
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 4: Introduction to Reinforcement Learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Quiz results
• Average grade 81%
• If you did well, please keep up the good work!
• If you wish you had done better, use this as a learning experience and

remember that 1 pop quiz is a freebie (best 3 out of 4)
• If you missed the quiz but had a documented absence (email to me + TA

24hrs in advance), then we can work something out for further
documented absences

• Quiz questions may reappear on the exam

2

Clarifications

3

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

f(x) = {1 if∑ wixi ≥ θ
0 else

Clarifications

3

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

f(x) = {1 if∑ wixi ≥ θ
0 else

1

w1 = 1

w2 = − 1

Clarifications

3

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

f(x) = {1 if∑ wixi ≥ θ
0 else

1

w1 = 1

w2 = − 1

Rescorla-Wagner

̂rt = ∑
i

CSt
iwi

wi ← wi + η(rt − ̂rt)

Reward prediction

Weight update

Predicted
outcome

Observed
outcome

Learning
rate

δ {Reward prediction
error (RPE)

For where :i CSi = 1

Clarifications

3

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

f(x) = {1 if∑ wixi ≥ θ
0 else

1

w1 = 1

w2 = − 1

Rescorla-Wagner

̂rt = ∑
i

CSt
iwi

wi ← wi + η(rt − ̂rt)

Reward prediction

Weight update

Predicted
outcome

Observed
outcome

Learning
rate

δ {Reward prediction
error (RPE)

For where :i CSi = 1
Larger when better

reward than expected!

The story so far …

4

Thorndike’s (1898) Law of Effect

5

Puzzle Box

Thorndike’s (1898) Law of Effect

5

Cat Puzzle Box

Thorndike’s (1898) Law of Effect

5

Cat Puzzle Box Time to escape

Thorndike’s (1898) Law of Effect

5

Cat Puzzle Box Time to escape

Actions associated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

Classical and Operant Conditioning
Classical Condition (Pavlov, 1927)
Learning as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)
Skinner (1938): Learning as the active
shaping of behavior in response to
rewards or punishments

6

https://www.youtube.com/watch?v=_qLs2K4UXXk

Tolman and Cognitive maps

7

• Learning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

• Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

Cognitive maps in biological brains

8

Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)

“Hippocampal zoo”

9
Behrens et al., (Neuron 2018) 
Whittington et al,. (Nat Neuro 2022)

Agenda for today: From Tolman to Reinforcement Learning

• Part 1: Introduce RL framework, origins, and terminology (Sutton &
Barto)

• Part 2: Model-free vs. model-based RL

10

11

Reinforcement 
Learning

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

11

Reinforcement 
Learning

Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:

The Environment:

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

• Selects actions

• Receives feedback from the
environment in terms of new states

 and rewards

at

st+1 R(at, st)

The Agent:

The Environment:

Reinforcement Learning

12

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

• Governs the transition between
states

• Provides rewards

st → st+1

R(at, st)

• Selects actions

• Receives feedback from the
environment in terms of new states

 and rewards

at

st+1 R(at, st)

The Agent:

The Environment:

The Environment

13

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

What are states?

• Locations on a grid, pixels on a screen, feature values, etc…

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

What are states?

• Locations on a grid, pixels on a screen, feature values, etc…

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

What are states?

• Locations on a grid, pixels on a screen, feature values, etc…

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

What are states?

• Locations on a grid, pixels on a screen, feature values, etc…

The Environment

13

Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by

only the previous state P(st+1 |st, at)

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

actions

states

reward

What are states?

• Locations on a grid, pixels on a screen, feature values, etc…

st

14

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Represent Past Experiences

14

• Implement a Policy that Maximizes Reward

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Represent Past Experiences

• How good is a state? V(st)

14

• Implement a Policy that Maximizes Reward

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Represent Past Experiences

• How good is a state? V(st)

• How good is a state-action pair? Q(st, at)

14

• Implement a Policy that Maximizes Reward

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Represent Past Experiences

• How good is a state? V(st)

• How good is a state-action pair? Q(st, at)

• How good is a trajectory ?τ = (s0, a0, s1, a1, …)

14

• Implement a Policy that Maximizes Reward

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

• Represent Past Experiences

• How good is a state? V(st)

• How good is a state-action pair? Q(st, at)

• How good is a trajectory ?τ = (s0, a0, s1, a1, …)

14

• Implement a Policy that Maximizes Reward

• defines how to act, where is the
probability of selecting action in state
π π(a |s)

a s

• sample actions from the policy at ∼ π

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

π(
a|

s)

Policy

Normative vs. Descriptive

15

RL as a normative framework:

• How should a rational agent
behave when learning from the
environment?

• Which learning mechanisms
and which policies lead to
better outcomes?

RL as a descriptive framework:

• How does an agent update
beliefs and select actions when
learning from the environment?

• Which learning mechanisms
and which policies provide
better descriptions of behavior

Normative vs. Descriptive

15

RL as a normative framework:

• How should a rational agent
behave when learning from the
environment?

• Which learning mechanisms
and which policies lead to
better outcomes?

RL as a descriptive framework:

• How does an agent update
beliefs and select actions when
learning from the environment?

• Which learning mechanisms
and which policies provide
better descriptions of behavior

Normative vs. Descriptive

15

RL as a normative framework:

• How should a rational agent
behave when learning from the
environment?

• Which learning mechanisms
and which policies lead to
better outcomes?

RL as a descriptive framework:

• How does an agent update
beliefs and select actions when
learning from the environment?

• Which learning mechanisms
and which policies provide
better descriptions of behavior

Simplest RL problem & simplest RL model

16

17

17

17

17

17

Options

17

Options

Outcomes

17

Options

Outcomes

17

Options

Outcomes

18

18

2-Armed Bandit Problem

19

A B

2-Armed Bandit Problem

19

A B

2-Armed Bandit Problem

19

A B

2-Armed Bandit Problem

19

A B

s
A B

Single state problem

Q-Learning (Watkins, 1989)

20

Value learning

Q-Learning (Watkins, 1989)

20

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
Value learning

Q-Learning (Watkins, 1989)

20

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
Predicted
reward

Observed
reward

δ

{
Reward prediction error (RPE)

Value learning

Q-Learning (Watkins, 1989)

20

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
Predicted
reward

Observed
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

Value learning

Q-Learning (Watkins, 1989)

20

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
learning rate Predicted

reward
Observed
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

Value learning

Q-Learning (Watkins, 1989)

20

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
learning rate Predicted

reward
Observed
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

A B

t=1 0 0 A 5

t=2 B 12

t=3 B 4

t=4 A 8

Q(A) Q(B) r δ

assume η = .9

Exercise 1: Compute Q-values

a

Value learning

Q-Learning (Watkins, 1989)

21

Qt+1(a) ← Qt(a) + η [r − Qt(a)]
learning rate Predicted

reward
Observed
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning:

• Learning occurs only when events violate expectations ()

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

A B

t=1 0 0 A 5 5

t=2 4.5 0 B 12 12

t=3 4.5 10.8 B 4 -6.8

t=4 4.5 4.68 A 8 3.5

Q(A) Q(B) r δ

assume η = .9

Exercise 1: Compute Q-values

a

Value learning

Q-Learning (Watkins, 1989)

22

Value learning

Qt+1(a) ← Qt(a) + η [r − Qt(a)]

Q-Learning (Watkins, 1989)

22

Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

Qt+1(a) ← Qt(a) + η [r − Qt(a)]

Q-Learning (Watkins, 1989)

22

Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
QA −QB

Pr
ob

ab
ilit

y
of

 a
ct

io
n

A τ

0.2

0.25

0.33

0.5

1

Softmax policy

temperature

Qt+1(a) ← Qt(a) + η [r − Qt(a)]

Q-Learning (Watkins, 1989)

22

Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
QA −QB

Pr
ob

ab
ilit

y
of

 a
ct

io
n

A τ

0.2

0.25

0.33

0.5

1

Softmax policy

temperature

Qt+1(a) ← Qt(a) + η [r − Qt(a)]

=
exp(Qt(a)/τ)

∑i exp(Qt(ai)/τ)

Q-Learning (Watkins, 1989)

22

Value learning

Policy

P(a) ∝ exp(Qt(a)/τ)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
QA −QB

Pr
ob

ab
ilit

y
of

 a
ct

io
n

A τ

0.2

0.25

0.33

0.5

1

Softmax policy

A B

t=1 0 0

t=2

t=3

t=4

Q(A) Q(B) r δ

assume: 
  η = .9
τ = .25

Exercise 2: Sample actions from policy

a

+3+3 +

temperature

Qt+1(a) ← Qt(a) + η [r − Qt(a)]

=
exp(Qt(a)/τ)

∑i exp(Qt(ai)/τ)

Examples
choosing restaurants, buying a
phone, funding research, A/B
testing of advertisements, ….

robot bartender, playing
games, self-driving car,

chatbots, etc…

Value representations or

Policy

Planning? Not needed Important!

Long-term Value?

Moving back to the general RL problem

23

s
A B

Bandit problem General RL

Q(a) Q(a, s)

π(a) π(a |s)

V(a) = Q(a)

V(s)

Examples
choosing restaurants, buying a
phone, funding research, A/B
testing of advertisements, ….

robot bartender, playing
games, self-driving car,

chatbots, etc…

Value representations or

Policy

Planning? Not needed Important!

Long-term Value?

Moving back to the general RL problem

23

s
A B

Bandit problem General RL

Q(a) Q(a, s)

π(a) π(a |s)

V(a) = Q(a) ?

V(s)

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

-1
+1

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

-1
+1

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

Schultz et al. (Science 1997)
Dopaminergic Neurons

TD Prediction Error

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

-1
+1

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

Schultz et al. (Science 1997)
Dopaminergic Neurons

TD Prediction Error

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

-1
+1

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

Schultz et al. (Science 1997)
Dopaminergic Neurons

TD Prediction Error

γ ∈ [0,1]

Challenge 1: Credit assignment
• How do we assign credit to actions that are responsible for future reward?

(Minsky, 1961)

24

-1
+1

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
discounted future value

• Temporal Difference (TD) Learning defines a value fuction that augments
reward expectations with the discounted value of the next state

Schultz et al. (Science 1997)
Dopaminergic Neurons

TD Prediction Error

Difference between V(s) and Q(s,a)
• defines how good is the state

• Actions become implicit under policy

• defines how good it is to take
action in state
• Actions are made explicit

• We will use and somewhat
interchangeably, depending on what the
situation calls for

• It’s ok to be somewhat confused at times,
and I promise not to ask any “gotcha”
questions purposefully trying to trick you
into confusing the two

V(s)
π

Q(s, a)
a s

V(s) Q(s, a)

25

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
Q(s, a) ← Q(s, a) + η[r + γ max

a′￼

Q(s′￼, a′￼) − Q(s, a)]

Delta-rule update with TD error

Difference between V(s) and Q(s,a)
• defines how good is the state

• Actions become implicit under policy

• defines how good it is to take
action in state
• Actions are made explicit

• We will use and somewhat
interchangeably, depending on what the
situation calls for

• It’s ok to be somewhat confused at times,
and I promise not to ask any “gotcha”
questions purposefully trying to trick you
into confusing the two

V(s)
π

Q(s, a)
a s

V(s) Q(s, a)

25

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
Q(s, a) ← Q(s, a) + η[r + γ max

a′￼

Q(s′￼, a′￼) − Q(s, a)]

Delta-rule update with TD error

Vπ(s) = ∑
a

π(a |s)Qπ(s, a)

The (formal) RL Problem

26

Select a policy that maximizes expected rewardsπ*

The (formal) RL Problem

26

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

The (formal) RL Problem

26

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

￼| s
,a

)

∑
s′￼

P(s′￼|s, a)

State transitions

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future
reward

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

￼| s
,a

)

∑
s′￼

P(s′￼|s, a)

State transitions

R(s′￼, a) γVπ(s′￼)

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future
reward

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

￼| s
,a

)

∑
s′￼

P(s′￼|s, a)

State transitions

R(s′￼, a) γVπ(s′￼)

γ0 = 1

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future
reward

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

￼| s
,a

)

∑
s′￼

P(s′￼|s, a)

State transitions

R(s′￼, a) γVπ(s′￼)

γ0 = 1 γ

Select a policy that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future
reward

The (formal) RL Problem

26

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

Vπ(s) = 𝔼τ∼π[∑
t∈τ

γtRt+1 |s0 = s]

π(
a|

s)

∑
a

π(a |s)

Policy

P(
s′

￼| s
,a

)

∑
s′￼

P(s′￼|s, a)

State transitions

R(s′￼, a) γVπ(s′￼)

γ0 = 1 γ

• This recursive formulation of the value function is known as the Bellman equation 
 
 

• This allows us to break the optimization problem into series of simpler sub-problems

• if each sub-problem is solved optimally, the overall problem will also be optimal

• Note that there is no longer any reward prediction error updating

• Rather, we want to describe a theoretically optimal solution:

• We first define an optimal value function by assuming value-maximizing actions: 
 
 

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

27

V*(s) = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γV*(s′￼)]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

π* = arg max
a

V*(s)

Memorizing these equations not neccessary for exam

• This recursive formulation of the value function is known as the Bellman equation 
 
 

• This allows us to break the optimization problem into series of simpler sub-problems

• if each sub-problem is solved optimally, the overall problem will also be optimal

• Note that there is no longer any reward prediction error updating

• Rather, we want to describe a theoretically optimal solution:

• We first define an optimal value function by assuming value-maximizing actions: 
 
 

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

27

V*(s) = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γV*(s′￼)]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

π* = arg max
a

V*(s)
* In practice, optimal solutions are usually unobtainable

Memorizing these equations not neccessary for exam

Tabular methods

28

State

Ac
tio

n

• Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed
as solutions for RL problems by
Minsky (1961)

• Think of a giant lookup table, where
we store a value representation for
each combination of state+action

• Value iteration and policy iteration
are examples of tabular methods

• Caveat: solutions require repeat visits
to each state, which is infeasible in
most real-world problems

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Iteratively visit all states and update the value function until a
“good enough” solution has been reached.

1. Initialize the value function as for all states

2. For in (1, 2, ….) update all in :

 converges on as , and perhaps sooner, but with
many costly sweeps through the state space

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual

Pieter Abbeel

Alternate between evaluating a policy and then improving the policy.

Start with (typically a random policy), and then iterate for all in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration

30

πk+1 = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′￼, a) + γVπk

(s′￼)]

Alternate between evaluating a policy and then improving the policy.

Start with (typically a random policy), and then iterate for all in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration can converge faster than value iteration, but still requires visiting all
states multiple times and lacks convergence guarantees

Policy iteration

30

πk+1 = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′￼, a) + γVπk

(s′￼)]

Challenge 2: Generalization in large action space

31

• What do you do when the number of states and actions are too large to visit?

Challenge 2: Generalization in large action space

31

• What do you do when the number of states and actions are too large to visit?

≫

Game states Atoms in observable
Universe

2.1 x 10170 1080

Challenge 2: Generalization in large action space

31

• What do you do when the number of states and actions are too large to visit?

• Function approximation: learn a function mapping states/actions to value, and
generalize via interpolation/extrapolation

≫

Game states Atoms in observable
Universe

2.1 x 10170 1080

Silver et al., (Nature 2016)

Function Approximation (Weeks 5 & 10)

Va
lu

e

State

Observation
Hypothesis

Exp. Reward
Uncertainty

Vθ(s) := f(s, θ)

Wu et al., (AnnRevPsych 2024)

RL summary
• Normative framework for learning an optimal

policy in arbitrarily complex environments
• Simplest setting is a 2-armed bandit problem, where Q-learning is

equivalent to Rescorla-Wagner
• More complex settings require credit assignment and generalization

• RL also provides a descriptive model of human learning
• TD-learning prediction error tracks dopamine signals in the brain and

widely used to study human behavior (more on this next week)

π*

32

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

5 minute break

33

34

Model-free RL Model-based RL

• Habit
• Cheap

•
• Myopically selecting actions

that have been associated
with reward

Q(s, a)

• Goal-directed
• Computationally costly

•
• Planning and seeking of long term

outcomes

P(s′￼, r |s, a)

Duarte et al,. (2020)

Monte carlo tree search

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

x
x

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

x
x

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

x
x

no difference

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

x
x

no difference

€

€€

€€€

35

image credit Alyssa Dayan (from Dolan & Dayan, 2013)

x

x
x

no difference jumps to correct solution

€

€€

€€€

What is model-based RL?
• An internal representation of the

environment
• Ingredients:

• Transition matrix

• Reward function

• State space

• Action space
• How is it learned? (find out next week!)

T(s′￼|s, a)
R(s, a)

s ∈ 𝒮
a ∈ 𝒜

36

Model

s
a

s′￼

r

MDP Transition Matrix

What is model-based RL?
• An internal representation of the

environment
• Ingredients:

• Transition matrix

• Reward function

• State space

• Action space
• How is it learned? (find out next week!)

T(s′￼|s, a)
R(s, a)

s ∈ 𝒮
a ∈ 𝒜

36

Model

s
a

s′￼

r

MDP Transition Matrix

37

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

• 2nd step options have different P(reward)

Daw et al., (2011)

1st Step

2nd Step

37

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

• 2nd step options have different P(reward)

Daw et al., (2011)

• Model-free predictions depend
solely on reward

Model-free

1st Step

2nd Step

37

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

• 2nd step options have different P(reward)

Daw et al., (2011)

• Model-free predictions depend
solely on reward

Model-free

1st Step

2nd Step

• Model-based RL predicts
different responses depending
on common vs. rare

37

Two-step task
• Two-stage decision-making task used to distinguish

model-free vs. model-based learning

• 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

• 2nd step options have different P(reward)

Daw et al., (2011)

• Model-free predictions depend
solely on reward

Model-free

1st Step

2nd Step

• Model-based RL predicts
different responses depending
on common vs. rare

• Data suggests a mixture of both

38

Two-step task (revisited)
Feher de Silva et al., (NHB 2023)

• More recent work suggests a different
interpretation of that classic result
from Daw et al,. (2011)

• Abstract vs. story condition to
manipulate how easily it is to
understand the nature of transitions

• Story condition was almost perfectly
aligned with model-based predictions

Abstract Story

Model-free

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what
worked in the past by forming cached value

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what
worked in the past by forming cached value

• Model-free RL

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what
worked in the past by forming cached value

• Model-free RL

• Model-based planning: Select actions expected to
produced the best outcomes based on our model of
the world

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Planning

Beliefs Model
update

Model

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)Three

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what
worked in the past by forming cached value

• Model-free RL

• Model-based planning: Select actions expected to
produced the best outcomes based on our model of
the world

• Model-based RL 
Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Planning

Beliefs Model
update

Model

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)Three

• Law of Exercise: Repeat actions performed in the past
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what
worked in the past by forming cached value

• Model-free RL

• Model-based planning: Select actions expected to
produced the best outcomes based on our model of
the world

• Model-based RL 

Different pathways not always in competition, but can
inform one another! Model-based planning builds
better habits!

Action

LearningDecision-Making

Value-free Habit

Cached
Policy

Outcome

Value-based Habit

Model-free
update

Value

Cached Value

Planning

Beliefs Model
update

Model

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)Three

Model-free vs. Model-based summary
• Computationally cheap to use model-free learning

• Maps onto habits and S-R learning
• Costly but potentially more impactful to use model-based learning

• Maps onto goal-directed and S-S learning
• Model-based learning can help train model-free value functions and

policies
• Still open questions about how model-based representations are learned

and used in humans (find out next week!)

40

Further study
Sutton & Barto book (free PDF link)

R code notebooks for using RL models (with a focus on social learning)
 https://cosmos-konstanz.github.io/materials/

Python tutorial from Neuromatch academy
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/
student/W3D4_Intro.html

41

http://incompleteideas.net/book/RLbook2020.pdf
https://cosmos-konstanz.github.io/materials
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html

Next week
Advances in RL

42

Diederichs (2019)

Actor

Critic

Stachenfeld (2018)

Haffner et al., (2023)

Next week
Advances in RL

42

Diederichs (2019)

Actor

Critic

Stachenfeld (2018)

Haffner et al., (2023)

