# General Principles of Human and Machine Learning

## Lecture 4: Introduction to Reinforcement Learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html



# Quiz results

- Average grade 81%
- If you did well, please keep up the good work!
- remember that 1 pop quiz is a freebie (best 3 out of 4)
- 24hrs in advance), then we can work something out for further documented absences
- Quiz questions may reappear on the exam

If you wish you had done better, use this as a learning experience and

If you missed the quiz but had a documented absence (email to me + TA)





Neuron fires when  $x_1$  is on AND  $x_2$  not on





Neuron fires when  $x_1$  is on AND  $x_2$  not on





Neuron fires when  $x_1$  is on AND  $x_2$ not on







Neuron fires when  $x_1$  is on AND  $x_2$ not on

### **Rescorla-Wagner Reward prediction** $\hat{r}_t = \sum CS_i^t w_i$ Weight update Larger when better reward than expected! For *i* where $CS_i = 1$ : $W_i \leftarrow W_i + \eta(r_t - \hat{r}_t)$ Observed Predicted Learning outcome outcome rate Reward prediction error (RPE)



The story so far ...







Cat







Cat







Cat





## Actions associated with satisfaction are strengthened, while those associated with discomfort become weakened.





# Classical and Operant Conditioning

# Classical Condition (Pavlov, 1927)

Learning as the *passive* coupling of stimulus (bell ringing) and response (salivation), anticipating future rewards

# **Operant Condition (Skinner, 1938)**

Skinner (1938): Learning as the *active* shaping of behavior in response to rewards or punishments







# **Tolman and Cognitive maps**

- signals to outgoing responses (S-R Learning)
- Rather, "latent learning" establishes something like a "field map of the environment" gets etablished (S-S learning)

### Stimulus-Response (S-R) Learning



Learning is not just a telephone switchboard connecting incoming sensory

Stimulus-Stimulus (S-S) Learning



# Cognitive maps in biological brains

Place cells in the hippocampus



Grid cells in the medial entorhinal cortex



Moser et al., (Ann Rev Neuro 2008)



# "Hippocampal zoo"







Place cell



Border cell





Object-vector cell



(Taube et al. 1990)



(Gauthier & Tank 2018)

### **Boundary Vector Cell**



Behrens et al., (Neuron 2018) Whittington et al,. (Nat Neuro 2022)



# Agenda for today: From Tolman to Reinforcement Learning

Barto)

• Part 2: Model-free vs. model-based RL

Part 1: Introduce RL framework, origins, and terminology (Sutton &



## Learning

An Introduction second edition

### Reinforcement Learning





Learn which environmental cues predict reward

# Learning



Learn which environmental cues predict reward

Learning

Learn which actions *predict* reward



### **Neuro-dynamic programing** Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems



# **Reinforcement Learning**

Sutton and Barto (2018 [1998])













**The Environment**:







- Selects actions  $a_t$
- Receives feedback from the environment in terms of new states  $S_{t+1}$  and rewards  $R(a_t, s_t)$

### **The Environment:**







- Selects actions  $a_t$
- Receives feedback from the environment in terms of new states  $S_{t+1}$  and rewards  $R(a_t, s_t)$

### **The Environment**:

- Governs the transition between states  $s_t \rightarrow s_{t+1}$
- Provides rewards  $R(a_t, s_t)$









- actions
- states
- reward





only the previous state  $P(s_{t+1} | s_t, a_t)$ 

Markov Principle: simplifying assumption that the system is fully defined by



Markov Decision Process (MDP)

- Markov Principle: simplifying assumption that the system is fully defined by only the previous state  $P(s_{t+1} | s_t, a_t)$
- What are states?

+1





Markov Decision Process (MDP)

• Markov Principle: simplifying assumption that the system is fully defined by only the previous state  $P(s_{t+1} | s_t, a_t)$ 

### What are states?

+1







Markov Decision Process (MDP)

 Markov Principle: simplifying assumption that the system is fully defined by only the previous state  $P(s_{t+1} | s_t, a_t)$ 

## What are states?

+1









Markov Decision Process (MDP)

 Markov Principle: simplifying assumption that the system is fully defined by only the previous state  $P(s_{t+1} | s_t, a_t)$ 

## What are states?

+1









Markov Decision Process (MDP)

 Markov Principle: simplifying assumption that the system is fully defined by only the previous state  $P(s_{t+1} | s_t, a_t)$ 

## What are states?

+1















## Action

 $a_t$ 



Represent Past Experiences



## Action

 $a_t$ 





kimizes Reward





- Represent Past Experiences
  - How good is a state?  $V(s_t)$
  - How good is a state-action pair?  $Q(s_t, a_t)^{a_t}$












- $\pi(a \mid s)$ •  $\pi$  defines how to act, where  $\pi(a \mid s)$  is the probability of selecting action *a* in state *s*
- sample actions from the policy  $a_t \sim \pi$





### **ximizes Reward**





## **Normative vs. Descriptive** RL as a **normative** framework: RL as a **descriptive** framework:

- How should a rational agent behave when learning from the environment?
- Which learning mechanisms and which policies lead to better outcomes?

- How does an agent update
  beliefs and select actions when
  learning from the environment?
- Which learning mechanisms and which policies provide better descriptions of behavior



## **Normative vs. Descriptive** RL as a **normative** framework: RL as a **descriptive** framework:

- How should a rational agent behave when learning from the environment?
- Which learning mechanisms and which policies lead to better outcomes?



- How does an agent update
  beliefs and select actions when
  learning from the environment?
- Which learning mechanisms and which policies provide better descriptions of behavior



## **Normative vs. Descriptive** RL as a **normative** framework: RL as a **descriptive** framework:

- How should a rational agent behave when learning from the environment?
- Which learning mechanisms and which policies lead to better outcomes?



- How does an agent update beliefs and select actions when learning from the environment?
- Which learning mechanisms and which policies provide better descriptions of behavior





Simplest RL problem & simplest RL model



### Single state problem







Value learning



Value learning

## $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$



Value learning

## $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$

Observed reward

Reward prediction error (RPE)

Predicted reward



### Value learning

## $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$

Observed Predicted reward

## Reward prediction error (RPE)

### The delta-rule of learning:

- Learning occurs only when events violate expectations ( $\delta \neq 0$ )
- The magnitude of the error corresponds to how much we update our beliefs

- reward





### The delta-rule of learning:

- Learning occurs only when events violate expectations ( $\delta \neq 0$ )
- The magnitude of the error corresponds to how much we update our beliefs

- Predicted reward





### The delta-rule of learning:

- Learning occurs only when events violate expectations ( $\delta \neq 0$ )
- The magnitude of the error corresponds to how much we update our beliefs

| 1989)          | Exercise 1: Compute Q-values |      |      |      |            |   |
|----------------|------------------------------|------|------|------|------------|---|
|                |                              | A    | B    | assu | ime $\eta$ | Ξ |
| $-Q_t(a)$      |                              | Q(A) | Q(B) | a    | r          |   |
| †<br>Predicted | t=1                          | 0    | 0    | A    | 5          |   |
| reward         | t=2                          |      |      | В    | 12         |   |
|                | t=3                          |      |      | В    | 4          |   |
| n error (RPE)  | t=4                          |      |      | A    | 8          |   |





### **The delta-rule of learning:**

- Learning occurs only when events violate expectations ( $\delta \neq 0$ )
- The magnitude of the error corresponds to how much we update our beliefs

| 1989)               | Exercise 1: Compute Q-values |      |      |      |            |   |
|---------------------|------------------------------|------|------|------|------------|---|
|                     |                              | A    | B    | assu | ime $\eta$ | = |
| $Q_t(a)$            |                              | Q(A) | Q(B) | a    | r          |   |
| Predicted<br>reward | t=1                          | 0    | 0    | A    | 5          |   |
|                     | t=2                          | 4.5  | 0    | В    | 12         |   |
| n error (RPE)       | t=3                          | 4.5  | 10.8 | В    | 4          |   |
|                     | t=4                          | 4.5  | 4.68 | A    | 8          |   |



Value learning

## $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$

Value learning

 $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$ 

Policy  $P(a) \propto \exp(Q_t(a)/\tau)$ 

Value learning

 $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$ 





Value learning

 $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$ 





Value learning

 $Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left| r - Q_t(a) \right|$ 





### **Exercise 2: Sample actions from policy**

|     | A    | B    | as<br>η | sume:<br>= .9 |  |
|-----|------|------|---------|---------------|--|
|     | +3   |      |         | = .23         |  |
|     | Q(A) | Q(B) | a       | r             |  |
| t=1 | 0    | 0    |         |               |  |
| t=2 |      |      |         |               |  |
| t=3 |      |      |         |               |  |
| t=4 |      |      |         |               |  |



## Moving back to the general RL problem

|                       | Bandit problem                                                                         | General RL<br>$a_t$<br>$s_t$<br>$r_t$<br>$r_t$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_$ |
|-----------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples              | choosing restaurants, buying a phone, funding research, A/B testing of advertisements, | robot bartender, playin<br>games, self-driving ca<br>chatbots, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Value representations | Q(a)                                                                                   | Q(a,s) or $V(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Policy                | $\pi(a)$                                                                               | $\pi(a \mid s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Planning?             | Not needed                                                                             | Important!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Long-term Value?      | V(a) = Q(a)                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



## Moving back to the general RL problem

|                       | Bandit problem                                                                         | General RL<br>$a_t$<br>$s_t$<br>$r_t$<br>$r_t$<br>$r_t$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1}$<br>$r_{t+1$ |
|-----------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples              | choosing restaurants, buying a phone, funding research, A/B testing of advertisements, | robot bartender, playin<br>games, self-driving ca<br>chatbots, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Value representations | Q(a)                                                                                   | Q(a,s) or $V(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Policy                | $\pi(a)$                                                                               | $\pi(a \mid s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Planning?             | Not needed                                                                             | Important!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Long-term Value?      | V(a) = Q(a)                                                                            | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



## Challenge 1: Credit assignment

- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)





## Challenge 1: Credit assignment

- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V\right)$$

V(s') - V(s)

discounted future value




- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V\right)$$



V(s') - V(s)

discounted future value





- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left(r + \gamma V\right)$$







V(s') - V(s)

### discounted future value









- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left( r + \gamma V(s') - V(s) \right)$$







discounted future value







**TD Prediction Error** 





- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left( r + \gamma V(s') - V(s) \right)$$







discounted future value



**TD Prediction Error** 





### Schultz et al. (Science 1997) **Dopaminergic Neurons**



- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left( r + \gamma V(s') - V(s) \right)$$







discounted future value







**TD Prediction Error** 





- How do we assign credit to actions that are responsible for future reward? (Minsky, 1961)
- **Temporal Difference (TD) Learning** defines a value fuction that augments reward expectations with the **discounted value** of the next state

$$V(s) \leftarrow V(s) + \eta \left( r + \gamma V(s') - V(s) \right)$$







discounted future value







**TD Prediction Error** 





# Difference between V(s) and Q(s,a)

- V(s) defines how good is the state
  - Actions become implicit under policy  $\pi$
- Q(s, a) defines how good it is to take action *a* in state *s* 
  - Actions are made explicit
- We will use V(s) and Q(s, a) somewhat interchangeably, depending on what the situation calls for
- It's ok to be somewhat confused at times, and I promise not to ask any "gotcha" questions purposefully trying to trick you into confusing the two

### **Delta-rule update with TD error** $V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') - V(s)\right)$ $Q(s,a) \leftarrow Q(s,a) + \eta[r + \gamma \max Q(s',a') - Q(s,a)]$ $\mathcal{A}'$





# Difference between V(s) and Q(s,a)

- V(s) defines how good is the state
  - Actions become implicit under policy  $\pi$
- Q(s, a) defines how good it is to take action *a* in state *s* 
  - Actions are made explicit
- We will use V(s) and Q(s, a) somewhat interchangeably, depending on what the situation calls for
- It's ok to be somewhat confused at times, and I promise not to ask any "gotcha" questions purposefully trying to trick you into confusing the two

## $V_{\pi}(s) = \sum \pi(a \mid s) Q_{\pi}(s, a)$ $\mathcal{A}$

### **Delta-rule update with TD error** $V(s) \leftarrow V(s) + \eta (r + \gamma V(s') - V(s))$ $Q(s,a) \leftarrow Q(s,a) + \eta[r + \gamma \max Q(s',a') - Q(s,a)]$ a'









Select a policy  $\pi^*$  that maximizes expected rewards



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :  $V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{\tau \sim \pi} \gamma^{t} R_{t+1} \, | \, s_{0} = s \right]$  $t \in \tau$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

 $s_0 = s$ ]

 $(s, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} P(s' \mid s)$$

Policy  $\pi(a \mid s)$ 

 $s_0 = s$ 

 $(s, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 





Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \frac{P(s' \mid s)}{s}$$

 $s_0 = s$ 





 $R(s', a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum \pi(a \mid s) \sum P(s' \mid s)$$

• The sum can be written recursively as **immediate reward** + **discounted future** reward

 $s_0 = s$ 





 $(x, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum \pi(a \mid s) \sum P(s' \mid s)$$

• The sum can be written recursively as **immediate reward** + **discounted future** reward  $\gamma^0 = 1$ 

 $s_0 = s$ 





 $(x, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum \pi(a \mid s) \sum P(s' \mid s)$$

• The sum can be written recursively as immediate reward + discounted future reward  $\gamma^0 = 1$ 

 $s_0 = s$ 





 $(x, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 



Select a policy  $\pi^*$  that maximizes expected rewards

Not just immediate rewards, but discounted future returns

• Value function under some policy  $\pi$ :

$$V_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t \in \tau} \gamma^{t} R_{t+1} \right] s$$

• We can rewrite the expectation  $\mathbb{E}_{\tau \sim \pi}$  in terms of the policy and state transitions

$$V_{\pi}(s) = \sum \pi(a \mid s) \sum P(s' \mid s)$$

• The sum can be written recursively as immediate reward + discounted future reward

 $s_0 = s$ 





 $(s, a) \left| R(s', a) + \gamma V_{\pi}(s') \right|$ 

 $\gamma^0 = 1$ 





# **Optimal policies via Bellman Equations**

This recursive formulation of the value function is known as **the Bellman equation**  $\bullet$ 

U

$$V_{\pi}(s) = \sum_{\alpha} \pi(a \,|\, s) \sum_{\alpha'} P(s' \,|\, s, a) \left[ R(s', a) + \gamma V_{\pi}(s') \right]$$

• This allows us to break the optimization problem into series of simpler sub-problems

S

- if each sub-problem is solved optimally, the overall problem will also be optimal
- Note that there is no longer any **reward prediction error** updating  $\bullet$
- Rather, we want to describe a **theoretically optimal solution**:
  - We first define an optimal value function by assuming value-maximizing actions:

$$V_*(s) = \arg\max_{a} \sum_{s'} P(s' | s, a) [R(s, a) + \gamma V_*(s')]$$

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

$$\pi_* = \arg \max V_*(s)$$

Memorizing these equations not neccessary for exam





# **Optimal policies via Bellman Equations**

This recursive formulation of the value function is known as **the Bellman equation**  $\bullet$ 

U

$$V_{\pi}(s) = \sum_{\alpha} \pi(a \,|\, s) \sum_{\alpha'} P(s' \,|\, s, a) \left[ R(s', a) + \gamma V_{\pi}(s') \right]$$

• This allows us to break the optimization problem into series of simpler sub-problems

S

- if each sub-problem is solved optimally, the overall problem will also be optimal
- Note that there is no longer any **reward prediction error** updating  $\bullet$
- Rather, we want to describe a **theoretically optimal solution**:
  - We first define an optimal value function by assuming value-maximizing actions:

$$V_*(s) = \arg\max_{a} \sum_{s'} P(s' | s, a) \left[ R(s, a) + \gamma V_*(s') \right]$$

• We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

$$\pi_* = \arg \max V_*(s)$$

Memorizing these equations not neccessary for exam

\* In practice, optimal solutions are usually unobtainable





## Tabular methods

- Based on methods from Dynamic programming (Bellman, 1957), Tabular methods were first proposed as solutions for RL problems by Minsky (1961)
- Think of a giant lookup table, where we store a value representation for each combination of state+action
- Value iteration and policy iteration are examples of tabular methods
- Caveat: solutions require repeat visits to each state, which is infeasible in most real-world problems

### State

| 2  | 73 | *  | *  | 2  | ☆? | 77             | 2               | 2  | *  | *  | 2  | 2  | 2  | 7र             |
|----|----|----|----|----|----|----------------|-----------------|----|----|----|----|----|----|----------------|
| 2  | \$ | 2  | *  | 27 | 2  | *              | <del>7</del> 73 | *  | 2  | 3  | *  | *  | *  | 73             |
| 27 | \$ | 2  | 2  | 77 | 2  | <del>४</del> २ | *               | 2  | *  | *  | 2  | *  | *  | 쿬              |
| 2  | *  | 2  | \$ | 77 | 5  | 2              | *               | 27 | 5  | 2  | 5  | 2  | *  | 27             |
| 77 | *  | 2  | 5  | 53 | *  | *              | *               | 2  | *  | *  | 2  | ☆  | 73 | <del>7</del> 3 |
| \$ | 27 | 5  | \$ | 73 | 2  | *              | 73              | 5  | *  | 5  | 5  | 1  | *  | 📩              |
| *  | *  | 2  | ☆  | *  | 5  | 27             | 27              | 73 | 2  | 2  | 5  | *  | *  | *              |
| 73 | *  | 2  | 公  | 53 | 53 | *              | *               | *  | *  | *  | *  | *  | *  | \$             |
| *  | 5  | 5  | 2  | *  | 2  | *              | *               | 5  | 2  | *  | 2  | 2  | 5  | 5              |
| *  | 73 | 5  | 73 | 2  | 53 | 7              | *               | 5  | *  | 5  | 3  | 2  | 73 | *              |
| 2  | *  | *  | *  | *  | 5  | 2              | *               | 5  | 2  | *  | *  | 3  | *  | *              |
| 5  | 73 | 2  | 2  | 5  | 3  | 5              | *               | 3  | 2  | 23 | 5  | *  | 2  | *              |
| 1  | *  | *  | *  | 27 | *  | *              | 1               | *  | *  | 3  | *  | *  | *  | \$             |
| 5  | *  | ☆  | *  | *  | 73 | \$             | 73              | 5  | 73 | *  | 5  | *  | *  | 😾              |
| 73 | *  | 2  | 27 | 5  | *  | 33             | *               | *  | 2  | *  | 2  | *  | 27 | *              |
| *  | *  | 27 | 73 | *  | 27 | *              | ☆               | 5  | 23 | 23 | ☆  | *  | 2  | 😾              |
| *  | *  | *  | *  | 1  | *  | *              | 73              | *  | 3  | 27 | 23 | *  | 27 | *              |
| 73 | *  | *  | *  | *  | 33 | 53             | 27              | 23 | *  | *  | *  | *  | 27 | 27             |
| *  | *  | *  | *  | 2  | *  | 文              | ☆?              | 5  | 23 | ☆? | *  | 文  | *  | 27             |
| 2  | 3  | ☆  | \$ | 27 | 2  | 2              | 文               | ☆  | 3  | 2  | 2  | *  | \$ | 33             |
| 5  | *  | \$ | 文  | 27 | 27 | 73             | *               | 文  | 33 | 3  | 2  | 53 | *  | 27             |
| *  | 3  | 23 | *  | *  | *  | 33             | 33              | 53 | 23 | *  | 3  | 23 | *  | 23             |

Action

Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [I]$

until  $\max_{s \in S} |V_k(s) - V_{k-1}(s)| < \theta$  Bellman residual

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space

$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$



Iteratively visit all states and update the "good enough" solution has been read

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [I]$

 $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta$ until

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space

$$(s) = 0$$
 for all states



$$R(s,a) + \gamma V_k(s')]$$

Bellman residual

Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [F_{k+1}(s)]$

until

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space



$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$

 $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta \quad \text{Bellman residual}$ 





Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [F_{k+1}(s)]$

until

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space

**Pieter Abbeel** 



$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$

 $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta \quad \text{Bellman residual}$ 







Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}($
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [F_{k+1}(s)]$

until  $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta$ 

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space

**Pieter Abbeel** 



| 0.00 )                   | 0.52 → | 0.78 ⊧   | 1 |  |  |  |  |
|--------------------------|--------|----------|---|--|--|--|--|
|                          |        | <b></b>  |   |  |  |  |  |
| 0.00 )                   |        | 0.43     |   |  |  |  |  |
|                          |        | <b>▲</b> |   |  |  |  |  |
| 0.00 )                   | 0.00 → | 0.00     | 0 |  |  |  |  |
|                          |        |          |   |  |  |  |  |
| VALUES AFTER 3 ITERATION |        |          |   |  |  |  |  |
|                          |        |          |   |  |  |  |  |

$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$

 $|(s)| < \theta$  Bellman residual







Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [F_{k+1}(s)]$

 $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta$ until

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space



| 0.37 )   | 0.66 )  | 0.83 )   | 1   |
|----------|---------|----------|-----|
| <b>▲</b> |         | <b>▲</b> | ·   |
| 0.00     |         | 0.51     | -   |
|          |         | <b>^</b> |     |
| 0.00 →   | 0.00 )  | 0.31     | • ( |
| VALUE    | S AFTER | 4 ITERA  | FIO |

$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$

Bellman residual





Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}($
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{s'} P(s' | s, a) [F_{k+1}(s)]$

until  $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta$ 

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space

**Pieter Abbeel** 



| 0.51 →                  | 0.72 ) | 0.84 )   |     |  |  |  |
|-------------------------|--------|----------|-----|--|--|--|
| <b>^</b>                |        | <b>^</b> |     |  |  |  |
| 0.27                    |        | 0.55     | -   |  |  |  |
| <b>^</b>                |        | <b>^</b> |     |  |  |  |
| 0.00                    | 0.22 → | 0.37     | • ( |  |  |  |
| VALUES AFTER 5 ITERATIO |        |          |     |  |  |  |

$$(s) = 0$$
 for all states

$$R(s,a) + \gamma V_k(s')]$$

 $|(s)| < \theta$  Bellman residual







Iteratively visit all states and update the value function until a "good enough" solution has been reached.

- 1. Initialize the value function as  $V_{k=0}$
- 2. For k in (1, 2, ....) update all s in S:
- $V_{k+1}(s) = \max_{a \in A} \sum_{a'} P(s' | s, a) [I]$

 $\max_{s \in \mathcal{S}} |V_k(s) - V_{k-1}(s)| < \theta$ until

 $V_k$  converges on  $V_*$  as  $k \to \infty$ , and perhaps sooner, but with many costly sweeps through the state space



$$(s) = 0$$
 for all states

$$R(s, a) + \gamma V_k(s')]$$

Bellman residual





## **Policy iteration**

Alternate between evaluating a policy and then improving the policy.

Policy Evaluation

$$V_{\pi_k}(s) = \mathbb{E}_{\pi_k} \left[ R(s', a) + \gamma V_{\pi_k} \right]$$

**Policy Improvement**  $\bullet$ 

$$\pi_{k+1} = \arg\max_{a} \sum_{s'} P(s'|s,a)$$

Start with  $\pi_0$  (typically a random policy), and then iterate for all  $s \in S$  in each step





## **Policy iteration**

Alternate between evaluating a policy and then improving the policy.

**Policy Evaluation** 

$$V_{\pi_k}(s) = \mathbb{E}_{\pi_k} \left[ R(s', a) + \gamma V_{\pi_k} \right]$$

**Policy Improvement** 

$$\pi_{k+1} = \arg\max_{a} \sum_{s'} P(s'|s,a)$$

states multiple times and lacks convergence guarantees

Start with  $\pi_0$  (typically a random policy), and then iterate for all  $s \in S$  in each step



Policy iteration can converge faster than value iteration, but still requires visiting all



### **Challenge 2: Generalization in large action space**

What do you do when the number of states and actions are too large to visit?



### Challenge 2: Generalization in large action space

 $\gg$ 

### Game states

### 2.1 x 10<sup>170</sup>



### Atoms in observable Universe 1080



What do you do when the number of states and actions are too large to visit?







### Challenge 2: Generalization in large action space

- generalize via interpolation/extrapolation

 $\gg$ 

### Game states

Atoms in observable Function Approximation (Weeks 5 & 10) Universe  $V_{\theta}(s) := f(s, \theta)$ 1080

### 2.1 x 10<sup>170</sup>





What do you do when the number of states and actions are too large to visit?

• Function approximation: learn a function mapping states/actions to value, and



Silver et al., (*Nature* 2016)

Wu et al., (AnnRevPsych 2024)





### **RL** summary

- Normative framework for learning an optimal policy  $\pi^*$  in arbitrarily complex environments
  - Simplest setting is a 2-armed bandit problem, where Q-learning is equivalent to Rescorla-Wagner
- More complex settings require *credit* assignment and generalization • RL also provides a descriptive model of human learning
  - TD-learning prediction error tracks dopamine signals in the brain and widely used to study human behavior (more on this next week)







# 5 minute break


### **Model-free RL**









 Myopically selecting actions that have been associated with reward





Illustration. Skinner box as adapted for the pigeon.

### **Model-based RL**

- Goal-directed
- Computationally costly
- $P(s', r \mid s, a)$
- Planning and seeking of long term outcomes



formance of rats. Univ. Calif. Publ. Psychol., 1928, 4, p. 20.)

Duarte et al,. (2020)





34



### model-based







### model-based







### model-based











### model-based





### jumps to correct solution







## What is model-based RL?

- An internal representation of the environment
- Ingredients:
  - Transition matrix T(s' | s, a)
  - Reward function R(s, a)
  - State space  $s \in S$
  - Action space  $a \in \mathcal{A}$
- How is it learned? (find out next week!)







### **Transition Matrix**

|                | $S_1$ | $S_2$ | $S_3$ |
|----------------|-------|-------|-------|
| S <sub>1</sub> | 0.5   | 0.1   | 0.7   |
| S <sub>2</sub> | 0.3   | 0.5   | 0.2   |
| S <sub>3</sub> | 0.2   | 0.4   | 0.1   |





36

## What is model-based RL?

- An internal representation of the environment
- Ingredients:
  - Transition matrix T(s' | s, a)
  - Reward function R(s, a)
  - State space  $s \in S$
  - Action space  $a \in \mathcal{A}$
- How is it learned? (find out next week!)





|  | Transition | Μ |
|--|------------|---|
|--|------------|---|

|                | $S_1$ | $S_2$ | $S_3$ |
|----------------|-------|-------|-------|
| S <sub>1</sub> | 0.5   | 0.1   | 0.7   |
| S <sub>2</sub> | 0.3   | 0.5   | 0.2   |
| S <sub>3</sub> | 0.2   | 0.4   | 0.1   |



### atrix



36

- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- 1st step choices have common (70%) and rare (30%) transitions to different sets of 2nd step options
- 2nd step options have different P(reward)

Daw et al., (2011)

**1st Step** 





- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- 1st step choices have common (70%) and rare (30%) transitions to different sets of 2nd step options
- 2nd step options have different P(reward)
- Model-free predictions depend solely on reward



Daw et al., (2011)

**1st Step** 





- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- 1st step choices have common (70%) and rare (30%) transitions to different sets of 2nd step options
- 2nd step options have different P(reward)
- Model-free predictions depend solely on reward
- Model-based RL predicts different responses depending on common vs. rare



Daw et al., (2011)







- Two-stage decision-making task used to distinguish model-free vs. model-based learning
- 1st step choices have common (70%) and rare (30%) transitions to different sets of 2nd step options
- 2nd step options have different P(reward)
- Model-free predictions depend solely on reward
- Model-based RL predicts lacksquaredifferent responses depending on common vs. rare
- Data suggests a mixture of both



Daw et al., (2011)

 $\sim$  .



# Two-step task (revisited)

- More recent work suggests a different interpretation of that classic result from Daw et al,. (2011)
- Abstract vs. story condition to manipulate how easily it is to understand the nature of transitions
- Story condition was almost perfectly aligned with model-based predictions





Feher de Silva et al., (NHB 2023)



Previous outcome

Previous outcome









Wu, Veléz, & Cushman (2022)



• Law of Exercise: Repeat actions performed in the past by learning a cached policy (independent of reward)

Wu, Veléz, & Cushman (2022)





- Law of Exercise: Repeat actions performed in the past lacksquareby learning a cached policy (independent of reward)
- Law of Effect: Choose actions on the basis of what  $\bullet$ worked in the past by forming cached value





- Law of Exercise: Repeat actions performed in the past by learning a cached policy (independent of reward)
- Law of Effect: Choose actions on the basis of what worked in the past by forming cached value
  - **Model-free RL**





- Law of Exercise: Repeat actions performed in the past by learning a cached policy (independent of reward)
- Law of Effect: Choose actions on the basis of what  $\bullet$ worked in the past by forming cached value
  - **Model-free RL**
- Model-based planning: Select actions expected to produced the best outcomes based on our model of the world





- Law of Exercise: Repeat actions performed in the past by learning a cached policy (independent of reward)
- Law of Effect: Choose actions on the basis of what  $\bullet$ worked in the past by forming cached value
  - **Model-free RL**
- Model-based planning: Select actions expected to produced the best outcomes based on our model of the world
  - Model-based RL lacksquare





- Law of Exercise: Repeat actions performed in the past by learning a cached policy (independent of reward)
- Law of Effect: Choose actions on the basis of what  $\bullet$ worked in the past by forming cached value
  - **Model-free RL**
- Model-based planning: Select actions expected to produced the best outcomes based on our model of the world
  - **Model-based RL**

Different pathways not always in competition, but can inform one another! Model-based planning builds **better habits!** 







### Model-free vs. Model-based summary

- Computationally cheap to use model-free learning
  - Maps onto habits and S-R learning
- Costly but potentially more impactful to use model-based learning
  - Maps onto goal-directed and S-S learning
- Model-based learning can help train model-free value functions and policies
- and used in humans (find out next week!)

Still open questions about how model-based representations are learned



### Further study Sutton & Barto book (free PDF link)

R code notebooks for using RL models (with a focus on social learning) https://cosmos-konstanz.github.io/materials/

Python tutorial from Neuromatch academy https://compneuro.neuromatch.io/tutorials/W3D4 ReinforcementLearning/ student/W3D4 Intro.html



