General Principles of
Human and Machine
Learning

Lecture 4: Introduction to Reinforcement Learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Quiz results

® Average grade 81%
® [f you did well, please keep up the good work!

® [f you wish you had done better, use this as a leamning experience and
remember that 1 pop quiz is a freebie (best 3 out of 4)

® [f yvou Mmissed the quiz but had a documented absence (email to me + 1A
24Nnrs in advance), then we can work something out for further
documented absences

® Uiz questions may reappear on the exam

Clarifications

NAND 1 if) > 0
Ity w.x.
po= {1 1Tz
0 else
A1
— y € 10,1}
Ao

Neuron fires when X1 1s on AND Xxo
NOt on

Clarifications

NAND 1 If > @
f(X)— if > wax,
0 else
—y € {0,1}
/

Neuron fires when X1 1s on AND Xxo
NOt on

Clarifications

NAND Rescorla-Wagner
fx) = 1 if > wx, >0

() else Reward prediction

#,=) CSpw,

l
.y e{01) Weight update

For i where C§; = 1.

/ Wl<—Wl+77(I”t—f't)

0 t
Learning Observed Predicted
rate outcome outcome
Neuron fires when x1 is on AND xo - —

S Reward prediction
not on error (RPE)

3

Clarifications

NAND Rescorla-Wagner
fx) = 1 if > wx, >0
O else Reward prediction
7=) CSiw
l
— vy € {0,1} Welght update Larger when better
For i where CS. = 1- reward than expected!
7t t
Learning Observed Predicted

rate outcome outcome

Neuron fires when x1 is on AND xo ——

S Reward prediction
not on error (RPE)

3

The story so far ...

Thorndike’s (1898) Law of Effect

Thorndike’s (1898) Law of Effect

Thorndike’s (1898) Law of Effect

‘:‘. L -

‘..

- 3 —
= B a

NN 1 H

el | — p — 4

-Y“'

x —H »—J -4

PUzzle Box Time to escape

Thorndike’s (1898) Law of Effect

1
1

“Uzzle Box [Ime to escape

Actions associlated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

3888 8

Time to Escape (seconds)
=
(-

1111111111

4 8 12 16 20 24 28 32 36 40
Trials

Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments

https://www.youtube.com/watch?v=_qLs2K4UXXk

Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

Cognitive maps in biological brains

Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)

“Hippocampal zoo”

Place cell

Border cell

Head Direction Cell Reward cell Boundary Vector Cell

reward
A4

120° 60°

P .

240° 300°
(Taube et al. 1990) (Gauthier & Tank 2018) (Lever et al 2009)

180°

Splitter cell Place cell

Behrens et al., (Neuron 2018)
Whittington et al,. (Nat Neuro 2022)

Agenda for today: From Tolman to Reinforcement Learning

* Part 1: Introduce RL framework, origins, and terminology (Sutton &
Barto)

e Part 2: Model-free vs. model-based RL

10

Reinforcement
Learning

An Introduction
cond edition

Reinforcement
Learning

11

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Reinforcement
Learning

i d S. Sution and Sindrew G Barto

Reinforcement
Learning

11

Pavlovian (classical)
conditioning

\\\h\\\ ‘% . %
3 — 3

Learn which environmental cues predict reward

Reinforcement
Learnlng

1irew

Relnforcement
Learning

Operant (instrumental)
conditioning

> I

Learn which actions predict reward

11

Pavlovian (classical)

conditioning
\u‘h\“ ‘% % \

Learn which environmental cues predict reward

Neuro-

Reinforcement \\
Learnlng 1\,\?

Operant (instrumental)

condltlonlng
/ 4
/

Reinforcement
Learning Learn WhICh actions predict reward

|

dynamic programing

Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

11

Reinforcement Learning

Sutton and Barto (2018 [1998])

Reward

: R(a, s,)
=

VAN |

>

Action

Environment

12

Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

Action

E
} ————
VAN |

Reinforcement Learning
The Agent:

Sutton and Barto (2018 [1998])

The Environment:

St41

Action

Environment

12

Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

« Selects actions a,
| >
* Recelves feedback from the
environment in terms of new states

s,.1 and rewards R(a,, $,) State
5

The Environment:
I E
}
AN |

Action

Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

« Selects actions a,
| >
* Recelves feedback from the
environment in terms of new states

s,.1 and rewards R(a,, $,) State
5

The Environment;
| | I E
 Governs the transition between S

Action

» Provides rewards R(a,, s,)

..‘f?."|.-‘f-':'f-‘l_.-f::'_~'.‘"| Lol
S0 K. e
e 19

Environment

actions

states

reward

13

actions \ \
\ N\ N\
Markov Decision Process (MDP) reward @ .

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

13

actions \ \
\ N\ N\
Markov Decision Process (MDP) reward @ .

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* |ocations on a grid, pixels on a screen, feature values, etc...

13

actions \
Environment states @\ ’ \) \.)
Markov Decision Process (MDP) reward @

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* |ocations on a grid, pixels on a screen, feature values, etc...

Grid World

13

actions
Environment states @ @ .
Markov Decision Process (MDP) reward @

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* |ocations on a grid, pixels on a screen, feature values, etc...

. ' 13
Grid World

actions
Environment states @ @ ‘
Markov Decision Process (MDP) reward @

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* |ocations on a grid, pixels on a screen, feature values, etc...

3 Obstacle states
4 Terminal state

Grid World

13

actions . .
Environment states @ @ .

R
Markov Decision Process (MDP) reward @

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* | ocations on a grid, pixels on a screen, feature values etc

(U
Agelent 1 2 3 4 5 N eaten
_ , ,
\T.". Num Ghosts
. _ ’ . ' 4 Sue's x, y
_ location
2 ,
Inky's x, y
’ i _ location
3 Obstacle states 1 Blinky's x, y
. - -l = - location
4 Terminal state - : - : : == : Agent's x, y
| / - _ location
- P
-

Grid World

14

Agent

 Represent Past Experiences

 Implement a Policy that Maximizes Reward

14

Agent

410 —
e eeas
il =

v Eeese
Bee<

N\
AL o+
N\eee TR ooo

4 - .ﬂ-‘a. . -
NFE UU#.«L...,.. beeses

N XXX X

N
Q
&
-
D
-
Q
Q.
>
LL]
ajed
N
©
ol
et
-
Q
N
Q
| -
Q.
Q
o
®

» How good is a state? V(s,)

 Implement a Policy that Maximizes Reward

14

Agent

L= K —)

%0

S —
M

SE)

=0
L= X =K —

C— X — X — VI
5]

N
P I —

Eese<
eeas
Bese<
Eeea
Eeeas

k=

Ry
.ﬂ..ﬂ:ﬂ..:ﬂi'.ﬂ:ﬂ.ﬂ.
s | == e M
SR B

ke
=

TN

k.
k.
3
&

N
Q
&
-
@
-
Q
Q.
>
LL]
ajed
N
©
ol
et
-
Q
N
Q
| -
Q.
Q
o
®

» How good is a state? V(s,)

» How good is a state-action pair? Q(s,, a,)

 Implement a Policy that Maximizes Reward

14

Agent

N
Q
&
-
Im
-
Q
Q.
>
LL]
ajed
N
©
ol
et
-
Q
N
Q
-
Q.
Q
o
®

How good is a state? V(s,)

» How good is a state-action pair? Q(s,, a,)

)?

» How good is a trajectory T = (S, 4, S, A5 - -

 Implement a Policy that Maximizes Reward

14

Agent

N\

 Represent Past Experiences

0
0
0
0
0
0
0
0

» How good is a state? V(s,)
» How good is a state-action pair? Q(s,, a,)

» How good is a trajectory © = (s, g, S1, Ay - --

 Implement a Policy that Maximizes Reward

» 1 defines how to act, where z(a | s) is the
probability of selecting action a in state s

« sample actions from the policy a, ~ 7

14

Normative vs. Descriptive

=L as a normative ramework;

® HOw Should a rational agent
Oehave when learning from the
environment’?

® \/Vhich learning mechanisms
and which policies lead to
petter outcomes'?

1L as a descriptive framework:

® How does an agent update

neliets and select actions when
eaming from the environment?

® \/\/hich learning mechanisms

and which policies p

ovige

petter descriptions o

" behavior

15

Normative vs. Descriptive

=L as a normative ramework;

® HOw Should a rational agent
Oehave when learning from the
environment’?

® \/Vhich learning mechanisms
and which policies lead to

better outcomes”?

ﬂ

S

1L as a descriptive framework:

® How does an agent update
oeliefs and select actions when
eaming from the environment’?

® \/\/hich learning mechanisms
and which policies provide
petter descriptions of behavior

15

Normative vs. Descriptive

=L as a normative ramework;

® HOw Should a rational agent
Oehave when learning from the
environment’?

® \/Vhich learning mechanisms
and which policies lead to

petter outcomes”? py,
y

ﬂ

S

1L as a descriptive framework:

® How does an agent update

neliets and select actions when
eaming from the environment?

® \/\/hich learning mechanisms

and which policies p

ovige

petter descriptions o

e °,°

" behavior

15

Simplest RL problem & simplest RL model

w Outcomes

w Outcomes

>

2-Armed Bandit Problem

o

2-Armed Bandit Problem

2-Armed Bandit Problem

U - I (N

2-Armed Bandit Problem

Single state problem

AWB

Q-Learning (Watkins, 1989)

Value learning

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
I I

Observed Predicted
reward reward

_
0

Reward prediction error (RPE)

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
I I

Observed Predicted
reward reward

_
0

Reward prediction error (RPE)

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs

20

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
7

learning rate Observed Predicted
reward reward

_
0

Reward prediction error (RPE)

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs

20

Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]

(_ —
Qi y1(a) Qt(ﬁ 1 [’” Qt(a)] Q) OB) | a | r | &
| I I t=1| 0 0 A | 5
learning rate Observed Predicted
reward reward =2 B | 12
)
5 t=3 B 4
Reward prediction error (RPE)
t=4 A | 8

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs

Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]

) < a) + [r — a]
Q@ = Q@ L1l = Q@] g o 1 4
I I t=1| O 0 A | 5| 5

learning rate Observed Predicted
reward reward 0| 4= 5 5 | 10| 10
—

S t=3| 45 | 108 | B | 4 | -6.8

Reward prediction error (RPE)
t=4| 45 | 468 | A | 8 | 35

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs

21

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]

Q-Learning (Watkins, 1989)

0,41(@) < Ofa)+ 1 |r—0[a)]

Policy

P(a) x exp(Q/a)/r)

Q-Learning (Watkins, 1989)

Value learning
Qt+1(a) — QJla) +n7 [’” — Qt(d)]
Policy temperature\

P(a) x exp(Q/a)/r)

Softmax policy

< 1.00- T

@)

9 % — 02

S 0.75 o

Ela »
0.50 -

= — 0.33

Q 0.25- 0.5

S

L - 1

& 0.00

50 -25 0.0 25 5.0
Qa-Qp

Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]

Policy temperature

P(a) exp(Qt(a)%) -

Softmax policy

< 1.00- T

@)

9 % — 02

S 0.75 o

Ela »
0.50 -

= — 0.33

Q 0.25- 0.5

S

L - 1

& 0.00

50 -25 0.0 25 5.0
Qa-Qp

exp(Q(a)/7)

Y exp(Q,(a)/7)

Q-Learning (Watkins, 1989)

0,41(@) < Ofa)+ 1 |r—0[a)]

Policy temperature

Exercise 2: Sample actions from policy

n=.9

ﬁ_l_s ﬁ"'ﬁ T=.25
QA) | OB) | a | r

\ exp(0Q.(a)/7) —
P(a) « eXP(Qt(Cl)/ T)= ZieI))(p(Qt(ai)/T) i I

Softmax policy

§ 1.004 T
O =3
O % — 02
5 0.75 o
B .
0.50 -
> —
= 0.33 ‘4
S 0.25- 05
re
o 1
£ 0.00

50 -25 0.0 25 5.0
Qa-Qp

Moving back to the general RL problem

Bandit problem

AWB

General RL

Examples

choosing restaurants, buying a
phone, funding research, A/B
testing of advertisements,

robot bartender, playing
games, self-driving car,
chatbots, etc...

Value representations Q(a) O(a,s) or V(s)
Policy n(a) n(a)s)
Planning? Not needed Important!

Long-term Value?

V(a) = Q(a)

Moving back to the general RL problem

Bandit problem

AWB

General RL

Examples

choosing restaurants, buying a
phone, funding research, A/B
testing of advertisements,

robot bartender, playing
games, self-driving car,
chatbots, etc...

Value representations Q(a) Q(a,s) or V(s)
Policy n(a) n(a)s)
Planning? Not needed Important!
Long-term Value? V(a) = O(a) ?

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?
(Minsky, 1961)

MARIO
070600

WORLD TIME
8-2 392

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

(Minsky, 1961)

e Temporal Difference (TD) Learning defines a value
reward expectations with the discounted value of the

fuction t

nat augments

next sta

IS

V(s) < V(s) + 1 (r+yV(s") — V(s))

dlscounted future value

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

(Minsky, 1961)

e Temporal Difference (TD) Learning defines a va
reward expectations with the discounted value of

Ue

the

fuction t

next sta

nat augments

IS

V(s) < V(s) + 1 (r+yV(s") — V(s))

dlscounted future value

Temporal Discounting

y € 10,1] Y:z;:

Discount
o
an
o

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

(Minsky, 1961)

e Temporal Difference (TD) Learning defines a va
reward expectations with the discounted value of

Ue

the

fuction t

next sta

nat augments
c

V(s) < V(s) +n (r+ rV(s') — V(s))

dlscounted future value

. . Iteration 1
Temporal Discounting H -1
S

1\ ye[oay] -- 7

- 0.7
— 08
09

Discount
o
an
o

Iteration 2

S

lteration 3

lteration 20

Time |

I

MARIO
070600

WORLD TIME
8-2 392

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

(Minsky, 1961)

next sta

)

fuction that augments
e

discounted future value

e Temporal Difference (TD) Learning defines a value
reward expectations with the discounted value of the
V(s) < V(s) + 7 (
lteration 1
. . .
emporal Discounting , ! -1 g
1.00 4 G +1 |
}/ E [O, 1] — 05 |
0.75+ - 06
= — 0.7
8 - 0.8 | E
g 0.50 0.9 lteration 4
S
0.25 - ’ ‘.
0.00 4
0 5 10 15 20
Time | | e

lteration 2 lteration 3
5 |
G : '
Iteration 5 Iteration 20
S S
N
| |
} | o | |

WORLD TIME
8-2 3942

MARIO
070600 X946

TD Prediction Error

Schultz et al. (Science 1997)
Dopaminergic Neurons

No prediction
Reward occurs

Reward predicted [/ % &5
Reward occurs

Reward predicted
No reward occurs

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

(Minsky, 1961)

next sta

)

fuction that augments
e

discounted future value

e Temporal Difference (TD) Learning defines a value
reward expectations with the discounted value of the
V(s) < V(s) + 7 (
lteration 1
. . .
emporal Discounting , ! -1 g
1.00 4 G +1 |
}/ E [O, 1] — 05 |
0.75+ - 06
= — 0.7
8 - 0.8 | E
g 0.50 0.9 lteration 4
S
0.25 - ’ ‘.
0.00 4
0 5 10 15 20
Time | | e

lteration 2 lteration 3
5 |
G : '
Iteration 5 Iteration 20
S S
N
| |
} | o | |

WORLD TIME
8-2 3942

MARIO
070600 X946

TD Prediction Error

Schultz et al. (Science 1997)
Dopaminergic Neurons

No prediction
Reward occurs

Reward predicted [/ % &5
Reward occurs

Reward predicted
No reward occurs

24

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?

1.00 4

0.75+4

Discount
o
an
o

0.25 4

0.00 +

(Minsky, 1961)

Temporal Difference (TD) Learning defines a va
reward expectations with the discounted value of t

V(s) < V(s) +1

Temporal Discounting

Yy € [091] B

0.5
0.6
0.7
0.8
09

e
he

next sta

)

fuction that augments
e

discounted future value

-1

6 +1

Time

20

lteration 1
S
| G
lteration 4
S .
|
| | ls

lteration 2 lteration 3
5 |
G : '
Iteration 5 Iteration 20
S S
N
| |
} | o | |

WORLD TIME
8-2 3942

MARIO
070600 X946

TD Prediction Error

Schultz et al. (Science 1997)
Dopaminergic Neurons

No prediction
Reward occurs

Reward predicted [/ % &5
Reward occurs

Reward predicted
No reward occurs

24

WORLD TIME
8-2 3942

MARIO
070600 X946

Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?
(Minsky, 1961)

e Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

TD Prediction Error

V(S) <« V(S) -+ }/] ‘) Schultz et al. (Science 1997)

S Dopaminergic Neurons
discounted future value

No prediction

)) Iteration 1 Iteration 2 Iteration 3 Reward occurs
Temporal Discounting o -1
Y _ : 5 |
y e [0,1] - - 1
9 |
0.754 — 06 o buload 12
— 07 Reward predicted | 1% i3>
= ' | Reward occurs
3 0.50 o 0e | - ' =
8 lteration 4 Iteration 5 Iteration 20
o 0.9 —
s s] 5
0.25+ I | Ll L] |
Reward predicted
] ' No reward occurs
0.00 4
0 5 10 15 20 | | BN L
Time | | e] G L s

24

Difference between V(s) and Q(s,a)

o V(s) defines how good is the state

® Actions become implicit under policy 7

e (J(s,a) defines how good it is 1o take
action a in state s

® Actions are made explicit

e \\'e will use V(s) and Q(s, a) somewhat
iNnterchangeably, depending on what the
situation calls for

® IS OK 1O

and

guest

Ororn

Ne somewnat confusec

Sse not to ask any "go

at times,
cha”

ONS

ourposefully trying to t

Nto contusing the two

CcK you

Delta-rule update with TD error
V(s) < V(s) +n (r+yV(s") — V(s))

0(s.a) < Q(s.a) + nlr +y max Q(s',a") — Q(s.a)]

25

Difference between V(s) and Q(s,a)

o V(s) defines how good is the state

® Actions become implicit under policy 7

e (J(s,a) defines how good it is 1o take
action a in state s

® Actions are made explicit

e \\'e will use V(s) and Q(s, a) somewhat

iNnterchangeably, depending on what the
situation calls for

® IS OK 1O

and

guest

Ororn

Ne somewnat confusec

Sse not to ask any "go

at times,
cha”

ONS

ourposefully trying to t

Nto contusing the two

CcK you

Vi(s) =) n(a]s)Qs.a)

Delta-rule update with TD error
V(s) < V(s) +n (r+yV(s") — V(s))

0(s.a) < Q(s.a) + nlr +y max Q(s',a") — Q(s.a)]

25

The (formal) RL Problem

The (formal) RL Problem

Select a policy 7* that maximizes expected rewards

The (formal) RL Problem

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

» Value function under some policy 7:

Vals) = Bl 2 Y'Rip1 59 = 5]

€T

26

The (formal) RL Problem

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

» Value function under some policy 7:

Vals) = Bl 2 Y'Rip1 59 = 5]

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

Vi(s)=) m(als)) P(s'|s,a)[R(s"a) + yVy(s")

26

The (formal) RL Problem

m(a|s)

Select a policy 7* that maximizes expected rewards

Not just immediate rewards, but discounted future returns

» Value function under some policy 7:

Vals) = Bl 2 Y'Rip1 59 = 5]

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

Vi(s)=) na|s)), P(s'|s,a)[R(s',a) + yV,(s")

26

The (formal) RL Problem

m(a|s)

Select a policy 7* that maximizes expected rewards

Not just iImmediate rewards, but discounted future returns o
State transitions

» Value function under some policy 7:

Vals) = Bl Z Y'Rip1 59 = 5]

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

P(s’| s, a)

Vis)=) nal|s)) P(s'|s.a)[R(s"a) +yV,(s")

26

The (formal) RL Problem >
®
Select a policy 7* that maximizes expected rewards
Not just iImmediate rewards, but discounted future returns o
State transitions
» Value function under some policy 7: <
V]Z'(S) — _TNﬂ'[Z tht+1 ‘S() — S] 3
QL

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

V_(s) = Z r(als) Z P(s’| s, a) [R(S a)+yV (S’)]

 The sum can be wrltten recurswely as Immediate reward + discounted future
reward

26

The (formal) RL Problem >
®
Select a policy 7* that maximizes expected rewards
Not just iImmediate rewards, but discounted future returns o
State transitions
» Value function under some policy 7: <
V]Z'(S) — _TNﬂ'[Z tht+1 ‘S() — S] 3
QL

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

V_(s) = Z r(als) Z P(s’| s, a) [R(S a)+yV (S’)]

 The sum can be wrltten recurswely as Immediate reward + discounted future
reward 0 =]

26

The (formal) RL Problem >
®
Select a policy 7* that maximizes expected rewards
Not just iImmediate rewards, but discounted future returns o
State transitions
» Value function under some policy 7: <
V]Z'(S) — _TNﬂ'[Z tht+1 ‘S() — S] 3
QL

et
« We can rewrite the expectation Ic___ In terms of

the policy and state transitions

V_(s) = Z r(als) Z P(s’| s, a) [R(S a)+yV (S’)]

 The sum can be wrltten recurswely as Immediate reward + discounted future
reward vV =1 Y

26

The (formal) RL Problem >
®
Select a policy 7* that maximizes expected rewards
Not just iImmediate rewards, but discounted future returns o
State transitions
» Value function under some policy 7: <
—F t _ “
V]Z'(S) — TN?Z'[Z Y Rt+1 ‘SO — S] ;::, I I
et I
« We can rewrite the expectation I=__ _ in terms of \\ . | & o ﬁ
the policy and state transitions O oy &

/\‘
V_(s) = Z r(als) Z P(s’| s, a) [R(S a)+yV (S’)]

 The sum can be wrltten recurswely as Immediate reward + discounted future
reward vV =1 Y

26

Optimal policies via Bellman Equations

Memorizing these equations not neccessary for exam

* This recursive formulation of the value function is known as the Bellman equation
Vi(s)=) m(als)) P(s'|s,a)[R(s’,a) + yV(s))]
a s’

 This allows us to break the optimization problem into series of simpler sub-problems
 if each sub-problem is solved optimally, the overall problem will also be optimal
* Note that there is no longer any reward prediction error updating
 Rather, we want to describe a theoretically optimal solution:

* We first define an optimal value function by assuming value-maximizing actions:
Vi(s) = arg max Z P(s’|s, a) [R(s, a) + yV*(s’)]
A
S/

* We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

7. = arg max V.(s)

27

Optimal policies via Bellman Equations

Memorizing these equations not neccessary for exam

* This recursive formulation of the value function is known as the Bellman equation
Vi(s)=) m(als)) P(s'|s,a)[R(s’,a) + yV(s))]
a s’

 This allows us to break the optimization problem into series of simpler sub-problems
 if each sub-problem is solved optimally, the overall problem will also be optimal
* Note that there is no longer any reward prediction error updating
 Rather, we want to describe a theoretically optimal solution:

* We first define an optimal value function by assuming value-maximizing actions:
Vi(s) = arg max Z P(s’|s, a) [R(s, a) + yV*(s’)]
A
S/

* We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

7. = arg max V.(s)

d * In practice, optimal solutions are usually unobtainable

27

Tabular methods

 Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed

as solutions for RL problems by
Minsky (1961)

* Think of a giant lookup table, where
we store a value representation for
each combination of state+action

* Value iteration and policy iteration
are examples of tabular methods

» Caveat: solutions require repeat visits
to each state, which iIs infeasible In
most real-world problems

Action

State

28

Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached.

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max 2 P(s’|s,a)|R(s,a) + yV,(s")]

aceA

/

\)

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V). converges on V. as k — o0, and perhaps sooner, but with
many costly sweeps through the state space

29

Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached.

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

\)

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space

3

Pieter Abbeel

29

Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’

Pieter Abbeel

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

\)

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V). converges on V. as k — o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER | ITERATIONS

29

Value iteration

Pieter Abbeel
lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &

Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

acA
S

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V). converges on V. as k — o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES APTER 2 ITERATIONS

Value iteration

Pieter Abbeel
lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &

Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER 3 TTERATIONS

Value iteration

Pieter Abbeel
lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

acA
S

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER 4 ITERATIONS

Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’

Pieter Abbeel

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER 5 ITERATIONS

29

Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached.

Pieter Abbeel

3

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER 1000 ITERATIONS

29

Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7 (typically a random policy), and then iterate for all s € & in each step
 Policy Evaluation

Vo) = Ey [RG5)+ 7V)]

» Policy Improvement U V

T, | = arg max Z P(s’| s, a) lR(S, a) + yVﬂkl

evaluation

T—greedy(V)

Improvement

30

Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7 (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = Ey [RG5)+ 7V)]

» Policy Improvement U V

T, | = arg max Z P(s’| s, a) lR(S, a) + yVﬂkl

evaluation

T—greedy(V)

Improvement

Policy iteration can converge faster than value iteration, but still requires visiting all
states multiple times and lacks convergence guarantees

30

Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?

Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?

Game states Atoms In observable
Universe

2.1 x 10170

o o
4 274 $ ‘ 15a $

31

Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?

* Function approximation: learn a function mapping states/actions to value, and
generalize via interpolation/extrapolation

Game states Atoms In observable Function Approximation (Weeks 5 & 10)
Universe .
Vy(s) = f(s,0)
2.1 x 10170 1080 ’ 4
V(8
o f o e Observation — Exp. Reward

-
4 23 BN

— Hypothesis Uncertainty

Value

State

Silver et al., (Nature 2016) Wu et al., (AnnRevPsych 2024)

31

RL summary

® Normative framework for leaming an optimal zﬁwraw
nvironment <
: S1+1

>
> Agent

State Reward

policy ™ in arbitrarily complex environments

® Simplest sett
equivalent to

Ng is a 2-armed bandit problem, where Q-leaming is
—Rescorla-Vagner

® |\lore complex settings require credit assignment and generalization

® | also provides a descriptive model of human leaming

° |

D-learmning prec

Ct

widely used 1o s

UG

ON error trac
vV human e

KS dopamine signals in the prain and

navior (more on this next week)

Action

a4,

32

5 minute break

Model-free RL

® Hapit
® Cheap

* OJ(s,a)

® \lyopically selecting actions
that have been assocliated
WIth rewaro

Model-based RL

® (Soal-directed
® Computationally costly
o P(s',r|s,a)

® Planning and seeking of long term
OUtlCcomes

Monte carlo tree search

Selection » Expansion » Simulation » Backup
))
I ,) ‘T 7/ \,/ C’ O
= SN TN R T« B R o G o
: : : 4 7 — \ o / /
—] 3 /@ Sy & s & %
T 7 e "
Selecled state) ;) , ’ y ol
R N 8 S O o o
T i | *
e =eobComraie \ by
o [Tree Policy | \ Rellout Policy ¥
TART ,‘;’sw Expanced state 1 i :
Plan of mam ‘ ‘
11 Unit T Alley WMo
Fio)
(From Fliatt, The ¢ of chasge of reward od the maze pers
formance o v, Teiif. Piychol, 1928_ 4, p. 20,)

Duarte et al,. (2020) 34

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

model-free

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state

blocked blocked normal

model-free

model-based

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

state model-free model-based

blocked blocked normal

What is model-based RL?

® An intemal representation of the
environment

® |hgredients:

e Transiton matrix 7(s’| s, a)

- MDP it -
e Reward function R(s, a) ~ Transition Matrix
® State space s € & N o S
0/'; 0.7 \\\ 51 0.5 0.1 0.7
e Action space a € L R, . - [22:.3 04 31}]
® How is it learned? (find out next week!) -

36

What is model-based RL?

® An intemal representation of the
environment

® |hgredients:

e Transiton matrix 7(s’| s, a)

e Reward function R(s, a)
e Statespace s € &

e Action space a € A
® How IS It learmed”? (find out next week!)

Transition Matrix

S$1 S §3

Sy 0.5 0.1 0.7
S5 0.3 0.5 0.2
S3 0.2 0.4 0.1

36

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

e 2nd step options have different P(reward)

Daw et al., (2011)

1st Step

2nd Step

37

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

e 2nd step options have different P(reward)

* Model-free predictions depend A Model-free
‘ B common

solely on reward
M rare

075lI

rewarded unrewarded

stay probabnlnty

Daw et al., (2011)

1st Step

2nd Step

37

Daw et al., (2011)

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

2nd Step

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options - E]

e 2nd step options have different P(reward)

* Model-free predictions depend A Model-free B model-based
solely on reward | B common
- M rare
« Model-based RL predicts ;
different responses depending £°7
ONn COmmMonN Vs. rare - l l . . I l . l

rewarded unrewarded rewarded unrewarded

37

Daw et al., (2011)

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options - E]

2nd Step

e 2nd step options have different P(reward)

 Model-free predictions depend
solely on reward

 Model-based RL predicts
different responses depending
on common Vvs. rare

 Data suggests a mixture of both

A Model-free B model-based C data
1
B common
B rare
=
3
P
9 075l l I l I .
Q.
T~
@
rewarded unrewarded rewarded unrewarded rewarded unrewarded

Feher de Silva et al., (NHB 2023)

Two-step task (revisited)

_ Abstract Story
 More recent work suggests a different . ' b

interpretation of that classic result © K8
from Daw et al,. (2011)

* Abstract vs. story condition to
manipulate how easily it is to
understand the nature of transitions

Story condition was almost perfectly 2
aligned with model-based predictions ¥

] p
“ 1 Previous transition

BN Common

B Rare
0 . I : 3

Rewarded = Unrewar Rewarded Unrewarded

o
®

o
op)
O’

A Model-free B model-based
1

Stay probability
Stay probability

o
FS

B common

rewarded unrewarded rewarded unrewarded

o
N

stay probabuhty

Previous outcome Previous outcome

Wu, Veléz, & Cushman (2022)

Two Pathways for Learning

Wu, Veléz, & Cushman (2022)

Two Pathways for Learning

 Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

Cached
Policy

@ .
Action
\Value-free Habit\-v
Outcome

Decision-Making

Wu, Veléz, & Cushman (2022)

Two Pathways for Learning

 Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

e Law of Effect: Choose actions on the basis of what

worked in the past by forming cached value Cochod Yl

O Value

Value-based Habit

Cached
Policy

@ .
Action
\Value-free Habit\-v
' Outcome '

Decision-Making

Wu, Veléz, & Cushman (2022)

Two Pathways for Learning

 Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

e Law of Effect: Choose actions on the basis of what

worked in the past by forming cached value oo Vel

O Value

Value-based Habit

Cached
Policy

@ .
Action
\Value-free Habit\-v
' Outcome |

Decision-Making

Th ree Wu, Veléz, & Cushman (2022)
-Pathways for Learning

 Law of Exercise: Repeat actions performed in the past

by learning a cached policy (independent of reward) Mode

 Law of Effect: Choose actions on the basis of what Planning
worked in the past by forming cached value

Cached Value

- . Value-based Habit
* Model-based planning: Select actions expected to ; o l
acne

produced the best outcomes based on our model of Policy

the world ® -
Action
Value-free Habit\-v
' Outcome |

Decision-Making

Th ree Wu, Veléz, & Cushman (2022)
-Pathways for Learning

 Law of Exercise: Repeat actions performed in the past

by learning a cached policy (independent of reward) Mode

 Law of Effect: Choose actions on the basis of what Planning
worked in the past by forming cached value

Cached Value

- . Value-based Habit
* Model-based planning: Select actions expected to ; o l
acne

produced the best outcomes based on our model of Policy

the world ® -
Action
o Value-free Habit\-v
' Outcome |

Decision-Making

Th ree Wu, Veléz, & Cushman (2022)
-Pathways for Learning

 Law of Exercise: Repeat actions performed in the past

by learning a cached policy (independent of reward) Mode

 Law of Effect: Choose actions on the basis of what Planning
worked in the past by forming cached value

Cached Value

Value-based Habit

 Model-based planning: Select actions expected to e

produced the best outcomes based on our model of Solicy
the world ®
Action
o Value-free Habit\-v -
Different pathways not always in competition, but can ' Outcome |
Inform one another! Model-based planning builds
better habits!

Decision-Making

Model-free vs. Model-based summary

o Computationally cheap to use model-free learning

® \aps onto habits and S-R leaming
® (Costly but potentially more impactful to use model-based learning
® \aps onto goal-directed and S-S leaming

® |\lodel-based learning can help train model-free value functions and
policies

® Still open questions about how model-based representations are leamed
and used In humans (find out next week!)

40

Learning

Further St”dy Reinforcement \\.\\

Sutton & Barto book (free PDE link) N

= code notelbooks for using RL models (with a focus on social leaming)

https.//cosmos-konstanz. github.io/materials/

Cvthon tutorial from Neuromatch academy

https://compneuro.neuromatch.io/tutorials/\'V3D4 Reinforcementl earning/

student/\VW3

D4 Intro.ntm

41

http://incompleteideas.net/book/RLbook2020.pdf
https://cosmos-konstanz.github.io/materials
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html

Minecraft Diamond

Next week 0 .
Advances in RL W DreamerV3
& T
v .
E: Eirst.Diamond
E"
— Max from Scratch
Mean
Epread 10K IOTOK lrM 1(;M 10bM
Environment Steps
g =nvironment - Haffner et al., (2023)
State
Action : ------------------- 5 A Environment B Random walk SR C Softmax-optimal SR
§ i N L
. i 3¢ ¥ P
: Valiles | « N 5 f}. |
E ; © PN fo
{-m--m---mm-m-—----! Diederichs (2019) goa[. | goa[

Stachenfeld (2018)

Minecraft Diamond

Next week 0 .
Advances in RL W DreamerV3
& T
v .
E: Eirst.Diamond
E"
— Max from Scratch
Mean
Epread 10K IOTOK lrM 1(;M 10bM
Environment Steps
g =nvironment - Haffner et al., (2023)
State
Action : ------------------- 5 A Environment B Random walk SR C Softmax-optimal SR
§ i N L
. i 3¢ ¥ P
: Valiles | « N 5 f}. |
E ; © PN fo
{-m--m---mm-m-—----! Diederichs (2019) goa[. | goa[

Stachenfeld (2018)

