General Principles of
Human and Machine
Learning

Lecture 3: Symbolic Al and Cognitive Maps

Dr. Charley Wu
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Clarification from last week’s tutorial

® Rescorla Wagner updates: VWeights are only updated when the stimuli Is
poresent
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® Rescorla Wagner updates: VWeights are only updated when the stimuli Is
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Lecture Plan

SYMBOLIC Al
Symbolic Al
e \\hat happened during the Al winter”? Knowledge Inference
—> base engine
® |ntelligence as manipulating symmools through BLIBEET Answer

ules and logical operations
® | caming as search

Cognitive Maps

e Fom Stimulus-Response leaming to Stimulus- ; ;__—1
Stimulus leaming B M'J
e (Constructing a mental representation of the I
| T
environment L -,"F“’ﬂ.--“""
o e
® Neurological evidence for cognitive maps in the . 1 cmonn
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Timeline of Al

Networks wo
evel of popularity

Sut what happened ir
was more popular t
why was there a 2nd Al winter’?
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Symbolic Al

e Physical Symbol System hypothesis.
A physical symbaol system has the necessary and sufficient means for
general intelligent action - Allen Newell and Herbert Simon (19/76)”

® Symbols can represent things in the world

® c.g., (Apple), (ChatG

® Relations can be I) predicates tha
describing how symiols interact wi

e ) red(Apple), unreliable(ChatG
e ) eat(Charley, Apple), generatelP
® By populat

USe a prog
® (5eneral

CT), (Charley), ete. ..

- describes a symbol or i) veros

ng a knowledge base Wi

am 1o find new propositior

N other symbols

2 1), Instructor(Charley)

cture(ChatGPT, Apple)

th symbols and relations, we can
S (Inference)

Croblem Solver (Simon, Shaw, & Newell, 1957)

® xpert systems: popularized in the 1980s as the future of Al

Herbert Simon
& Allen Newell

— @ Charley

@ (ChatGPT)\
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Expert Systems

® [he first truly successtul forms of Al, widely applied in medicine,
finance, and education

I

! : Knowledge

User ' : from an
Y - Expert

® xpert knowledge is codified in the form of facts and logical rules
Dy a kKnowledge engineer

® fAthen Forward chaining
® [ Socrates is a man, then Socrates is mortal

: . , , . Fact 1
® [Nis forms the basis of an inference engine, which can apply
Fact 2 I/'

known rules/facts to generates new facts (adding to the

knowledge ase) and resolve rule conflicts Pl
® Two modes for solving problems agte

not on the exam

® Forward chaining: \WVhat happens next”

Backward chainin
® Apply rules and facts to arrve at logical conclusions about J

Fact 1
outcomes
Fact 2

e Backwards chaining: \V\hy did it happen”

Decision 4

e Starting from a desired outcome, figure out the set of Fact 3
antecedents that can aid in arriving at that outcome Fact 4

Decision 2




Strengths and Limitations

I

: Knowledge
' from an
Expert

Strengths
Knowledge Is explicit rather than implicit (e.9., neural networks), allowing for interpretabillity
Applying rules can be very fast and solutions were generated In real-time

|
|
® Rules offer rapid generalization, with a single instance
® [ecisions are interpretable by following logic

e No hallucinations!

Limitations

® Cannot leam by itself!

® Reqguire knowledge engineers to codity rules, with high maintenance and development
COStS

® | mited generalization to new situations, where existing rules don't apply exactly
® [i-[hen statements cannot capture all relationships without massive scaling problems



Symbolic vs. sub-symbolic Al

apple apple
/ \ i
origin structure kind O'_S-O' Y 7 012
/ PN \ | - ol 75 e
apple tree body stem S ‘ ’ ) ) )
shape/siz/e \} taste 1'11. 3.212;18 4-32 0.85/ 131~ ' .3.45
/ l [\ \ s _ el
round hand red green apple ) ) ) ) )
Symbolic Al Sub-symbolic Al
® Symbals, rules, and structured representations ® Representations encoded through connection weights
* 'Language of thought' (LoT) hypothesis (Fodor, 1975); e No explicit representation of concepts or knowledge,

concepts/knowledge represented by a la

e Compositionality: symbols and rules can
oroduce new representations

nguage-like system

ne combined to

out distrio
—fficiency:

uted throughout the network

<Knowledge can be implicitly learmed by

. ] | capturing statistical pa
® xtracting symbolic representations and search over

compositional hypothesis spaces is difficult

termns
® |nterpretation of representations and behavior is difficult

10



Symbolic vs. sub-symbolic Al

4 apple
origin structure kind .
- / SN N
e apple tree body stem fruit
= N
% shape size color taste
/ I [\ \
-Iq_)' round hand red green apple
. -
O
-
-|q—-) apple
R 050/ S 012
™ | 0.22 0.7'2-_‘ -
111/ 3217 | a3 0.89,7;1 24

\ 345

Efficiency
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Neurosymbolic Al

® Neurosymbolic Al ams to combine symbolic and
subsymbolic approaches to get the best of both worlds

® \odem Al assistants (e.q., Sir, Google, Alexa) are
essentially expert systems with ANN voice recognition
and text-to-speech

Input
(perceiving
the world)

Human question
(natural language
question)

kind

Knowledge
base

Symbolic
query

111, /

apple
050 = {:'_‘:-: 0.12
/622 07N

0 Q

\432 039 134

o' ®0 ®

Inference
engine

\345

Answer

12



/ aP’ple \ apple
p— structure Kind 050“012
/ PN \ ' R N T
Neurosymbolic Al o ORI D
u y round hand  red green \apple .
® Neurosymbolic Al ams to combine symbolic and
subsymbolic approaches to get the best of both worlds Input 7%
' o (perceiving Knowledge
e Modemn Al assistants (e.g., Sirl, Google, Alexa) are the world) base
essentially expert systems with ANN voice recognition S _
and J[@XJ[-J[O-SDGGCh engine
Human question .
(natural language P S Symbolic
question) PRGN query

Question: Are there an equal number of large
things and metal spheres?

Current challenges:

® [eaming the knowledge base through data Program: equal_number(count(filter_size(S

cene, Large)),

count(filter_material(filter_shape(Scene,
Sphere), Metal)))

® Relating messy real-world data to neat (and
imited) symbols/relations in a knowledge base

Yiet al., (2018) Answer: Yes 12
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How can symbolic knowledge be learned from data?

One-shot generalization Parsing into parts and

l relations

L ‘.

ﬁ Generalization from
% related concepts
u ﬂh

——"

dy o0 &
v N\

&

Lake et Sc:ence

Program Induction

the process of inferring rules or instructions Data <
that generate an observed pattern of data

Primitives

DUl I =—0¢ -
/Dl\b AN /\b
Do o
\5,/ OO L
L —_—
o X N J N /1/
resaing 3| 4 s D swwornm [)

Program &

o5 — s

13



How can symbolic knowledge be learned from data?

One-shot generalization

L

ﬂ.h
Ko 0

Lake et aI (Science 2015)

Parsing into parts and
relations

Generalization from
related concepts

N7

&

Program Induction

the process of inferring rules or instructions Data <
that generate an observed pattern of data

Primitives

ARAY | - — O 9 -
/Dl\b /l\Q /\b
Q_> | >
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L L,
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How can symbolic knowledge be learned from data?

One-shot generalization

Lake et al., (Science 2015)

Parsing into parts and
relations

Generalization from
related concepts

dy o0 &
v N\

&

Program Induction

the process of inferring rules or instructions Data <
that generate an observed pattern of data

Primitives

”, _>D b _!_ > 8
N/ NS l
3 UL |, O
N NV
Werpriute realony W2 atachod et

P(n|D) x P(D | n)P(x)

Program &

o5 — s

procedure GENERATE T YPE

Ko Pilk) - Sample number of parts
fori=1 .. ndo

ng ¢ Pl i) > Sample number of sub-parts

fo J= 1...1n do

si; — Plsgls:;-1,) = Sample sub-part sequence
r

R;« P(R; $1,....5;_1) - Sample relation
end for
i {w, R, S}
return @GENERATETOKEN(«:) = Return program

13



How can symbolic knowledge be learned from data?

One-shot generalization

0@’

‘
.ﬁ"

Parsing into parts and

relations

Generalization from
related concepts

do 2 &

9 N

&

Regexes

Phone numbers

(555) 867-5309

'.
Lake et al., (Science 201 5)
List Processing Text Editing
Sum List Abbreviate
(1 23] =+ 6 Allen Newell -+ A.N.
(4 6 8 1]~ 17 Herb Simon -+ H.S.
Double Drop Last Three
(1 2 3] —+[2 4 6] shrdlu —» shr
(4 51) - [8 10 2) shakey -+ sha

Check Evens

(02 3) +[TTF)
(2 9 6] (T F T)

Extract

ab (c) »c
a (bee) see —» see

(650) 555-2368
Currency
$100.25

$4.50

Dates

Y1775/0704
Y¥2000/0101

Program Induction

the process of inferring rules or instructions Data <
that generate an observed pattern of data

Primitives .
:)453 ']v} v_>—* 43 j, ﬁL}
N/ N/ Voo ,
' <)
NV N Y N
i i ﬁ -l
LOGO Graphics Block Towers Symbolic Regression

O i

5 !

/ \

P(n|D) x P(D | n)P(x)

Program 7«

89 — s

procedure GENERATETYPE
K Pir) - Sample number of parts
fori=1.. rxdo
ng ¢ Plng i) > Sample number of sub-parts
for j=1_..n;do
$i;  Plsgls;,-1y) » Sample sub-part sequence
end for |
B « PIR‘ Sy S ' [ Sample relation
end for
e — {h_?.. R S}
return @GENERATETOKEN(x>) = Return program

Recursive Physical Laws
Programming

1 -
| ) a Y a ¢ —p -
Filter Red 0 — — I‘j
(WEEER] — ®n m
(MEEEEN] > (EEEN I
(1111 ‘-
[ ] - | . F_. (1] q)
Length | |;1
‘HEER - 4
1 111 | B
‘WER —» 3

)

‘Runm - (j{:}%'

Dreamcoder (Ellis et al., 2020) 'S



How can symbolic knowledge be learned from data?

One-shot generalization
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List Processing Text Editing

Sum List Abbreviate

(1 23] =+ 6 Allen Newell -+ A.N.
(4 6 8 1]~ 17 Herb Simon -+ H.S.
Double Drop Last Three
(1 2 3] —+[2 4 6] shrdlu —» shr

(4 51) - [8 10 2) shakey -+ sha

Check Evens

(02 3) +[TTF)
(2 9 6] (T F T)

‘
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V)

Extract

ab (c) »c
a (bee) see —» see

Parsing into parts and
relations

Generalization from
related concepts

do 2 &

N7

&

Regexes

Phone numbers

(555) 867-5309
(650) 555-2368
Currency
$100.25

$4.50

Dates

Y1775/0704
Y¥2000/0101

Program Induction

the process of inferring rules or instructions Data <
that generate an observed pattern of data

P(n|D) x P(D | n)P(x)

Primitives

relation:
attached along

7N

.0
\|/ ! l‘

relation:
attached at start
—>

relatlon
attached along

1|
L

N

LOGO Graphics

O

5 !

/ \

=

Block Towers

Symbolic Regression

Program 7«

89 — s

procedure GENERATETYPE
K Pir) - Sample number of parts
fori=1.. rxdo
ng ¢ Plng i) > Sample number of sub-parts
for j=1_..n;do
$i;  Plsgls;,-1y) » Sample sub-part sequence
end for |
B « PIR‘ Sy S ' [ Sample relation
end for
e — {h_?.. R S}
return @GENERATETOKEN(x>) = Return program

Recursive Physical Laws
Programming

1 -
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Filter Red 0 — — I‘j
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not on the exam

m Wake
Wa ke-S I eep AI g 0 rlth I I I Objective: For each task = in X, find best program p, solving = under current library L
Library L
| | filx) =(+ x 1) »|  Neurally guided search
® |n8p|red by Hlntom e't a| | </| 996) falz) =(fold cons Proposg programs p in Best program p, for .task T
(cons z nil)) Recognition decreasing order under Q(-|x) (map f; (fold f; nil x))

solve the current task using a 72 ams P lplz, L] x P zlp| P [olL|

4 3 2])—+([3 4 §)

e Wake: find the best program to o Mé% [ "’"“”‘T oo thot s
, » = oose o, al maximizZes:

recognition model (neural network)
arg max P(@ ‘ ]T) Sleep: Abstraction
T

Objective: Grow library L to compress
programs found during waking

Sleep: Dreaming

Objective: Train recognition model Q(p|z)
to predict best programs p, for typical
tasks = and current library L

e Sleep: Update P(7)

program for task 1 program for task 2 Fantasies Replays

® Abstraction: Grow library to fino (ous S0 1DV e (e =) ) L draw 1. recal
more compressible programs /\1 a,/\ Tb’igf;? é é ZZTE;IM
e Dreaming: Train recognition l | o outpit o v v |
model by sampling programs i Refactoring i S
that solved previous experienced B "; 5' , Tm;.,\..z . 5_{ —
tasks (replays) and by sampling New library L j' "~\ '
tasks that can be solved by i K\t( o | S = ’%
programs in the current liorary e o Gradient step in parametes of Q
(fantasies) PIUTLex , 2285 o, PEIPIPAE] | e comurped | R

In score

Dreamcoder (Ellis et al., 2020)
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not on the exam

Wake-Sleep Algorithm

® [nspired by Hinton et al., (1995)

® Wake: find the best program to
solve the current task using a
recognition model (neural network)

arg max P(< | )

e Sleep: Update P(7)

® Abstraction: Grow library to find
more compressible programs

® Dreaming. Irain recognition
model by sampling programs
that solved previous experienceo
tasks (replays) and by sampling
tasks that can be solved by
orograms In the current liorary
(fantasies)

P(n|9D) x P(D | n)P(r)

Wake
Objective: For each task x in X, find best program p, solving = under current library L

Library L
filx) =(+ x 1)

falz) =(fold cons

Neurally guided search
Propose programs p in
decreasing order under Q(-|x)
until timeout

3 ]

Best program p. for task =
(map f), (fold f; nil x))

{cons z nil)) Recognition

Task = Choose p, that maximizes:
(7 2 3[4 3 8) Plplz, L| xx P|z|p| P |p|L]|
(3 8] =[5 4]

4 3 2]-(3 4 5)

Sleep: Abstraction

Sleep: Dreaming

Objective: Grow library L to compress

, : Objective: Train recognition model Q(p|z)
programs found during waking

to predict best programs p, for typical
tasks = and current library L

program for task 1
(cons (+ 1 1))

program for task 2

Fantasies Replays

(+ (ca‘z; z) 1) 1. draw 1. recall
CO!{\ programs é tasks z
+ A\1 p from solved in
+ 1 1 car z . ) library L waking
. K 2. set task = 2. set program
l \ N to output of p to retrieved
. \ ’ executing p solution p,.
Refactoring \ L
Propose new library routines from \ | \ /
subtrees of refactorings of programs X X I 2 o
L J Train network on z,p pairs
New library L ' i ‘
w/ routine "' Task ’% > Program
Expand L w/ /\(" x 1) "/ I 2
the routine that N T
maximizes: ) Repeat Train Gradient step in parameters of Q
PILI[l,ex  max  P|[z|p|P|p|L] until no until to maximize log Q(p|x)
=% pe refactorings of p, increase converged
In score

Dreamcoder (Ellis et al., 2020)

14
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e Can program induction inform us about how people represent the
World? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)
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Learning as Search

® A Dig part of what makes symbolic Al difficult is search

® Representing relations between all possible sympols creates a compinatoria
explosion

® [here are (typically) no gradients for symbolic representations
® | caming can thus e understood as a search problem

® ~iNding which rules/programs capture data

® iNding wnich hypotheses to test

e One of the major contributions of symbolic Al research was developing search
algortnms

o A~
e |\ontecarlo Tree Search



A* Heuristic Search

® One of the most popular methods for path-finding and search over
graphs (Hart et al., 1968)

e Expand the path by choosing candidate node n € that minimizes
cost function f(n) = g(n) + h(n)

® Keep the current path short: g(n) is the cost of the path so far
fromthe startto n

® (Costs can also represent complexity (1.e., the number of
symbolic operations)
e \ove towards the goal: h(n) is a heuristic that estimates the

cost of the cheapest remaining path from n to the goal (often
Fuclidean distance)

® [he heuristic avoids calculating the actual remaining cost to the
goal, which Is very costly

® \\ore efficient than backwards induction, but intractable tor any
iNteresting program induction problems

Start

h(n)

Goal

18



A* Heuristic Search

® One of the most popular methods for path-finding and search over
graphs (Hart et al., 1968)

e Expand the path by choosing candidate node n € that minimizes
cost function f(n) = g(n) + h(n)

® Keep the current path short: g(n) is the cost of the path so far
fromthe startto n

® (Costs can also represent complexity (1.e., the number of
symbolic operations)
e \ove towards the goal: h(n) is a heuristic that estimates the

cost of the cheapest remaining path from n to the goal (often
Fuclidean distance)

® [he heuristic avoids calculating the actual remaining cost to the
goal, which Is very costly

® \\ore efficient than backwards induction, but intractable tor any
iNteresting program induction problems

Start

h(n)

Goal

18



A* Heuristic Search

® One of the most popular methods for path-finding and search over
graphs (Hart et al., 1968)

e Expand the path by choosing candidate node n £ that minimizes
cost function f(n) = g(n) + h(n)

® Keep the current path short: g(n) is the cost of the path so far
fromthe startto n
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symbolic operations)
e \ove towards the goal: h(n) is a heuristic that estimates the

cost of the cheapest remaining path from n to the goal (often
Fuclidean distance)

® [he heuristic avoids calculating the actual remaining cost to the
goal, which Is very costly

® \\ore efficient than backwards induction, but intractable tor any
iNteresting program induction problems

Goal

Start

h(n)

Heuristic: a problem-solving strategy or method that is not
guaranteed to find the optimal solution, but is designed to
find a satisfactory solution in a reasonable amount of time
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Goal
A* Heuristic Search

® One of the most popular methods for path-finding and search over
graphs (Hart et al., 1968)

e Expand the path by choosing candidate node n £ that minimizes
cost function f(n) = g(n) + h(n)

® Keep the current path short: g(n) is the cost of the path so far
fromthe startto n

® (Costs can also represent complexity (1.e., the number of b
symbolic operations)
e \ove towards the goal: h(n) is a heuristic that estimates the Start -
cost of the cheapest remaining path from n to the goal (often
Fuclidean distance) h(n)
® [he heuristic avoids calculating the actual remaining cost to the
goal, which is very costly qUaranteed to find the optimal soluton. but s designed to.

= . . . find a satisfactory solution | bl tof ti
e \ore efficient than backwards induction, but intractable for any ind a satistactory solltion In a reasonable amount ot time

- - | - Backwards induction: determining a sequence of optimal
nteresting program nduction problems choices by reasoning from the endpoint of a problem back to

the beginning |°



Monte Carlo Tree Search

N AlphaGo (Silver et
=L

® A key mechanism
al., 20106) and other modem
algorthms

® Select nodes for expansion (often
Using a heuristic based on reward +
iNformation gain)

e Expand node and perform
simulations

e Backpropogate the value of the child
to the parent node

® [Nis allows us to save a heuristic
value for the parent node based on
orevious simulations over the children

Repeated X times

Selection

The selection function 1s
applied recursively until
a leaf node 1s reached

3 Expansion

Onc or morc nodcs
are created

> Stmulation

— Backpropagation

</ " One simulated
\\> gamc is playcd

The resull of this game 1s
backpropagated in the tree

C
a c d

Selection Expansion Evaluation Backup
a0 + u(f N 7 \
£2NES R T A < L #
Q + u'l’}/‘a* A /

(B om0 (B R )18
) ) *
. 7 i
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MOnte CarIO Tree SearCh Selection 4 Expansion ¥ Sitmulation — Backpropagation

e A key mechanism in AlphaGo (Silver et

al.,, 2016) and other modem RL
algorthms

® Select nodes for expansion (often
Using a heuristic based on reward +
iNformation gain)

e Expand node and perform
simulations

e Backpropogate the value of the child

to the parent node

® [Nis allows us to save a heuristic
value for the parent node based o
orevious simulations over the chilc

Repeated X times
SEEONNS o O D
I / \ N / \‘\ /./
O g O O O g Q O O O
VAN VAN
(C’]’; O g ®
» . )
The]t%eclle\,tmt? funlctlontl.f Onc or morc nodcs </ One simulated The resull of this game 1s
a]; Pl;Z ¢ ;zzzlis;::ai;:g dl are created \\> gamc 1s playcd backpropagated in the tree
a b c d
Selection Expansion Evaluation Backup
Ra -+ + R4
,‘\ Q + u(P) \
o o
3 [&7 ee o7 e 91 oo Rl
B ml’)/‘a- d 29 Q- 4/ 4
~ OO rO® H
2 e(B7) 18 () B |
/N 3
oy M l
e Q0 - ;—-.j—!
(#93) s$? Pt )|\ 288
A Information gain: The amount of information gained by an

‘on observation (i.e., expanding a node). Often approximated using
count-based methods:

T info gain o | fewer visits
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Symbolic Al: Summary

e Symbols and relational rules are a powertul tool for describing the world

e Capture rapid generalization and allow for compositional construction of new
representations

e xplicit formulation of relationships in the world that mirror our own Language of
[hought and provides interpretable predictions

e Learning is difficult ana rules can sometimes e 100 rgio

e Compositional hypothesis space leads to a combinatorial explosion of possible
SYmMoliC representations, where search can e very costly

® | camning Is often framed as a search problem, where heuristic solutions provide a
valuable aio

® Neurosymbolic Al might offer the best of both worlds by combining the fast leaming
of subsymbolic Al (i.e., neural networks) with the powerful apstractions of symbolic Al

20



5 MiNute break



Cognitive Maps

Tolman (1948) Moser et al., (2008)



The story so far ...



Thorndike’s (1911) Law of Effect




Thorndike’s (1911) Law of Effect

24



Thorndike’s (1911) Law of Effect
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Thorndike’s (1911) Law of Effect

1
1

“Uzzle Box [Ime to escape

Actions associlated with satisfaction are
strengthened, while those associated
with discomfort become weakened.

3888 8

Time to Escape (seconds)
=
(-

1111111111

4 8 12 16 20 24 28 32 36 40

Trials
24



Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk

Edward Tolman (1886 - 1959)

Raised by an adament Quaker mother
Studied at MIT, Harvard, and Giessen

Inspired by Gestalt psychologists like Kurt Koffka and Kurt
Lewin

Coined “Purposive Behaviorism”

 Behavior needs to be studied in the context of the purpose
or goals of behavior

In contrast to other behaviorists at the time, Tolman believed
In latent learning and the need to talk about hidden mental
states in how we make decisions

Lewin, Tolman, & Hull




Tolman and Cognitive maps

e | earning is not just a telephone switchboard connecting incoming sensory
signals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning

27



Tolman (1948): Different interpretations

“All students agree as to the facts. They disagree, however on theory and explanation’

* S-R school: learning consists of strenthening/weakening of S-R connections (like a telephone exchange)
e subgroup a) more frequent responses are strengthened (Law of Exercise)
e subgroup b) more rewarded responses are strengthened (Law of Effect)

S-S school: in the course of learning, “a field map of the environment gets established”
 Sampling of stimuli is not passive, but active and selective during learning w.r.t. to a goal or purpose

o Stimuli are not just routed to associations, but used to construct some new map-like representation
that captures the relational structure of the environment

 The nature of these map-like representations (strip-like vs. broad) have consequences for
generalization

J

28
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Experiments — (=

=

1. Latent Learning

2. Vicarious trial and error

3. Searching for the stimulus

4. Hypotheses

5. Spatial orientation
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Experiments

1. Latent Learning

2. Vicarious trial and error

5. Spatial orientation
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Latent Learning

* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end

 Group 2 [Late food] No food in the maze for
days 1-6, then food provided at the end on day 7

Group |
w— v Group I

o

 Group 3 [Early food] ... food added on day 3

N
o

e |earning curves dropped dramatically when food
was added

~
(=)

.-
.
(5]

* This suggests latent learning prior to reward

=

* “They had been building up a ‘map’”

(lower is better)

o
tn

* Once the reward was added, they could use the
map rather than starting from scratch

Error Score
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Latent Learning e | e——(

* Blodgett (1929) Maze navigation task
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* Replicates with more complex

Latent Learning

environment (Tolman & Honzik, 1930)

 Always reward better than no reward

 Adding reward later produces the

same dramatic drop In error

=
i

.__.M
L
e o R o
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i inecas

Sd -t

. Fj ! +

J....000R
-}- . CURTAIN
H
FOOD BOX

Tolman & Honzik (1930)

Average errors X constant (3)
4 6 8 10 12 14 16 13 20 22 M 23 N N

2

No reward

HNR

Always reward

" Reward added
\—_\NNM

12 13 14 15 @ 17 e 9 20 !
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Latent Learning

* Replicates with more complex
environment (Tolman & Honzik, 1930)

 Always reward better than no reward

 Adding reward later produces the
same dramatic drop In error

0 2 M 2 X N

No reward

1%

\

!

i,

i1 il
Bl

T
Average errors X constant (3)

8 W 12

Always reward

°| Spence & Lipitt (1946)

 Y-maze with separate food “ +
water @ rewards

 Rats exposed to maze while satiated
(ho hunger + no thirst)

* One group reintroduced when
hungry goes left towards

e e )
_};m T fewarc added o Another group reintroduced when
s oo | TR e e e e e thirsty goes right towards é

Tolman & Honzik (1930)
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Vicarious Trial and Error (VTE)

* Animal put on jumping stand, facing two doors (| vs. r) with different
visual properties (e.g., horizontal vs. vertical stripes)

e One door is correct, the other incorrect
* location is randomly swapped but visual features are predictive

 |f the animal jumps towards the correct door, it opens and reveals
food on a platform behind... and if incorrect ....

* Tolman (1939) added landing platforms infront of the doors

 When the choice was easy (black vs. white stimuli), the animals
learned quicker and did more VTEIng than for hard problems

» After learning had been established, VTEs went down

» Better learners also did more VTEIng (Geier, LEvin & Tolman, 1941)

Muenzinger (1938)

32
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Vicarious Trial and Error (VTE)

* Animal put on jumping stand, facing two doors (| vs. r) with different
visual properties (e.g., horizontal vs. vertical stripes)

e One door is correct, the other incorrect
* location is randomly swapped but visual features are predictive

 |f the animal jumps towards the correct door, it opens and reveals
food on a platform behind... and if incorrect ....

* Tolman (1939) added landing platforms infront of the doors

 When the choice was easy (black vs. white stimuli), the animals
learned quicker and did more VTEIng than for hard problems

» After learning had been established, VTEs went down

» Better learners also did more VTEIng (Geier, LEvin & Tolman, 1941)

Vicarious trial and error (VTE): hesitating, looking-back-and-forth behavior observed in rats
when confronted with a choice

Muenzinger (1938)
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CORRECT RUNS

Vicarious Trial and Error (VTE)

* VTEs coincide with the start of learning, and fade away afterwards

* Not just passive association of stimuli, but active selecting and comparison of stimuli

Learning Curves
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CORRECT RUNS

Vicarious Trial and Error (VTE)

* VTEs coincide with the start of learning, and fade away afterwards

* Not just passive association of stimuli, but active selecting and comparison of stimuli
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Tolman, Ritchie, & Kalish (1946)

Spatial Orientation

® 3 trials of alley maze task, where H was a light shining from G-F
® Afterwards, rats transferred to sun-burst maze
o [nitially tried the C-D move, but found it blocked

® Retumned to circle and pretfered the radiating path in the same direction as the original food location
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Cognitive Maps shape generalization

* The nature of the maps we learn shape how we generalize

* “the narrower and more strip-like the original map, the less will it carry over successfully
to the new problem; whereas, the wider and the more comprehensive it was, the more
adequately it will serve in the new set-up”

 What conditions favor learning a narrow strip-map vs. a broad comprehensive map?

* narrow maps induced by :
1) damaged brains
2) impoverished environments
3) overdose of repetition

4) too strongly motivational/frustrating conditions
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Maladaptive psychopathologies

* Regression to childlike behavior

“take an example, the overprotected middle-aged woman |[...] who, after losing her husband, regressed |[...] into dressing

In too youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring continuous
care [...]”

 Fixation on various addictive behaviors

“If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original path is no
longer correct”

* Displacement of agression towards outgroups

* “The individual comes no longer to distinguish the true locus of the cause of his frustration”

* “The poor Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords”

* “the southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie,
[displace their frustration] onto a mere convenient outgroup

* [physicists vs. humanities, psychologists vs. all other depts., university vs. secondary school, americans vs. russiansj...

* “nothing more than such irrational displacements of our aggressions onto outgroups”
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What is the solution?

“We must, in short, subject our children and
ourselves ... to the optimal conditions of
moderate motivation and of an absence of
unnecessary frustrations.... | cannot predict
whether or not we will be able, or be allowed, to
do this; but | can say that, only insofar as we are
able and are allowed, have we cause for hope.
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Cognitive Maps in the Brain
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https://www.youtube.com/watch?v=lfNVv0A8QvI
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Grid cells in the provide a coordinate system
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“Hippocampal Zoo”
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“Hippocampal Zoo”
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Tools for navigation

 The represents spatial distance
between landmarks (Morgan et al., 2011) nand
between events (Nielson et al., 2015)

e The encodes the
direction of travel (Doeller et al., 2015)

* Participants moved in a VR environment

* When direction aligned with one of the 3

axes of their grid cells, we observe stronger
BOLD activation in the EC

* These angles are remarkably robust, and are
preserved (in the same environment) when
participants return to the scanner days or
weeks later
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Morgan et al., (JNeuro, 2011)
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Morgan et al., (JNeuro, 2011)
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Morgan et al., (JNeuro, 2011)
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Not just naive distance, but based on the structure of the environment
A = goal

® As In [olman's experiments, the
orain represents distance in the
environment based on the
transition structure

Machado et al. (/CLR 2018)

® ot just "as the crow tlies” but a
structure-informed distance metric

a Task b Searchlight within C Bilateral hippocampus d Pattern analysis across
hippocampus MDS hippocampus
@ B Within
O dr community
@ er O Between
/ \ : O O O é i community
i R ‘ | N
O S
\ O O c |
. ®) 3 -
: @ S
1 : ® o 1k
@9 -
N > Bilateral  Right Left
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Not just spatial, but also conceptual navigation

Abstract features Relational structure Social Hierarchies

144444 |4

"p 120 wso .:T‘ . Xx=-18
P+ 1ao Pt T
4 : N -
7.5 » "t" S ' “3
sSCore ! . 2 .
?40 P 300 w40 V234 et

Misaligni y==4 ERH ):r:_zg |
Constantinescu et al., (Nature 2016) Garvert et al., (eLife 2017) Park et al., (NatNeuro 2021)
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Do we always need a representation of the environment?

An ant, viewed as a behaving system, Herbert Simon

IS quite simple. [he apparent
complexity of its behavior over time IS
largely a reflection of the complexity of
the environment in which it finds itself. |
should like to explore this hypothesis
with the word "man” substituted for o ;

1t

ant.

Grandfather of Al
and proponent of
Bounded Rationality

J)

- Herbert Simon (1970)
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Cognitive Maps: Summary

® | camning Is more than just a telephone switchboard of Stimulus-Response (S-R) associations

e \\e learn a map-like representation of the environment, allowing us to rapidly generalize
and plan efficiently

® [olman refers to this as S-S learning
® Neural evidence tor a cognitive map in the brain
® Place cells in the Hippocampus encode location ana distances

e Grid cells in the Entorhinal Cortex provide a coordinate system and encode direction of
travel

® + awWhole zoo of other specialized cells In the hippocampal-entorninal system

e Cognitive maps are sensitive to transition structure and used in abstract, conceptual
contexts as well
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General principles

® Symbolic Al: Leaming as infering rules and man

® |n contrast to subsymbolic Al (1.e., neural netwo

oulating syr

glelels

ks), which

earn Py updating associating weights

® -Or symbolic Al, leaming corresponds to search over hypotheses, but current solutions are

® How do peop

e Cognitive maps: Leaming as inferring a re

e Not just S-R relationships but also S-S la

iNtractable/inefficl

ent In most interesting settings

ent leamning

® Do we always need a representation of the environment”

e manage to leam symbolic rules/programs efficiently”
oresentation of the structure of the environment

® Both lines of research capture mechanisms for learming structure

® Structure as the relationships between different symbolic concepts

® Structure as the
® |S there a common

relationship between stimull In the environment
pasis for both forms of leaming”? Or are they complementary systems”?



Next week: Introduction to Reinforcement Learning

state model-based model-free
©
-
Agent 3
> g =
-
Q
s
State Reward Action %
S, d; o
Q
X
(W]
O

Environment N
S YA Model-based and model-free decision

making in a cartoon of a maze invented by
Tolman and Honzik (1930)



