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Quiz results

® Average grade 81%
® [f you did well, please keep up the good work!

® [f you wish you had done better, use this as a leamning experience and
remember that 1 pop quiz is a freebie (best 3 out of 4)

® [f yvou Mmissed the quiz but had a documented absence (email to me + 1A
24Nnrs in advance), then we can work something out for further
documented absences

® Uiz questions may reappear on the exam
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The story so far ...



Thorndike’s (1898) Law of Effect
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Thorndike’s (1898) Law of Effect
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Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk

Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning




Cognitive maps in biological brains

Place cells in the hippocampus Grid cells in the medial entorhinal cortex

Moser et al., (Ann Rev Neuro 2008)



“Hippocampal zoo”

Place cell

Border cell

Head Direction Cell Reward cell Boundary Vector Cell

reward
A4

120° 60°

P .

240° 300°
(Taube et al. 1990) (Gauthier & Tank 2018) (Lever et al 2009)

180°

Splitter cell Place cell

Behrens et al., (Neuron 2018)
Whittington et al,. (Nat Neuro 2022)




Agenda for today: From Tolman to Reinforcement Learning

* Part 1: Introduce RL framework, origins, and terminology (Sutton &
Barto)

e Part 2: Model-free vs. model-based RL

10



Reinforcement
Learning

An Introduction
cond edition

Reinforcement
Learning
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Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Reinforcement
Learning

i d S. Sution and Sindrew G Barto

Reinforcement
Learning
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Pavlovian (classical)

conditioning
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Learn which environmental cues predict reward

Neuro-

Reinforcement \\
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/

Reinforcement
Learning Learn WhICh actions predict reward

|

dynamic programing

Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems
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Reinforcement Learning

Sutton and Barto (2018 [1998])
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Sutton and Barto (2018 [1998])
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Sutton and Barto (2018 [1998])

Reinforcement Learning
The Agent:

« Selects actions a,
| >
* Recelves feedback from the
environment in terms of new states

s,.1 and rewards R(a,, $,) State
5

The Environment;
| | I E
 Governs the transition between S

Action

» Provides rewards R(a,, s,)

_..‘f?."|_.-‘f-':'f-‘l_.-f::'_~'.‘"| Lol
S0 K. e
e 19



Environment

actions

states

reward
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actions \ \
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Markov Decision Process (MDP) reward @ .

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)
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actions . .
Environment states @ @ .

R
Markov Decision Process (MDP) reward @

 Markov Principle: simplifying assumption that the system is fully defined by
only the previous state P(s,, | s, a,)

What are states?
* | ocations on a grid, pixels on a screen, feature values etc

(U
Agelent 1 2 3 4 5 N eaten
\_ , ,
\T.". Num Ghosts
. _ ’ . ' 4 Sue's x, y
_ location
2 ,
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’ i _ location
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- P
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Agent

 Represent Past Experiences

 Implement a Policy that Maximizes Reward
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 Implement a Policy that Maximizes Reward
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Agent

N\

 Represent Past Experiences

0
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» How good is a state? V(s,)
» How good is a state-action pair? Q(s,, a,)

» How good is a trajectory © = (s, g, S1, Ay - --

 Implement a Policy that Maximizes Reward

» 1 defines how to act, where z(a | s) is the
probability of selecting action a in state s

« sample actions from the policy a, ~ 7
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Normative vs. Descriptive

=L as a normative ramework;

® HOw Should a rational agent
Oehave when learning from the
environment’?

® \/Vhich learning mechanisms
and which policies lead to
petter outcomes'?

1L as a descriptive framework:

® How does an agent update

neliets and select actions when
eaming from the environment?

® \/\/hich learning mechanisms

and which policies p

ovige

petter descriptions o

" behavior
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Simplest RL problem & simplest RL model
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2-Armed Bandit Problem
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2-Armed Bandit Problem
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2-Armed Bandit Problem

Single state problem

AWB



Q-Learning (Watkins, 1989)

Value learning
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Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
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reward reward
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Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]
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» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs



Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]

) < a) + [r — a ]
Q@ = Q@ L1l = Q@] g o 1 4
I I t=1| O 0 A | 5| 5

learning rate Observed Predicted
reward reward 0| 4= 5 5 | 10| 10
—
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Reward prediction error (RPE)
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The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs
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Q-Learning (Watkins, 1989)

Value learning
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Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]

Policy temperature

P(a) exp(Qt(a)%) -

Softmax policy

< 1.00- T

@)
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0.50 -
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Q 0.25- 0.5

S

L - 1
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exp(Q(a)/7)

Y exp(Q,(a)/7)



Q-Learning (Watkins, 1989)

0,41(@) < Ofa)+ 1 |r—0[a)]

Policy temperature

Exercise 2: Sample actions from policy

n=.9
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Moving back to the general RL problem

Bandit problem

AWB

General RL

Examples

choosing restaurants, buying a
phone, funding research, A/B
testing of advertisements, ....

robot bartender, playing
games, self-driving car,
chatbots, etc...

Value representations Q(a) O(a,s) or V(s)
Policy n(a) n(a)s)
Planning? Not needed Important!

Long-term Value?

V(a) = Q(a)
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Challenge 1: Credit assignment

® How do we assign credit to actions that are responsible for future reward”?
(Minsky, 1961)
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Difference between V(s) and Q(s,a)

o V(s) defines how good is the state

® Actions become implicit under policy 7

e (J(s,a) defines how good it is 1o take
action a in state s

® Actions are made explicit

e \\'e will use V(s) and Q(s, a) somewhat
iNnterchangeably, depending on what the
situation calls for

® IS OK 1O

and

guest

Ororn

Ne somewnat confusec

Sse not to ask any "go

at times,
cha”

ONS

ourposefully trying to t

Nto contusing the two

CcK you

Delta-rule update with TD error
V(s) < V(s) +n (r+yV(s") — V(s))

0(s.a) < Q(s.a) + nlr +y max Q(s',a") — Q(s.a)]
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reward 0 = ]
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State transitions
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Optimal policies via Bellman Equations

Memorizing these equations not neccessary for exam

* This recursive formulation of the value function is known as the Bellman equation
Vi(s)= ) m(als) ) P(s'|s,a)[R(s’,a) + yV(s))]
a s’

 This allows us to break the optimization problem into series of simpler sub-problems
 if each sub-problem is solved optimally, the overall problem will also be optimal
* Note that there is no longer any reward prediction error updating
 Rather, we want to describe a theoretically optimal solution:

* We first define an optimal value function by assuming value-maximizing actions:
Vi(s) = arg max Z P(s’|s, a) [R(s, a) + yV*(s’)]
A
S/

* We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

7. = arg max V.(s)
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Optimal policies via Bellman Equations

Memorizing these equations not neccessary for exam

* This recursive formulation of the value function is known as the Bellman equation
Vi(s)= ) m(als) ) P(s'|s,a)[R(s’,a) + yV(s))]
a s’

 This allows us to break the optimization problem into series of simpler sub-problems
 if each sub-problem is solved optimally, the overall problem will also be optimal
* Note that there is no longer any reward prediction error updating
 Rather, we want to describe a theoretically optimal solution:

* We first define an optimal value function by assuming value-maximizing actions:
Vi(s) = arg max Z P(s’|s, a) [R(s, a) + yV*(s’)]
A
S/

* We then (theoretically) arrive at an optimal policy by selecting actions that maximize value:

7. = arg max V.(s)

d * In practice, optimal solutions are usually unobtainable
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Tabular methods

 Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed

as solutions for RL problems by
Minsky (1961)

* Think of a giant lookup table, where
we store a value representation for
each combination of state+action

* Value iteration and policy iteration
are examples of tabular methods

» Caveat: solutions require repeat visits
to each state, which iIs infeasible In
most real-world problems

Action

State

28



Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached.

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max 2 P(s’|s,a)|R(s,a) + yV,(s")]

aceA

/

\)

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V). converges on V. as k — o0, and perhaps sooner, but with
many costly sweeps through the state space
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Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached. ’
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1. Initialize the value function as V,_q(s) = O for all states
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V) converges on V.. as k = o0, and perhaps sooner, but with
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Value iteration

lteratively visit all states and update the value function until a
“*good enough” solution has been reached.

Pieter Abbeel

3

1. Initialize the value function as V,_q(s) = O for all states

2.Forkin(1,2,....)update all s in &
Vi, 1(s) = max Z P(s’|s,a)|R(s,a) +yV,(s")]

aceA

/

until max | Vi(s) = V,_(s) | < 6 Bellman residual
SES

V) converges on V.. as k = o0, and perhaps sooner, but with
many costly sweeps through the state space VALUES AFTER 1000 ITERATIONS
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Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7 (typically a random policy), and then iterate for all s € & in each step
 Policy Evaluation

Vo) = Ey [RG5 )+ 7V )]

» Policy Improvement U V

T, | = arg max Z P(s’| s, a) lR(S, a) + yVﬂkl

evaluation

T—greedy( V)

Improvement
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Policy iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7 (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = Ey [RG5 )+ 7V )]

» Policy Improvement U V

T, | = arg max Z P(s’| s, a) lR(S, a) + yVﬂkl

evaluation

T—greedy( V)

Improvement

Policy iteration can converge faster than value iteration, but still requires visiting all
states multiple times and lacks convergence guarantees

30



Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?



Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?

Game states Atoms In observable
Universe

2.1 x 10170

o o
4 274 $ ‘ 15a $
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Challenge 2: Generalization in large action space

 What do you do when the number of states and actions are too large to visit?

* Function approximation: learn a function mapping states/actions to value, and
generalize via interpolation/extrapolation

Game states Atoms In observable Function Approximation (Weeks 5 & 10)
Universe .
Vy(s) = f(s,0)
2.1 x 10170 1080 ’ 4
V(8
o f o e Observation — Exp. Reward

-
4 23 BN

— Hypothesis Uncertainty

Value

State

Silver et al., (Nature 2016) Wu et al., (AnnRevPsych 2024)
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RL summary

® Normative framework for leaming an optimal zﬁwraw
nvironment <
: S1+1

>
> Agent

State Reward

policy ™ in arbitrarily complex environments

® Simplest sett
equivalent to

Ng is a 2-armed bandit problem, where Q-leaming is
—Rescorla-Vagner

® |\lore complex settings require credit assignment and generalization

® | also provides a descriptive model of human leaming

° |

D-learmning prec

Ct

widely used 1o s

UG

ON error trac
vV human e

KS dopamine signals in the prain and

navior (more on this next week)

Action

a4,

32



5 minute break



Model-free RL

® Hapit
® Cheap

* OJ(s,a)

® \lyopically selecting actions
that have been assocliated
WIth rewaro

Model-based RL

® (Soal-directed
® Computationally costly
o P(s',r|s,a)

® Planning and seeking of long term
OUtlCcomes

Monte carlo tree search

Selection » Expansion » Simulation » Backup
) )
I , ) ‘T 7/ \,/ C’ O
= SN TN R T« B R o G o
: : : 4 7 — \ o / /
— ] 3 /@ Sy & s & %
T 7 e "
Selecled state ) ; ) , ’ y ol
R N 8 S O o o
T i | *
e =eobComraie \ by
o [ Tree Policy | \ Rellout Policy ¥
TART ,‘;’sw Expanced state 1 i :
Plan of mam ‘ ‘
11 Unit T Alley WMo
Fio )
(From Fliatt, The ¢ of chasge of reward od the maze pers
formance o v, Teiif. Piychol, 1928_ 4, p. 20,)

Duarte et al,. (2020) 34
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image credit Alyssa Dayan (from Dolan & Dayan, 2013)
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What is model-based RL?

® An intemal representation of the
environment

® |hgredients:

e Transiton matrix 7(s’| s, a)

- MDP it -
e Reward function R(s, a) ~ Transition Matrix
® State space s € & N o S
0/'; 0.7 \\\ 51 0.5 0.1 0.7
e Action space a € L R, . - [22:.3 04 31}]
® How is it learned? (find out next week!) -

36



What is model-based RL?

® An intemal representation of the
environment

® |hgredients:

e Transiton matrix 7(s’| s, a)

e Reward function R(s, a)
e Statespace s € &

e Action space a € A
® How IS It learmed”? (find out next week!)

Transition Matrix

S$1 S §3

Sy 0.5 0.1 0.7
S5 0.3 0.5 0.2
S3 0.2 0.4 0.1

36



Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

e 2nd step options have different P(reward)

Daw et al., (2011)

1st Step

2nd Step
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Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options

e 2nd step options have different P(reward)

* Model-free predictions depend A Model-free
‘ B common

solely on reward
M rare

075lI

rewarded unrewarded

stay probabnlnty

Daw et al., (2011)
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Daw et al., (2011)

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

2nd Step

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options - E]

e 2nd step options have different P(reward)

* Model-free predictions depend A Model-free B model-based
solely on reward | B common
- M rare
« Model-based RL predicts ;
different responses depending  £°7
ONn COmmMonN Vs. rare - l l . . I l . l

rewarded unrewarded rewarded unrewarded
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Daw et al., (2011)

Two-step task

 Two-stage decision-making task used to distinguish
model-free vs. model-based learning

* 1st step choices have common (70%) and rare (30%)
transitions to different sets of 2nd step options - E]

2nd Step

e 2nd step options have different P(reward)

 Model-free predictions depend
solely on reward

 Model-based RL predicts
different responses depending
on common Vvs. rare

 Data suggests a mixture of both

A Model-free B model-based C data
1
B common
B rare
=
3
P
9 075l l I l I .
Q.
T~
@
rewarded unrewarded rewarded unrewarded rewarded unrewarded



Feher de Silva et al., (NHB 2023)

Two-step task (revisited)

_ Abstract Story
 More recent work suggests a different . ' b

interpretation of that classic result © K8
from Daw et al,. (2011)

* Abstract vs. story condition to
manipulate how easily it is to
understand the nature of transitions

Story condition was almost perfectly 2
aligned with model-based predictions ¥

] p
“ 1 Previous transition

BN Common

B Rare
0 . I : 3

Rewarded = Unrewar Rewarded Unrewarded

o
®

o
op)
O’

A Model-free B model-based
1

Stay probability
Stay probability

o
FS

B common

rewarded  unrewarded rewarded  unrewarded

o
N

stay probabuhty

Previous outcome Previous outcome
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Th ree Wu, Veléz, & Cushman (2022)
-Pathways for Learning

 Law of Exercise: Repeat actions performed in the past

by learning a cached policy (independent of reward) Mode

 Law of Effect: Choose actions on the basis of what Planning
worked in the past by forming cached value

Cached Value

- . Value-based Habit
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Th ree Wu, Veléz, & Cushman (2022)
-Pathways for Learning

 Law of Exercise: Repeat actions performed in the past

by learning a cached policy (independent of reward) Mode

 Law of Effect: Choose actions on the basis of what Planning
worked in the past by forming cached value

Cached Value

Value-based Habit

 Model-based planning: Select actions expected to e

produced the best outcomes based on our model of Solicy
the world ®
Action
o Value-free Habit\-v -
Different pathways not always in competition, but can ' Outcome |
Inform one another! Model-based planning builds
better habits!

Decision-Making



Model-free vs. Model-based summary

o Computationally cheap to use model-free learning

® \aps onto habits and S-R leaming
® (Costly but potentially more impactful to use model-based learning
® \aps onto goal-directed and S-S leaming

® |\lodel-based learning can help train model-free value functions and
policies

® Still open questions about how model-based representations are leamed
and used In humans (find out next week!)
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Learning

Further St”dy Reinforcement \\.\\

Sutton & Barto book  (free PDE link) N

= code notelbooks for using RL models (with a focus on social leaming)

https.//cosmos-konstanz. github.io/materials/

Cvthon tutorial from Neuromatch academy

https://compneuro.neuromatch.io/tutorials/\'V3D4 Reinforcementl earning/

student/\VW3

D4 Intro.ntm

41


http://incompleteideas.net/book/RLbook2020.pdf
https://cosmos-konstanz.github.io/materials
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html
https://compneuro.neuromatch.io/tutorials/W3D4_ReinforcementLearning/student/W3D4_Intro.html
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