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Quiz results
• Average grade 81% 
• If you did well, please keep up the good work! 
• If you wish you had done better, use this as a learning experience and 

remember that 1 pop quiz is a freebie (best 3 out of 4) 
• If you missed the quiz but had a documented absence (email to me + TA 

24hrs in advance), then we can work something out for further 
documented absences 

• Quiz questions may reappear on the exam
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Larger when better 

reward than expected!



The story so far …
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Thorndike’s (1898) Law of Effect 

5

Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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https://www.youtube.com/watch?v=_qLs2K4UXXk


Tolman and Cognitive maps
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• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning



Cognitive maps in biological brains
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Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)



“Hippocampal zoo”

9
Behrens et al., (Neuron 2018) 
Whittington et al,. (Nat Neuro 2022)



Agenda for today: From Tolman to Reinforcement Learning

• Part 1: Introduce RL framework, origins, and terminology (Sutton & 
Barto)


• Part 2: Model-free vs. model-based RL
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Reinforcement 
Learning

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 
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• Represent Past Experiences
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• How good is a state? V(st)

• How good is a state-action pair? Q(st, at)

• How good is a trajectory ?τ = (s0, a0, s1, a1, …)
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• Implement a Policy that Maximizes Reward

•  defines how to act, where  is the 
probability of selecting action  in state 
π π(a |s)

a s

• sample actions from the policy at ∼ π

Agent

Environment

ActionState Reward
at

R(at, st)

st
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π(
a|

s)

Policy



Normative vs. Descriptive
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Simplest RL problem & simplest RL model
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2-Armed Bandit Problem
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A B

s
A B

Single state problem
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Qt+1(a) ← Qt(a) + η [r − Qt(a)]
learning rate Predicted 

reward
Observed 
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning: 

• Learning occurs only when events violate expectations ( )

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0
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a
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∑i exp(Qt(ai)/τ)



Examples
choosing restaurants, buying a 
phone, funding research, A/B 
testing of advertisements, ….

robot bartender, playing 
games, self-driving car, 

chatbots, etc… 

Value representations or

Policy

Planning? Not needed Important!

Long-term Value?

Moving back to the general RL problem
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Difference between V(s) and Q(s,a)
•  defines how good is the state 

• Actions become implicit under policy  

•  defines how good it is to take 
action  in state  
• Actions are made explicit 

• We will use  and  somewhat 
interchangeably, depending on what the 
situation calls for 

• It’s ok to be somewhat confused at times, 
and I promise not to ask any “gotcha” 
questions purposefully trying to trick you 
into confusing the two

V(s)
π

Q(s, a)
a s

V(s) Q(s, a)

25

V(s) ← V(s) + η (r + γV(s′￼) − V(s))
Q(s, a) ← Q(s, a) + η[r + γ max

a′￼

Q(s′￼, a′￼) − Q(s, a)]

Delta-rule update with TD error
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Select a policy  that maximizes expected rewardsπ*

Not just immediate rewards, but discounted future returns

• Value function under some policy : 
 

π

• We can rewrite the expectation  in terms of  
the policy and state transitions 
 
 

𝔼τ∼π

• The sum can be written recursively as immediate reward + discounted future 
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• This recursive formulation of the value function is known as the Bellman equation 
 
 

• This allows us to break the optimization problem into series of simpler sub-problems


• if each sub-problem is solved optimally, the overall problem will also be optimal


• Note that there is no longer any reward prediction error updating


•  Rather, we want to describe a theoretically optimal solution:


• We first define an optimal value function by assuming value-maximizing actions: 
 
 

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:


27

V*(s) = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γV*(s′￼)]

Optimal policies via Bellman Equations

Vπ(s) = ∑
a

π(a |s)∑
s′￼

P(s′￼|s, a)[R(s′￼, a) + γVπ(s′￼)]

π* = arg max
a

V*(s)

Memorizing these equations not neccessary for exam
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a

V*(s)
* In practice, optimal solutions are usually unobtainable 

Memorizing these equations not neccessary for exam



Tabular methods

28

State

Ac
tio

n

• Based on methods from Dynamic 
programming (Bellman, 1957), 
Tabular methods were first proposed 
as solutions for RL problems by 
Minsky (1961) 


• Think of a giant lookup table, where 
we store a value representation for 
each combination of state+action


• Value iteration and policy iteration 
are examples of tabular methods


• Caveat: solutions require repeat visits 
to each state, which is infeasible in 
most real-world problems



Iteratively visit all states and update the value function until a 
“good enough” solution has been reached.


1. Initialize the value function as  for all states


2. For  in (1, 2, ….) update all  in :


 converges on  as , and perhaps sooner, but with 
many costly sweeps through the state space 

Vk=0(s) = 0

k s 𝒮

Vk V* k → ∞

Value iteration

29

Vk+1(s) = max
a∈A ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVk(s′￼)]

max
s∈𝒮

|Vk(s) − Vk−1(s) | < θuntil Bellman residual
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Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration

30

πk+1 = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′￼, a) + γVπk

(s′￼)]



Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy iteration can converge faster than value iteration, but still requires visiting all 
states multiple times and lacks convergence guarantees

Policy iteration

30

πk+1 = arg max
a ∑

s′￼

P(s′￼|s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′￼, a) + γVπk

(s′￼)]



Challenge 2: Generalization in large action space

31

• What do you do when the number of states and actions are too large to visit?
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Challenge 2: Generalization in large action space

31

• What do you do when the number of states and actions are too large to visit?

• Function approximation: learn a function mapping states/actions to value, and 
generalize via interpolation/extrapolation

≫

Game states Atoms in observable 
Universe

2.1 x 10170 1080

Silver et al., (Nature 2016)

Function Approximation (Weeks 5 & 10)

Va
lu

e

State

Observation
Hypothesis

Exp. Reward
Uncertainty

Vθ(s) := f(s, θ)

Wu et al., (AnnRevPsych 2024)



RL summary
• Normative framework for learning an optimal 

policy  in arbitrarily complex environments 
• Simplest setting is a 2-armed bandit problem, where Q-learning is 

equivalent to Rescorla-Wagner 
• More complex settings require credit assignment and generalization 

• RL also provides a descriptive model of human learning 
• TD-learning prediction error tracks dopamine signals in the brain and 

widely used to study human behavior (more on this next week)

π*

32

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1



5 minute break

33
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Model-free RL Model-based RL

• Habit 
• Cheap 

•  
• Myopically selecting actions 

that have been associated 
with reward

Q(s, a)

• Goal-directed 
• Computationally costly 

•   
• Planning and seeking of long term 

outcomes 

P(s′￼, r |s, a)

Duarte et al,. (2020)

Monte carlo tree search
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image credit Alyssa Dayan (from Dolan & Dayan, 2013)
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What is model-based RL?
• An internal representation of the 

environment 
• Ingredients: 

• Transition matrix  

• Reward function  

• State space  

• Action space  
• How is it learned? (find out next week!)

T(s′￼|s, a)
R(s, a)

s ∈ 𝒮
a ∈ 𝒜

36

Model

s
a

s′￼

r

MDP Transition Matrix
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Two-step task
• Two-stage decision-making task used to distinguish 

model-free vs. model-based learning


• 1st step choices have common (70%) and rare (30%) 
transitions to different sets of 2nd step options


• 2nd step options have different P(reward)

Daw et al., (2011)

1st Step

2nd Step
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Two-step task
• Two-stage decision-making task used to distinguish 

model-free vs. model-based learning


• 1st step choices have common (70%) and rare (30%) 
transitions to different sets of 2nd step options


• 2nd step options have different P(reward)

Daw et al., (2011)

• Model-free predictions depend 
solely on reward

Model-free

1st Step

2nd Step

• Model-based RL predicts 
different responses depending 
on common vs. rare

• Data suggests a mixture of both
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Two-step task (revisited)
Feher de Silva et al., (NHB 2023)

• More recent work suggests a different 
interpretation of that classic result 
from Daw et al,. (2011)


• Abstract vs. story condition to 
manipulate how easily it is to 
understand the nature of transitions


• Story condition was almost perfectly 
aligned with model-based predictions

Abstract Story

Model-free



Two Pathways for Learning
Wu, Veléz, & Cushman (2022)



• Law of Exercise: Repeat actions performed in the past 
by learning a cached policy (independent of reward)

Action

LearningDecision-Making

Value-free Habit

Cached  
Policy

Outcome

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)
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• Law of Exercise: Repeat actions performed in the past 
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what 
worked in the past by forming cached value 

• Model-free RL

• Model-based planning: Select actions expected to 
produced the best outcomes based on our model of 
the world 

Action
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Policy

Outcome

Value-based Habit

Model-free 
update

Value

Cached Value

Planning

Beliefs Model 
update

Model

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)Three
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• Law of Exercise: Repeat actions performed in the past 
by learning a cached policy (independent of reward)

• Law of Effect: Choose actions on the basis of what 
worked in the past by forming cached value 

• Model-free RL

• Model-based planning: Select actions expected to 
produced the best outcomes based on our model of 
the world 

• Model-based RL 

Different pathways not always in competition, but can 
inform one another! Model-based planning builds 
better habits!

Action

LearningDecision-Making

Value-free Habit

Cached  
Policy

Outcome

Value-based Habit

Model-free 
update

Value

Cached Value

Planning

Beliefs Model 
update

Model

Two Pathways for Learning
Wu, Veléz, & Cushman (2022)Three



Model-free vs. Model-based summary
• Computationally cheap to use model-free learning 

• Maps onto habits and S-R learning 
• Costly but potentially more impactful to use model-based learning 

• Maps onto goal-directed and S-S learning 
• Model-based learning can help train model-free value functions and 

policies 
• Still open questions about how model-based representations are learned 

and used in humans (find out next week!)

40



Further study
Sutton & Barto book  (free PDF link) 
 

R code notebooks for using RL models (with a focus on social learning) 
 https://cosmos-konstanz.github.io/materials/ 
 
 
Python tutorial from Neuromatch academy 
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/
student/W3D4_Intro.html 

41

http://incompleteideas.net/book/RLbook2020.pdf
https://cosmos-konstanz.github.io/materials
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html


Next week 
Advances in RL

42

Diederichs (2019)

Actor

Critic
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Haffner et al., (2023)
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