
L | i VDU vcu 5.3““ O:G‘DO “! ' £ v O

Stachenfeld et al., (2017)

SR for option discovery

® “Options framework” IN RL corresponds to leaming extended seqguences of
actions instead of only a single action at a time

® Options: Make coffee vs. make tea
® Actions: move left leg, move right leg, move wrist 34 degrees
® SR naturally discovers Eigenoptions
® |\ore recent work has identified functional seguences of actions this way

41

SR for option discovery

® ‘Options framework” In RL corresponds to leaming extended sequences of Eigenvector
actions instead ot only a single action at a tme . A
e Options: Make coffee vs. make tea m ‘l?”“':
® Actions: move left leg, move right leg, move wrist 34 degrees

® SR naturally discovers Eigenoptions ,/ E'gempt'ons\

\LAAAE]l LEALERS
TYTYTAAAATY

® \\ore recent work has identified functional sequences of actions this way 44441 kAL

FFVCC bbh'i

41

Machado et al., (2018)

Conv Cenv Conv
64, b6 3, 6x6 hd, bxbH
pad 0,

x -

astion

y {c Decon

, & { 2 &4, fxb
d0.0 pad 2,2 pad 2,2 . o pad 2, 2 pad 2, 2 pod 0,0
stride 2 [suride 2 stnde 2 fc fo . fe S stnde 2 o strade 2 1] strde 2
S —_— | | — —_—| | : —_— O] — || — —

r f— - f— . | . . f— L+ — L~ —
Rel.U RelLU |= Rel.l Rel.U RelLU . RelLU “| RellUU

[| [|
AXE4X R4 64X 40X a0 &4 X20X20 4X10X10 1024 1048 1" 2048 1024 &AX10X 10 64 X 20X 20 4 X0 X &0 84 X84
~ A1 \ s
representation learning module ¥]] H reconstruction module

SR estimator < snes 1004 2048

Decony
62, fxb

Deconv

|
1
1

® ‘Options framework” In RL corresponds to leaming extended sequences of Eigenvector
actions instead of only a single action at a time »

e Options: Make coffee vs. make tea ~ X

" aie
l an
' i]
N)
o e
- o — 9
) - o -t
U |
10 e

a -t
N 4
2 Py .

igenoptions

® Actions: move left leg, move right leg, move wrist 34 degrees
: , , E
® SR naturally discovers Eigenoptions /

® \More recent work has identified tunctional sequences of actions this way 4R TRas:

FYYYT O ARTYYY
k] LAIALE

Machado et al., (2018)

Decony Deconv

Co C Con Decon
64, 6x6 64, 6 b4, bxH o 62, fxb 3 1, bx6
pad 0, 0 mad 2, pad 2,2 « [™ pad 2,2 pad 2, 2 N pod 0,0
siride 2 [suride 2 stnde 20— fc fo fe fe S stnde 2 ‘ srdde 2 | strde 2
—| 5| V| —— —_—| | — > > q=—— ld=| —
Rel U RelU [P/ RelU |=F ReLU RelLU I RellU | Rel UV |
48 1024 &AX10X 10 6d X20X20 4 X0 X &0 |4 X %4

e

178 1

fc

[| [|
r tI n I V AXE4XR4 64X 40X a0 &4 X20X20 &4X10X10 1024 1048 L'!
~ -
representation learning module

Relll

1
!

H reconstruction module

b

SR estimator < snss 1004 2048~

e "Options framework” in RL corresponds to leaming extended sequences of Figenvector
actions instead of only a single action at a tme o

- o
e Options: Make coffee vs. make tea P

-
-
/-P- *3
- e qa 3 =
- « @7
12 0 -

® Actions: move left leg, move right leg, move wrist 34 degrees
e SR naturally discovers Eigenoptions / E'genopt'on\

k] LAIALE

e More recent work has identified functional sequences of actions this way EEEEEI'EEEEE

Montezuma’s Revenge Eigenfunction #1 Eigenfunction #2

'-‘ - :r‘ -

—

y «. = ”

- . d

TR T EEE TR I m E E E EEE BB BB =B

Klissarov & Machado (2023)

41

Summary

Summary

® |\/lodel-Tree methods

e Value-based Deep Q-Leaming

e Policy-based Policy Gradient
e Actor-Critic

42

Summary

® |\/odel-free methods methods

Value-based

e Value-based Deep Q-Leaming

e Policy-based Policy Gradient
e Actor-Critic

42

Summary

® |\/odel-free methods

e Value-based Deep Q-Leamning

® Policy-based Policy Gradient
e Actor-Critic

42

Summary

® |\/odel-free methods

e Value-based Deep Q-Leamning

® Policy-based Policy Gradient
e Actor-Critic

42

Summary

® |\/odel-free methods

e Value-based Deep Q-Leamning

® Policy-based Policy Gradient
e Actor-Critic
® |\/odel-based methods
o DYNA (Model & Value)
e \\orld Models (Model & Policy)
® Dreamer (Model & Actor-Critic)

42

Summary

® |\/odel-free methods

e Value-based
e Policy-based

® Actor-Critic
® [\/[odel-based methods

DYNA (Model & Value)

Deep Q-Leaming
Solicy Gradient

e \\orld Models (Model & Policy)
Dreamer (Model & Actor-Critic)
® SUCCESSOor representation

Salancing flexibility and e

ficiency

Low <——— Flexibilty — High

Low <

Efficiency

42

Alexandra Witt

—

dia

Physical

Next week:
Social learning

1.00 —

?

3
|

proportion of correct responses

o = o
(@] N H
(=) o o

Herrmann et al., (Science 2007) 1,00 — —_

0.80 —

proportion of correct respeonses

chimpanzee chimpanzee

granguian human

orangutan

Levels of social learning

Model-based
inference _. — —b Belief Reward
-

Decision-making hierarchy

/
Value inference

§8 (e

Social
observations ™ l

N Policy imitation

.,
S e —» Action

Wu et al., (2022)

Witt et al., (PNAS 2024)

43

