General Principles of Human and Machine Learning

Dr. Charley Wu

https://hmc-lab.com/GPHML.html

Lecture 3: Symbolic Al and Cognitive Maps

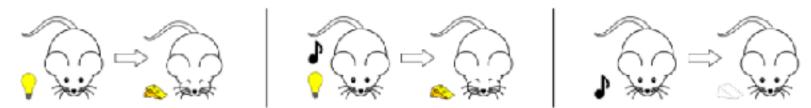
Clarification from last week's tutorial

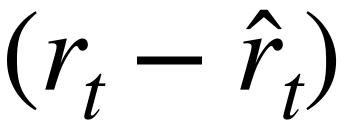
Rescorla Wagner updates: Weights are only updated when the stimuli is present

For *i* where $CS_i = 1$:

 $W_i \leftarrow W_i + \eta (r_t - \hat{r}_t)$

Blocking

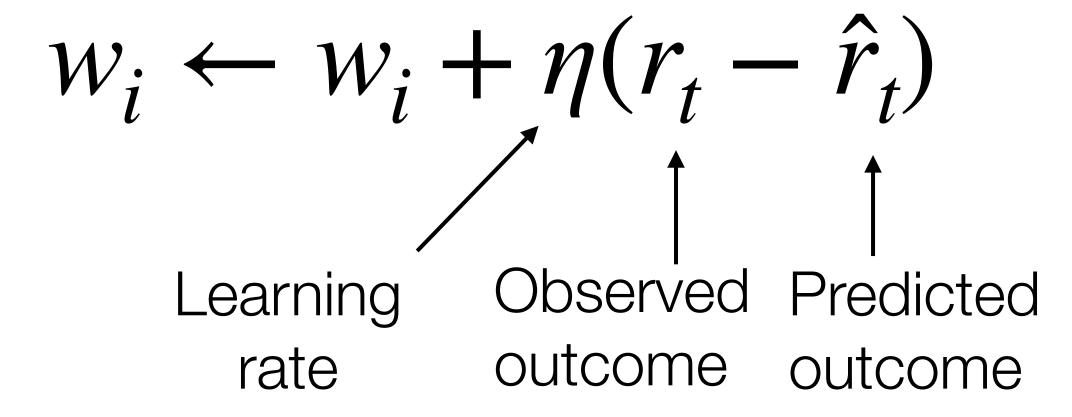




Clarification from last week's tutorial

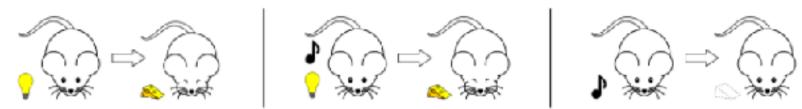
present

For *i* where $CS_i = 1$:



Rescord Wagner updates: Weights are only updated when the stimuli is

Blocking



Lecture Plan

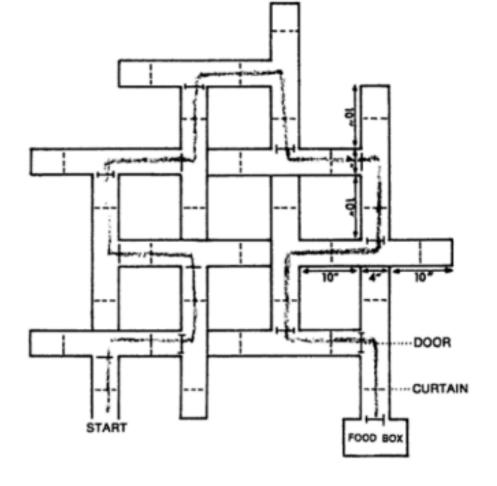
Symbolic Al

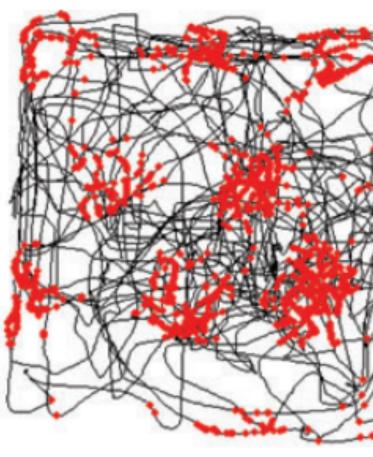
- What happened during the AI winter?
- Intelligence as manipulating symbols through rules and logical operations
- Learning as search

Cognitive Maps

- From Stimulus-Response learning to Stimulus-Stimulus learning
- Constructing a mental representation of the environment
- Neurological evidence for cognitive maps in the brain



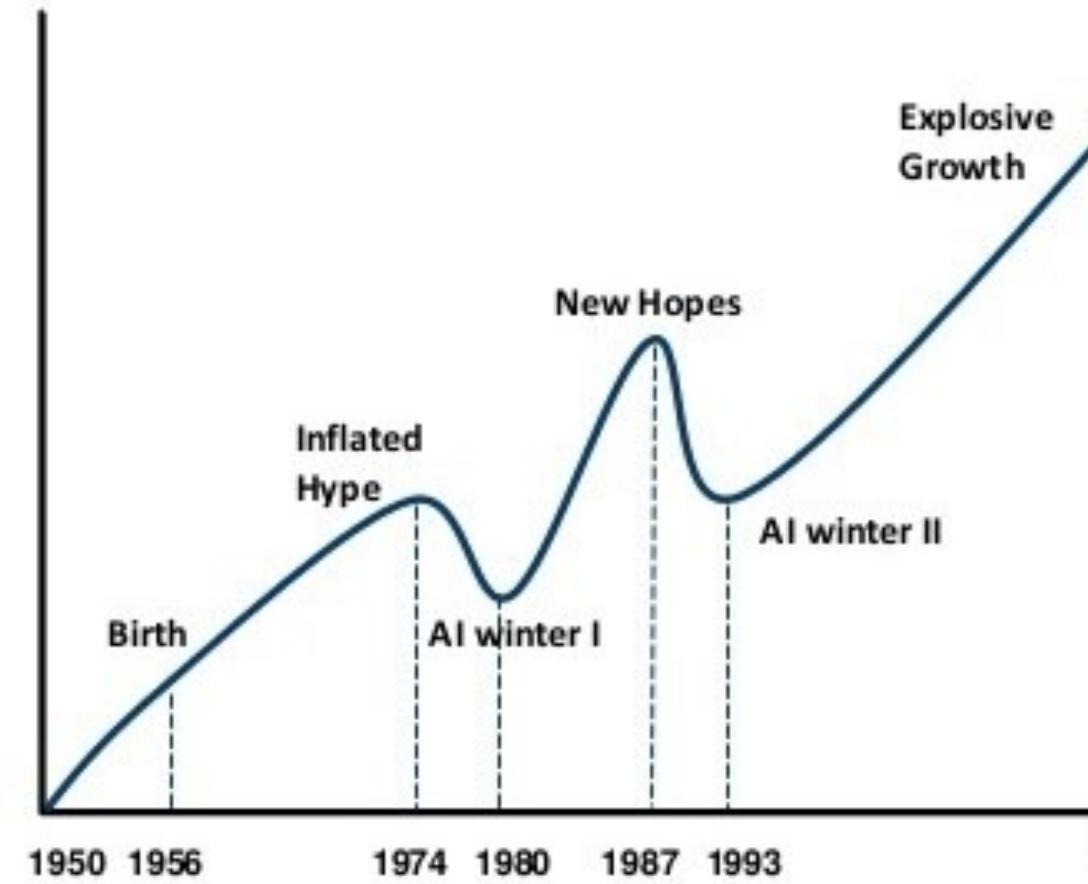




Popularity

Time

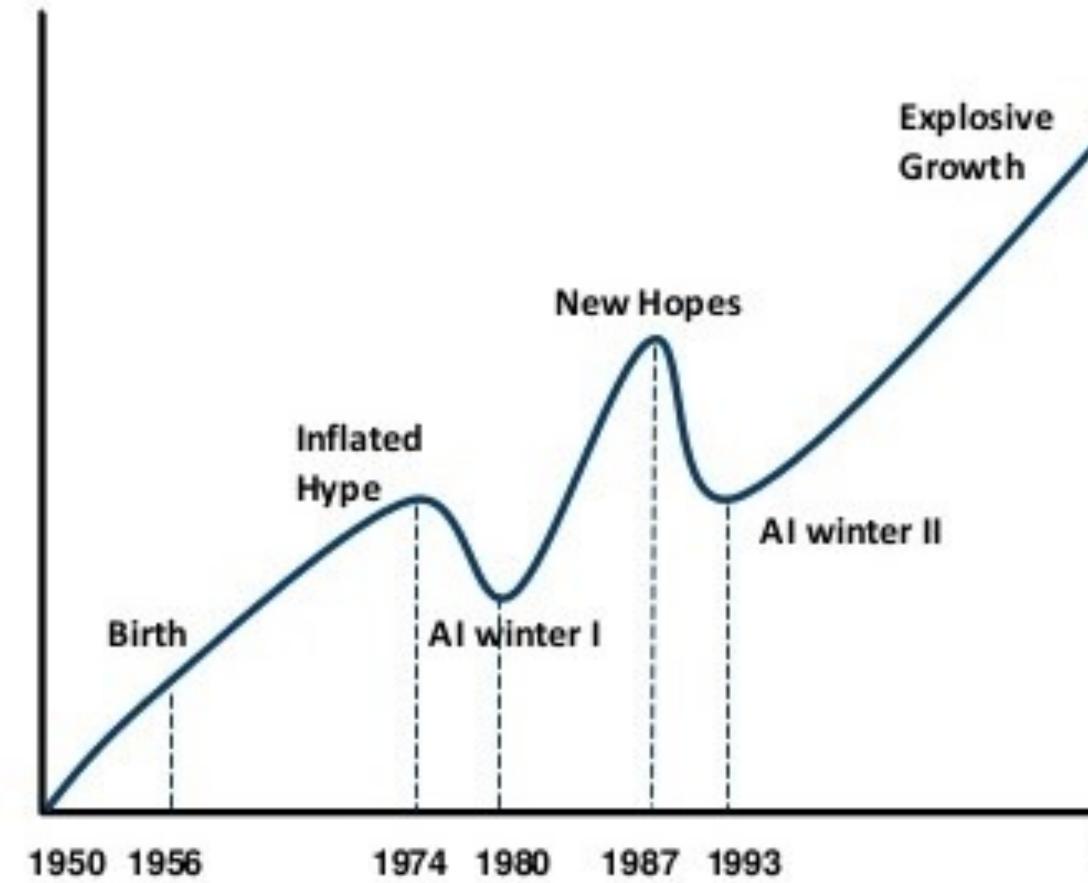
Popularity



AI has a long history of being "the next big thing"

Time

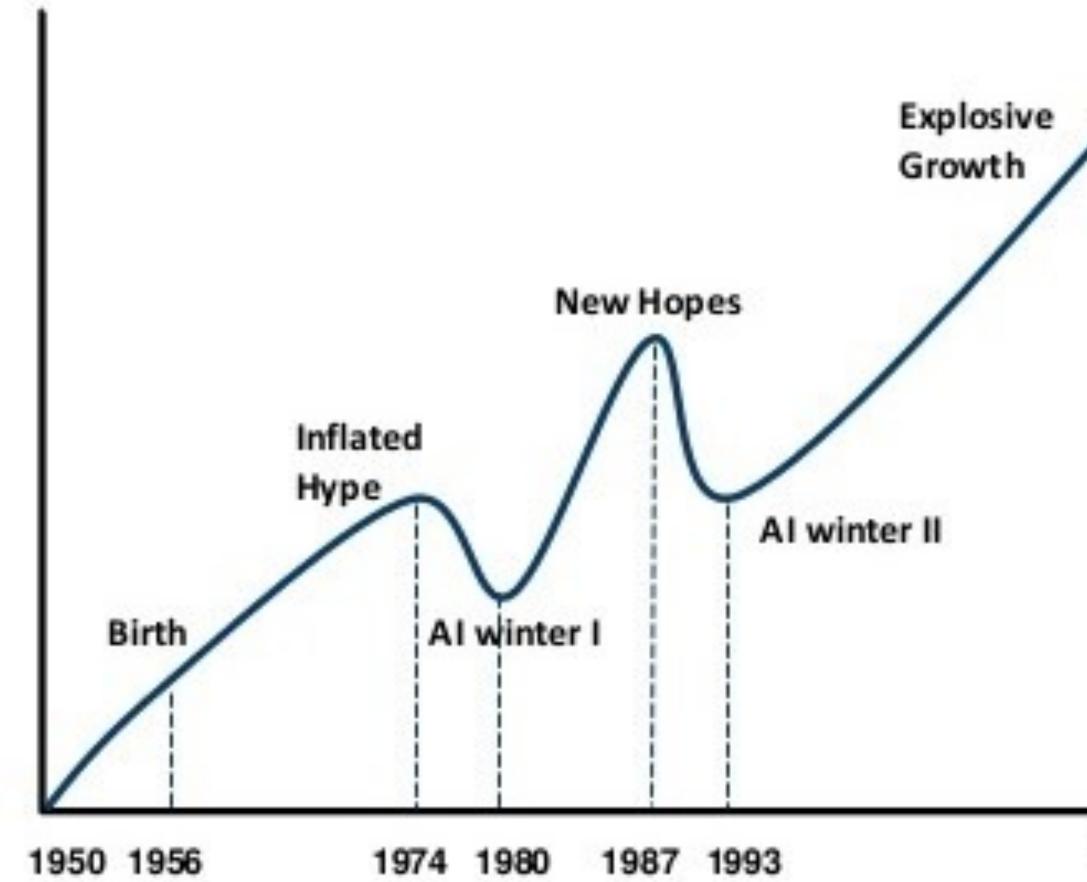
Popularity



- AI has a long history of being "the next big thing"
- Multiple periods of "boom" and "bust"... including not one but two AI winters

Time

Popularity

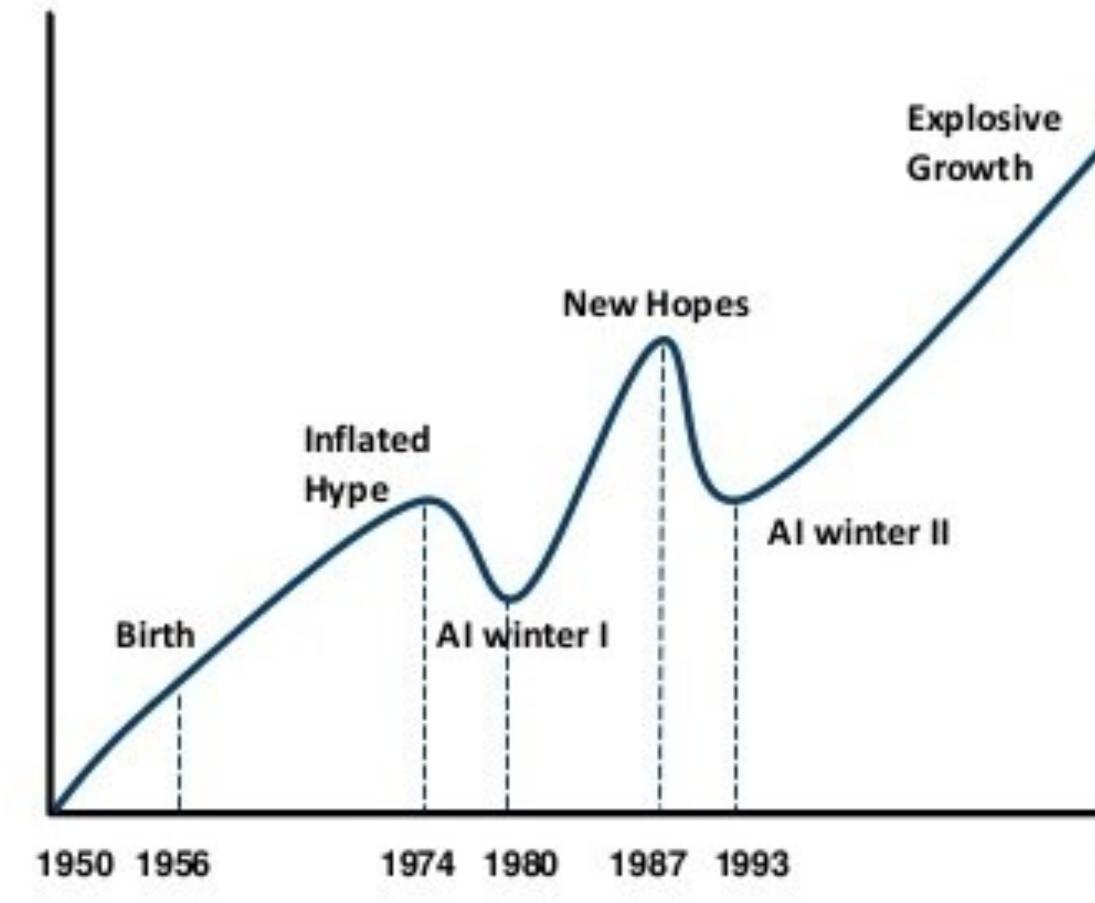


AI has a long history of being "the next big thing"

- Multiple periods of "boom" and "bust"... including not one but two AI winters
- ... so far

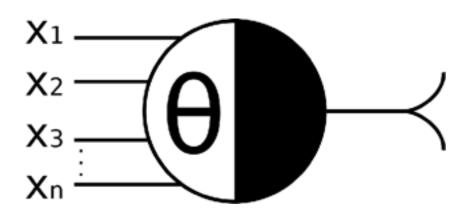
Time

Popularity



AI has a long history of being "the next big thing"

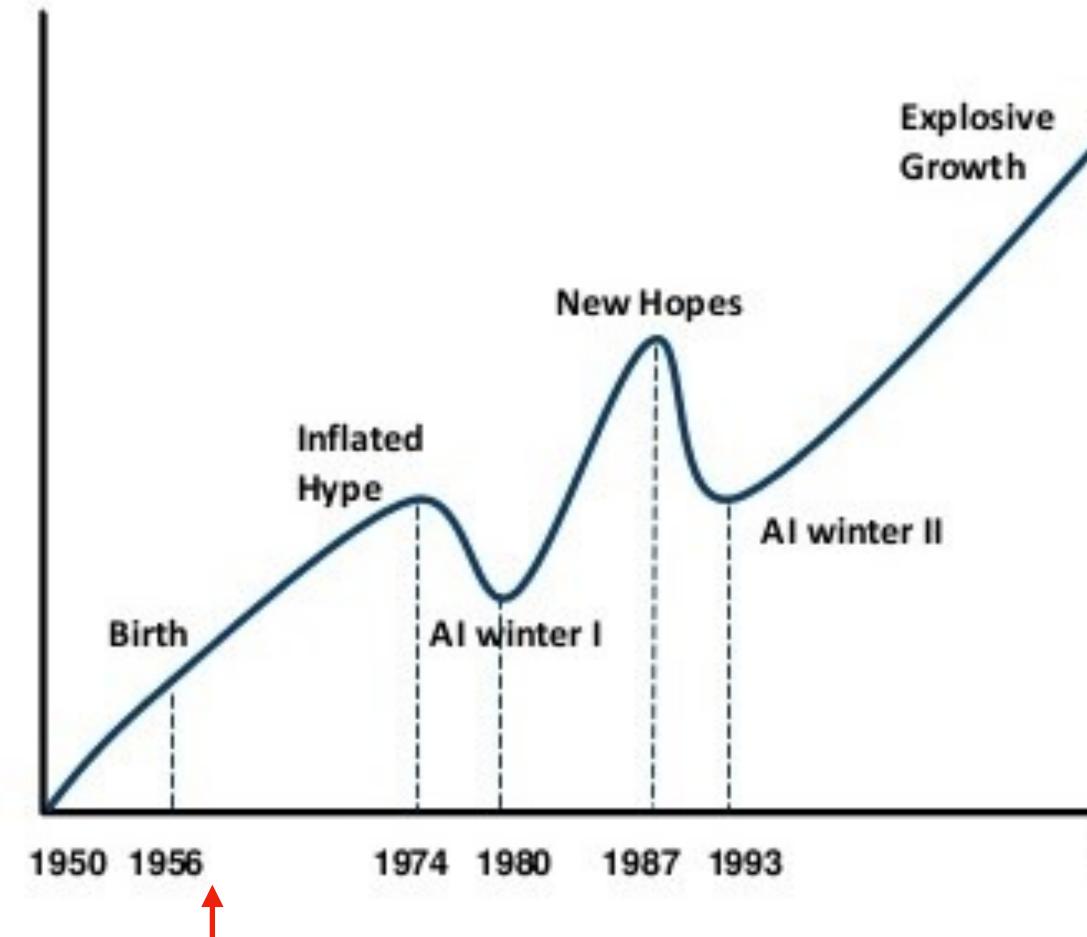
- Multiple periods of "boom" and "bust"... including not one but two AI winters
- ... so far



Time

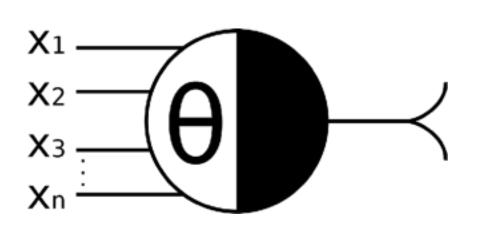
McCulloch & Pitts (1943) Perceptron

Popularity



AI has a long history of being "the next big thing"

- Multiple periods of "boom" and "bust"... including not one but two AI winters
- ... so far

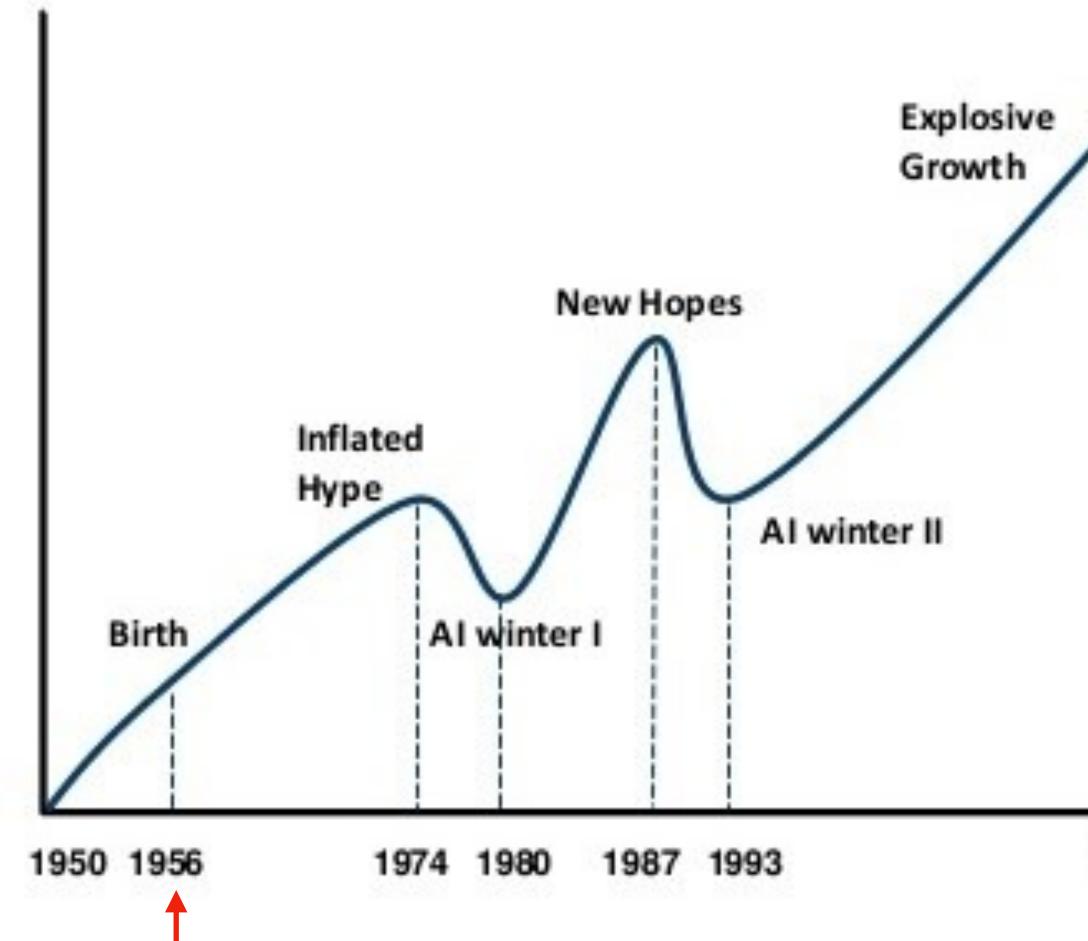


McCulloch & Pitts (1943) Perceptron

Rosenblatt (1958) Perceptron

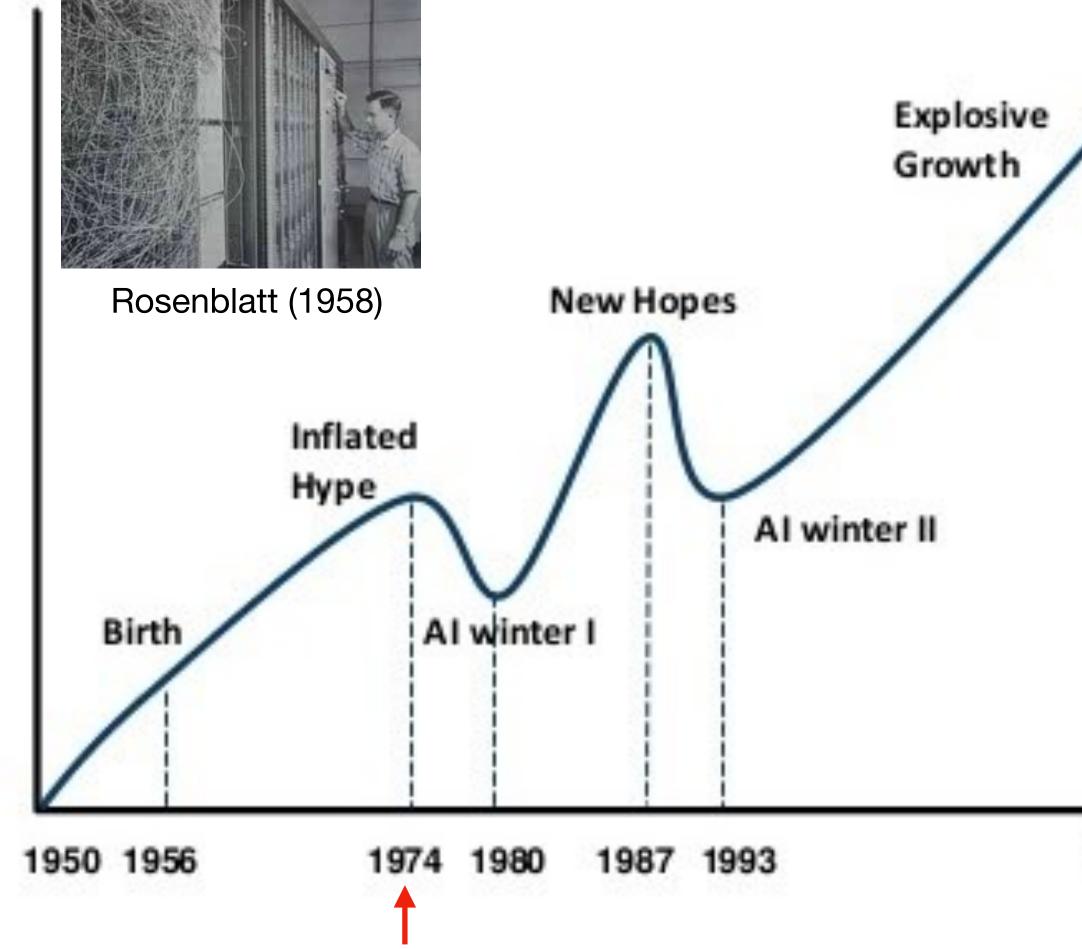
Time

Popularity



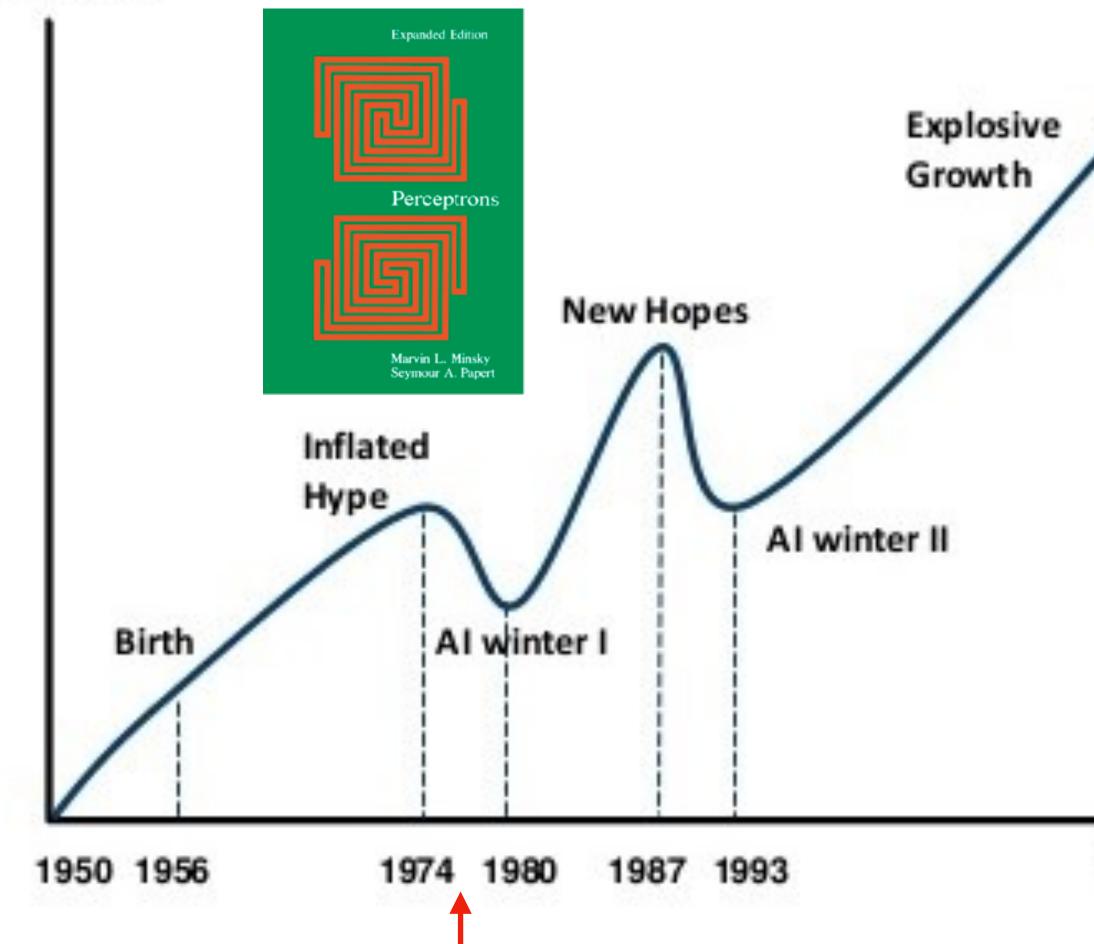
Time

Popularity



Time

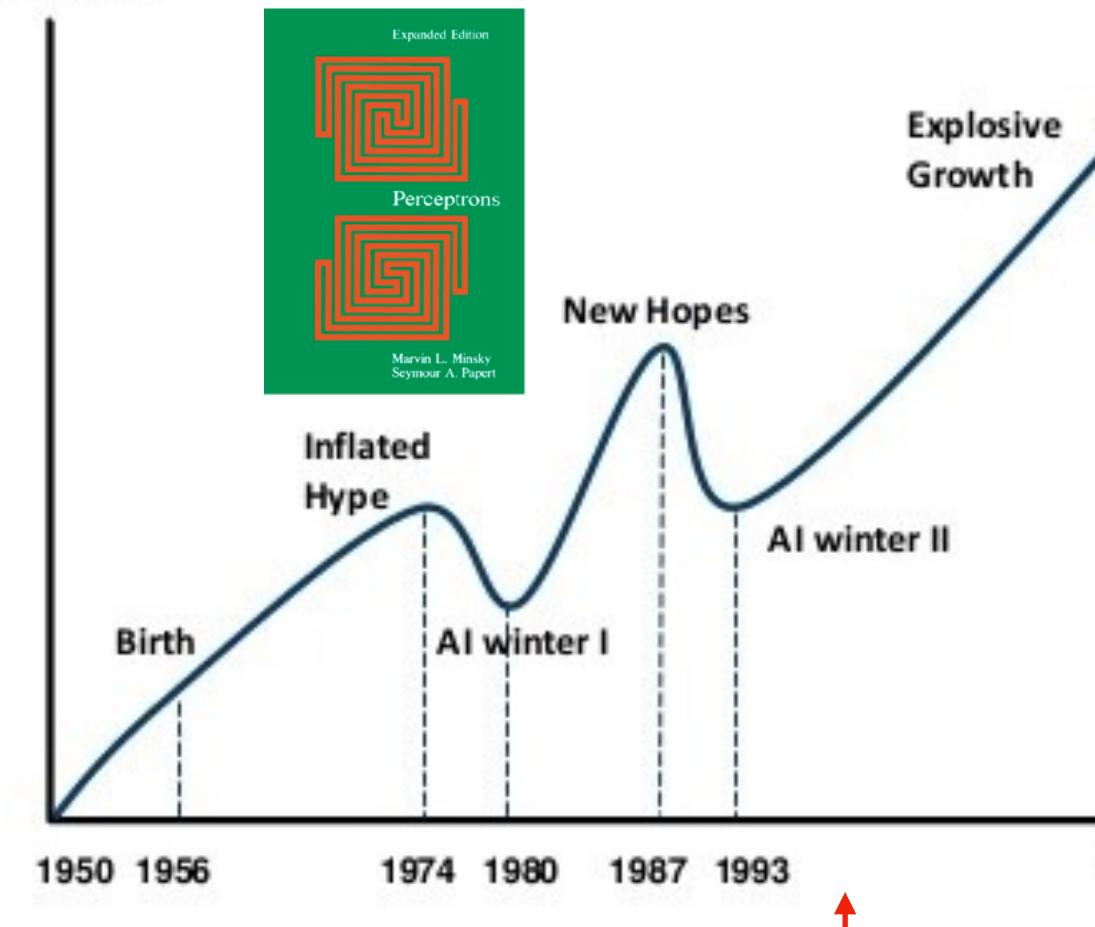
Popularity



 Skepticism about Perceptrons not being able to solve XOR problems led to the first AI winter

Time

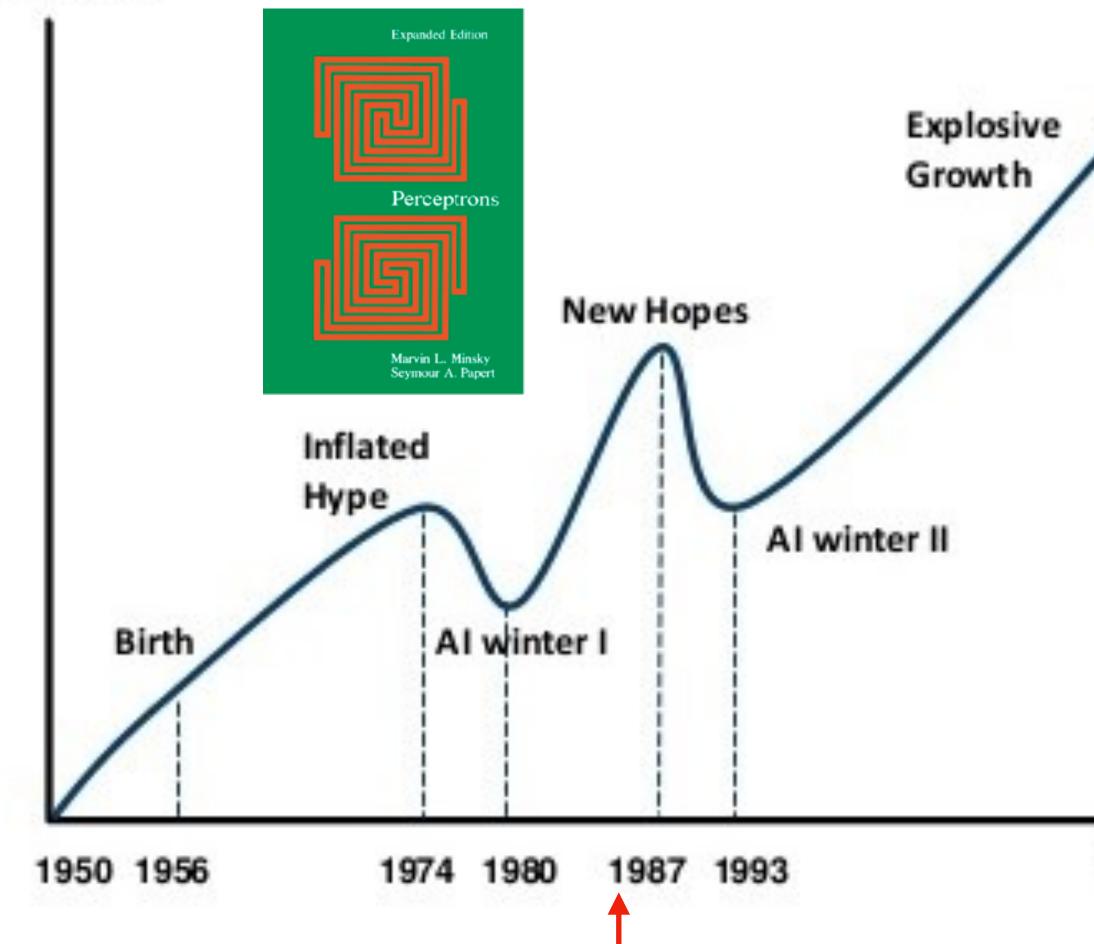
Popularity



- Skepticism about Perceptrons not being able to solve XOR problems led to the first AI winter
- It wouldn't be until the deep learning revolution (~2006) that artificial neural networks would experience the same level of popularity

Time

Popularity



- Skepticism about Perceptrons not being able to solve XOR problems led to the first AI winter
- It wouldn't be until the deep learning revolution (~2006) that artificial neural networks would experience the same level of popularity
- But what happened in the 1980s when AI was more popular than ever? And why was there a 2nd AI winter?

• Physical Symbol System hypothesis:

"A physical symbol system has the necessary and sufficient means for general intelligent action - Allen Newell and Herbert Simon (1976)"

• Physical Symbol System hypothesis:

"A physical symbol system has the necessary and sufficient means for general intelligent action - Allen Newell and Herbert Simon (1976)"

• **Symbols** can represent things in the world

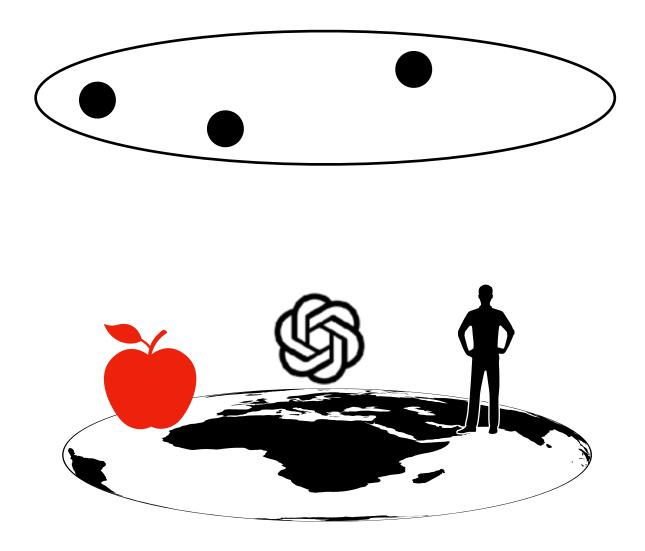
• e.g., (Apple), (ChatGPT), (Charley), etc...

• Physical Symbol System hypothesis:

"A physical symbol system has the necessary and sufficient means for general intelligent action - Allen Newell and Herbert Simon (1976)"

• **Symbols** can represent things in the world

• e.g., (Apple), (ChatGPT), (Charley), etc...

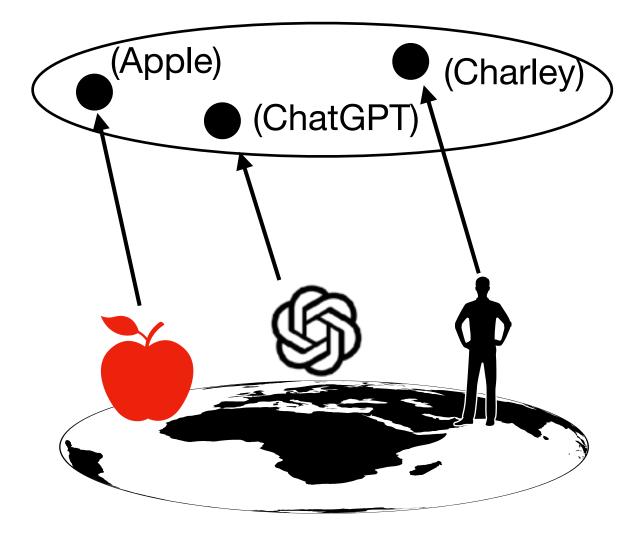


• Physical Symbol System hypothesis:

"A physical symbol system has the necessary and sufficient means for general intelligent action - Allen Newell and Herbert Simon (1976)"

• **Symbols** can represent things in the world

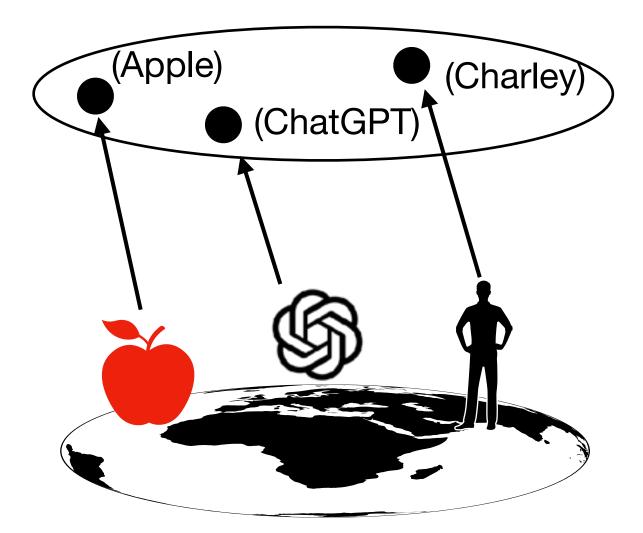
• e.g., (Apple), (ChatGPT), (Charley), etc...



• Physical Symbol System hypothesis:

- **Symbols** can represent things in the world
 - e.g., (Apple), (ChatGPT), (Charley), etc...
- **Relations** can be i) predicates that describes a symbol or ii) verbs describing how symbols interact with other symbols
 - i) red(Apple), unreliable(ChatGPT), instructor(Charley)
 - ii) eat(Charley, Apple), generatePicture(ChatGPT, Apple)

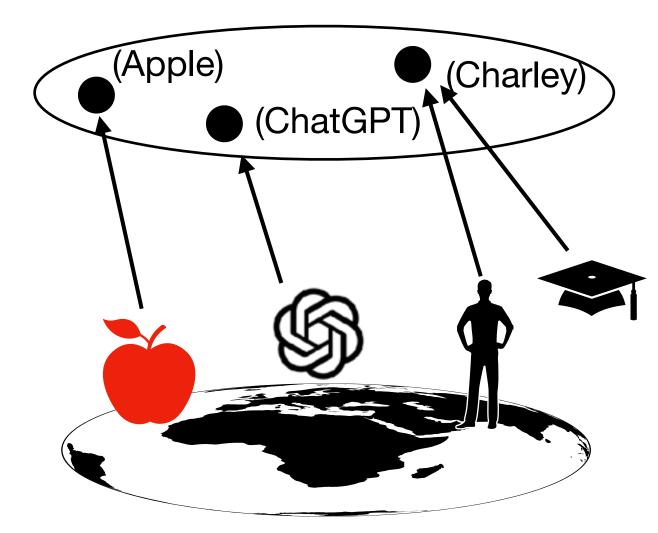
Herbert Simon & Allen Newell



• Physical Symbol System hypothesis:

- **Symbols** can represent things in the world
 - e.g., (Apple), (ChatGPT), (Charley), etc...
- **Relations** can be i) predicates that describes a symbol or ii) verbs describing how symbols interact with other symbols
 - i) red(Apple), unreliable(ChatGPT), instructor(Charley)
 - ii) eat(Charley, Apple), generatePicture(ChatGPT, Apple)

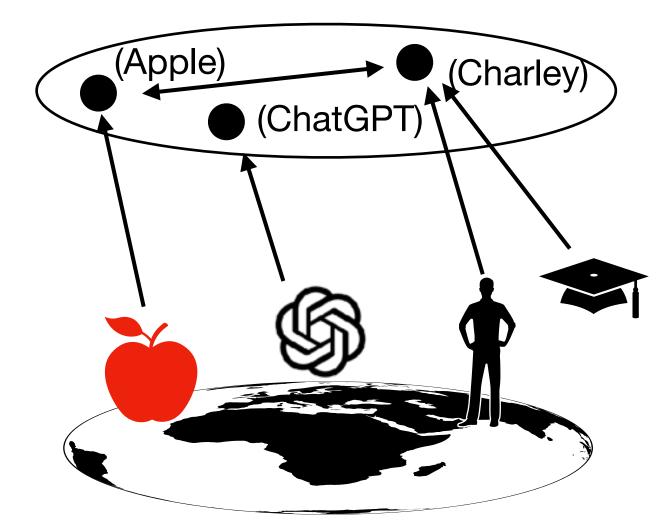
Herbert Simon & Allen Newell



• Physical Symbol System hypothesis:

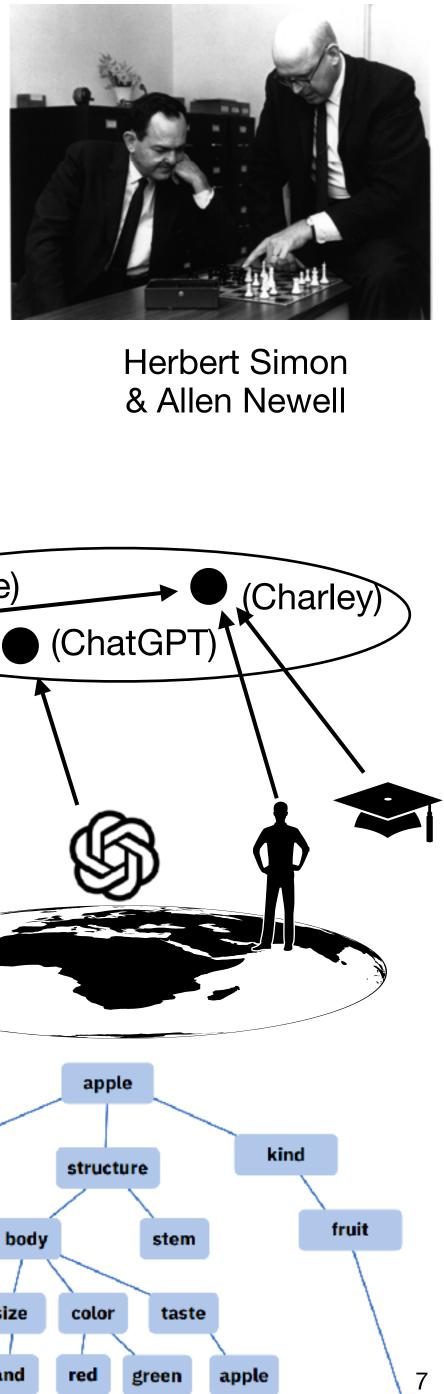
- **Symbols** can represent things in the world
 - e.g., (Apple), (ChatGPT), (Charley), etc...
- **Relations** can be i) predicates that describes a symbol or ii) verbs describing how symbols interact with other symbols
 - i) red(Apple), unreliable(ChatGPT), instructor(Charley)
 - ii) eat(Charley, Apple), generatePicture(ChatGPT, Apple)

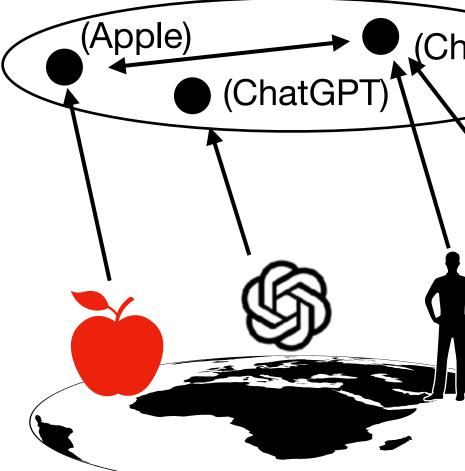
Herbert Simon & Allen Newell

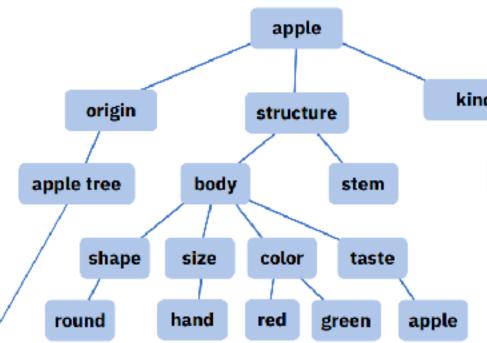


• Physical Symbol System hypothesis:

- **Symbols** can represent things in the world
 - e.g., (Apple), (ChatGPT), (Charley), etc...
- Relations can be i) predicates that describes a symbol or ii) verbs describing how symbols interact with other symbols
 - i) red(Apple), unreliable(ChatGPT), instructor(Charley)
 - ii) eat(Charley, Apple), generatePicture(ChatGPT, Apple)
- By populating a **knowledge base** with symbols and relations, we can use a program to find new propositions (*inference*)
 - General Problem Solver (Simon, Shaw, & Newell, 1957)
 - Expert systems: popularized in the 1980s as the future of AI

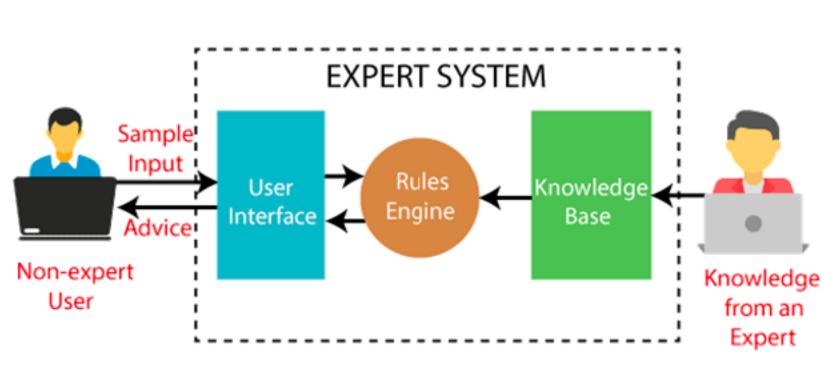




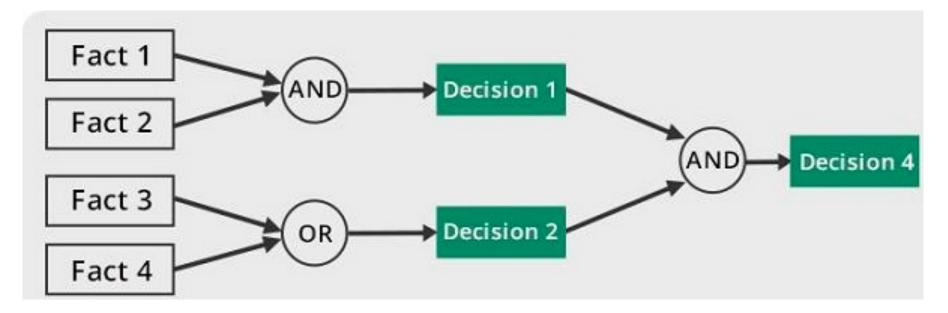


Expert Systems

- The first truly successful forms of AI, widely applied in medicine, finance, and education
- Expert knowledge is codified in the form of facts and logical rules by a knowledge engineer
 - If X then Y
 - If Socrates is a man, then Socrates is mortal.
- This forms the basis of an *inference engine*, which can apply known rules/facts to generates new facts (adding to the knowledge base) and resolve rule conflicts
- Two modes for solving problems
 - Forward chaining: What happens next?
 - Apply rules and facts to arrive at logical conclusions about outcomes
 - **Backwards chaining**: Why did it happen?
 - Starting from a desired outcome, figure out the set of antecedents that can aid in arriving at that outcome

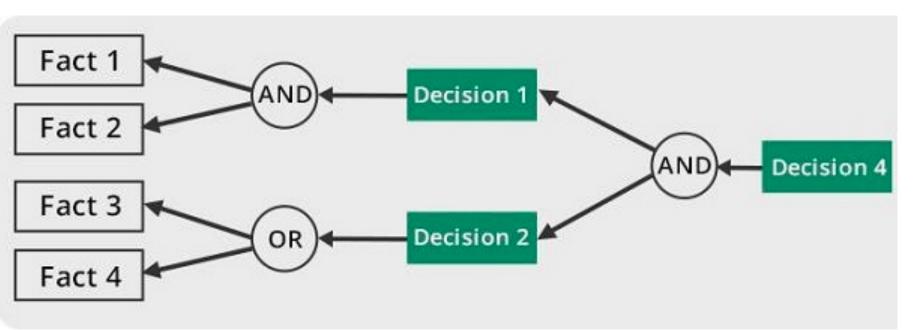


Forward chaining



not on the exam

Backward chaining



Strengths and Limitations

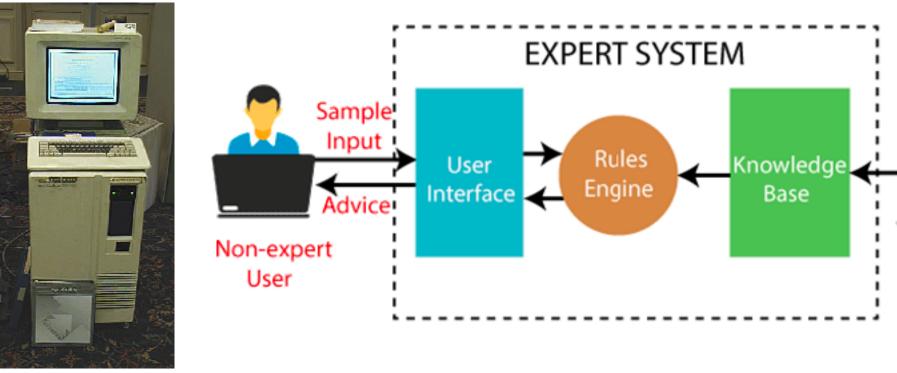
Strengths

- Knowledge is explicit rather than implicit (e.g., neural networks), allowing for interpretability Applying rules can be very fast and solutions were generated in real-time. • Rules offer rapid generalization, with a single instance

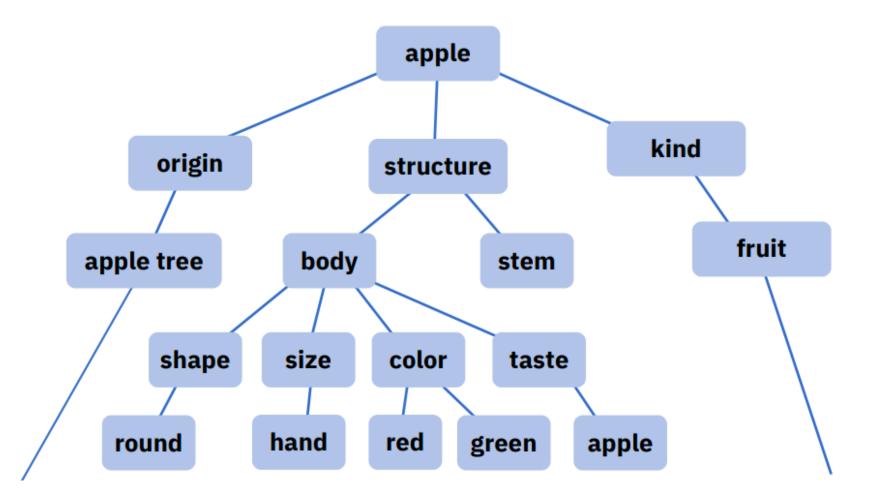
- Decisions are interpretable by following logic
- No hallucinations!

Limitations

- Cannot learn by itself!
- Require knowledge engineers to codify rules, with high maintenance and development costs
- Limited generalization to new situations, where existing rules don't apply exactly • If-Then statements cannot capture all relationships without massive scaling problems

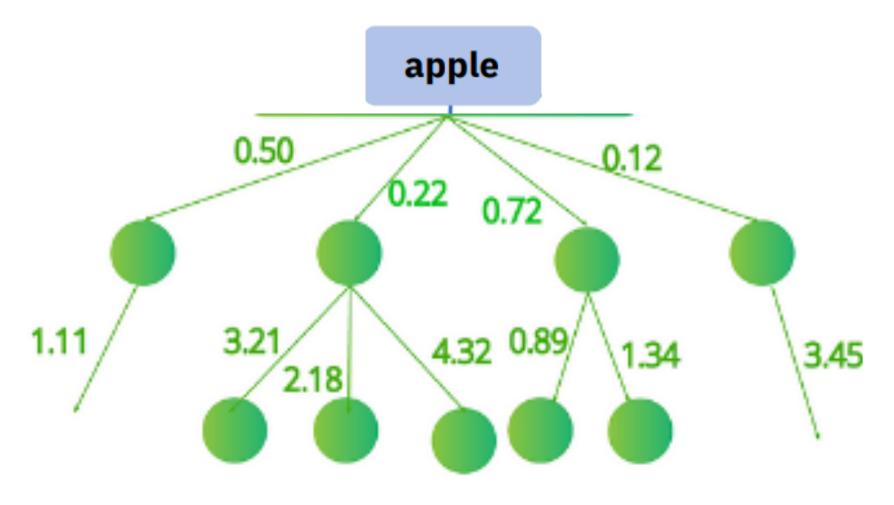


Symbolic vs. sub-symbolic Al



Symbolic Al

- Symbols, rules, and structured representations
- "Language of thought" (LoT) hypothesis (Fodor, 1975): concepts/knowledge represented by a language-like system
- Compositionality: symbols and rules can be combined to produce new representations
- Extracting symbolic representations and search over compositional hypothesis spaces is difficult

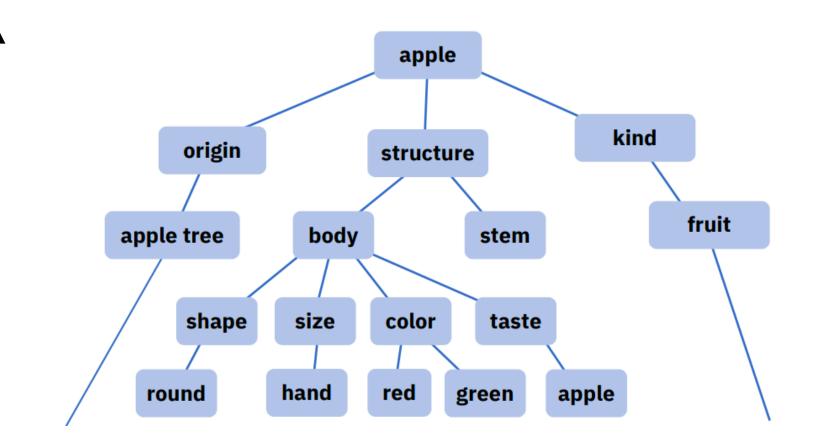


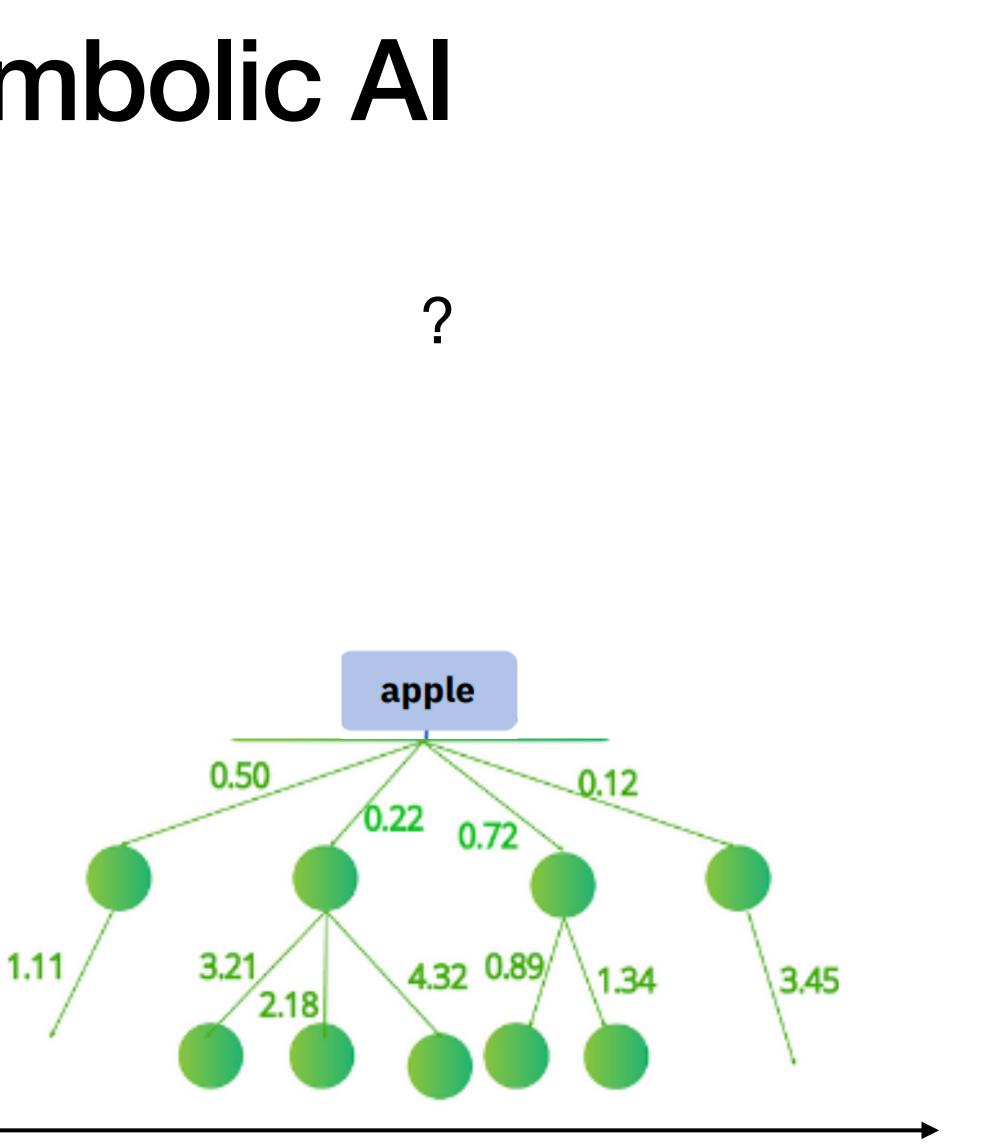
Sub-symbolic Al

- Representations encoded through connection weights
- No explicit representation of concepts or knowledge, but distributed throughout the network
- Efficiency: knowledge can be implicitly learned by capturing statistical patterns
- Interpretation of representations and behavior is difficult.

Symbolic vs. sub-symbolic Al

Interpretability

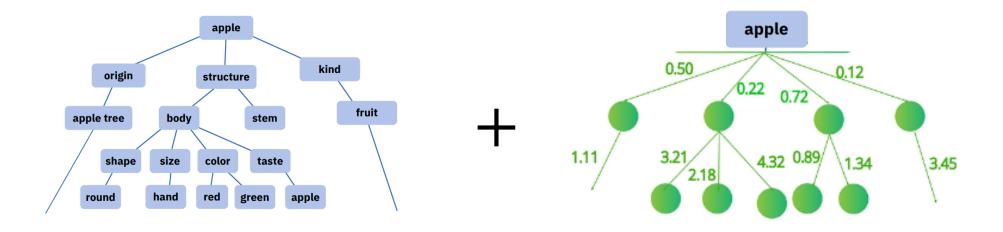


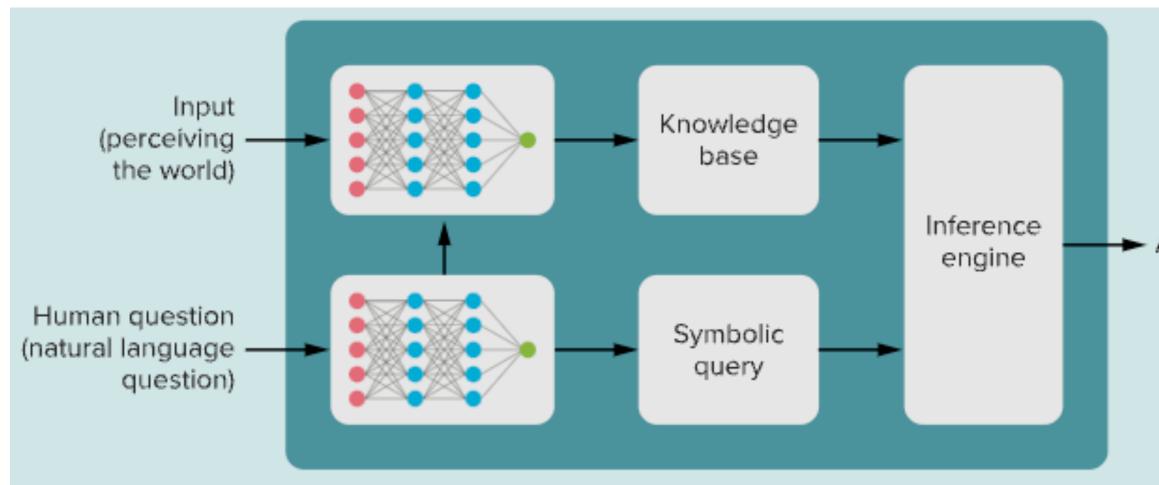


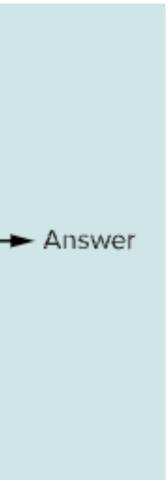
Efficiency

Neurosymbolic Al

- Neurosymbolic AI aims to combine symbolic and subsymbolic approaches to get the best of both worlds
- Modern AI assistants (e.g., Siri, Google, Alexa) are essentially expert systems with ANN voice recognition and text-to-speech



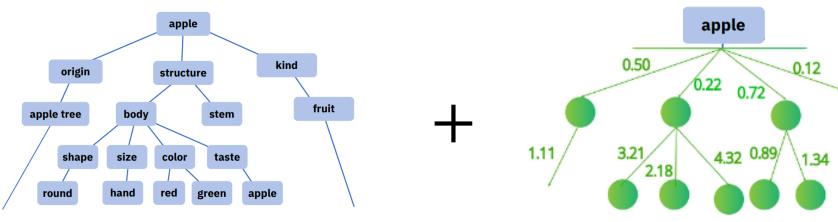


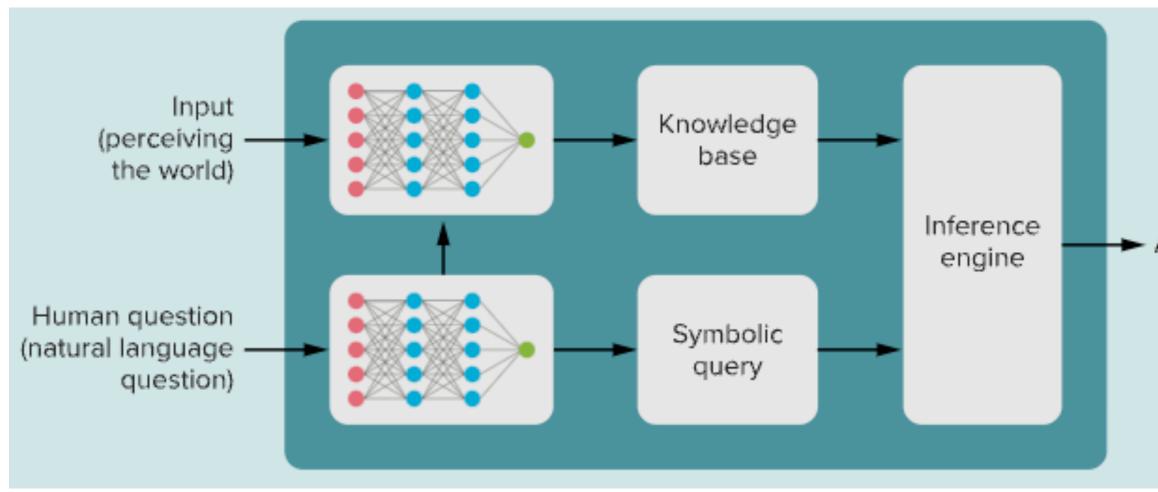


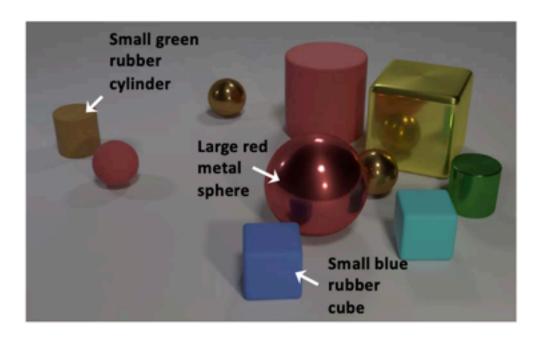
Neurosymbolic Al

- Neurosymbolic AI aims to combine symbolic and subsymbolic approaches to get the best of both worlds
- Modern Al assistants (e.g., Siri, Google, Alexa) are essentially expert systems with ANN voice recognition and text-to-speech

- Current challenges:
 - Learning the knowledge base through data
 - Relating messy real-world data to neat (and limited) symbols/relations in a knowledge base





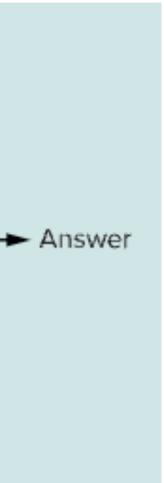


Question: Are there an equal number of large things and metal spheres?

Program: equal_number(count(filter_size(S)) cene, Large)), count(filter_material(filter_shape(Scene, Sphere), Metal)))

<u>Yi et al., (2018)</u>

Answer: Yes



One-shot generalization

Lake et al., (Science 2015)

One-shot generalization

Lake et al., (Science 2015)

Parsing into parts and relations

One-shot generalization

Lake et al., (Science 2015)

Parsing into parts and relations

Generalization from related concepts

One-shot generalization

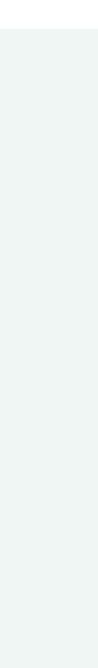
Lake et al., (Science 2015)

Parsing into parts and relations

Generalization from related concepts

Program Induction

the process of inferring **rules or instructions** that generate an observed pattern of data



One-shot generalization

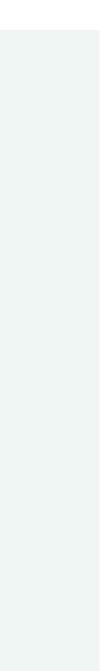
Lake et al., (Science 2015)

Parsing into parts and relations

Generalization from related concepts

Program Induction

the process of inferring **rules or instructions** that generate an observed pattern of data



One-shot generalization

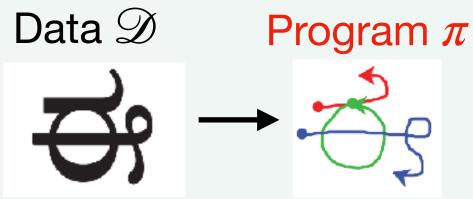
Lake et al., (Science 2015)

Parsing into parts and relations

Generalization from related concepts

Program Induction

the process of inferring **rules or instructions** that generate an observed pattern of data



One-shot generalization

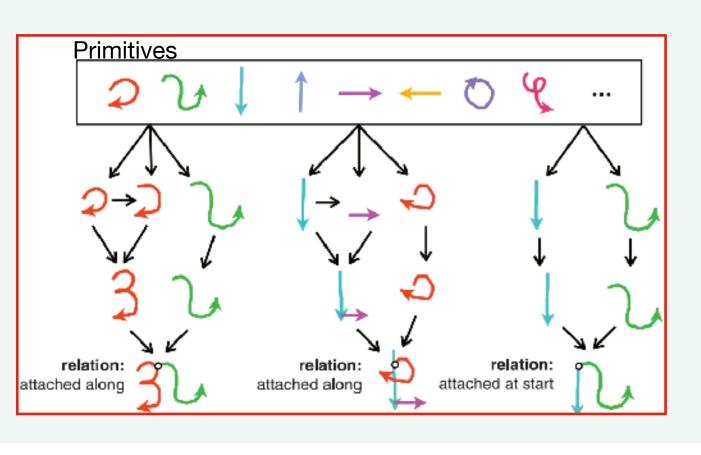
Lake et al., (Science 2015)

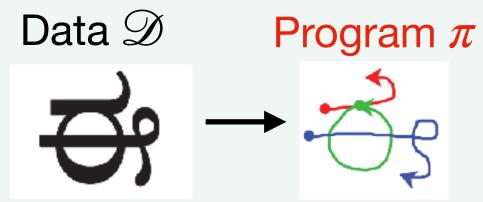
Parsing into parts and relations

Generalization from related concepts

Program Induction

the process of inferring **rules or instructions** that generate an observed pattern of data





One-shot generalization

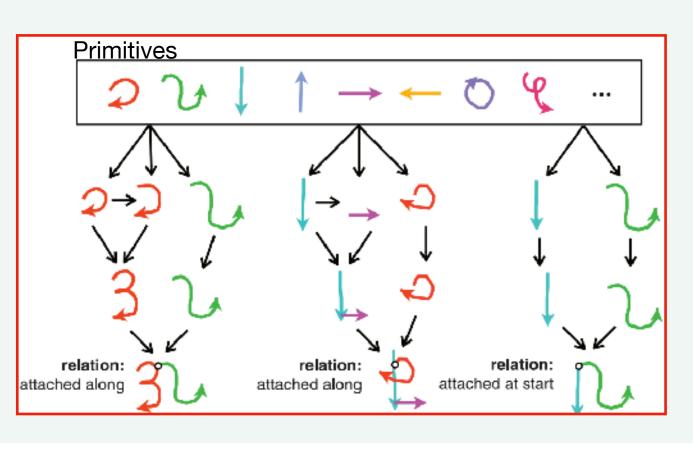
Lake et al., (Science 2015)

Parsing into parts and relations

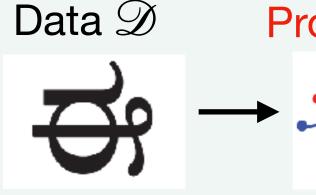
Generalization from related concepts

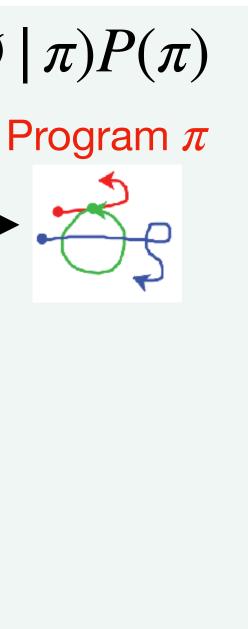
Program Induction

the process of inferring **rules or instructions** that generate an observed pattern of data



 $P(\pi \mid \mathcal{D}) \propto P(\mathcal{D} \mid \pi) P(\pi)$





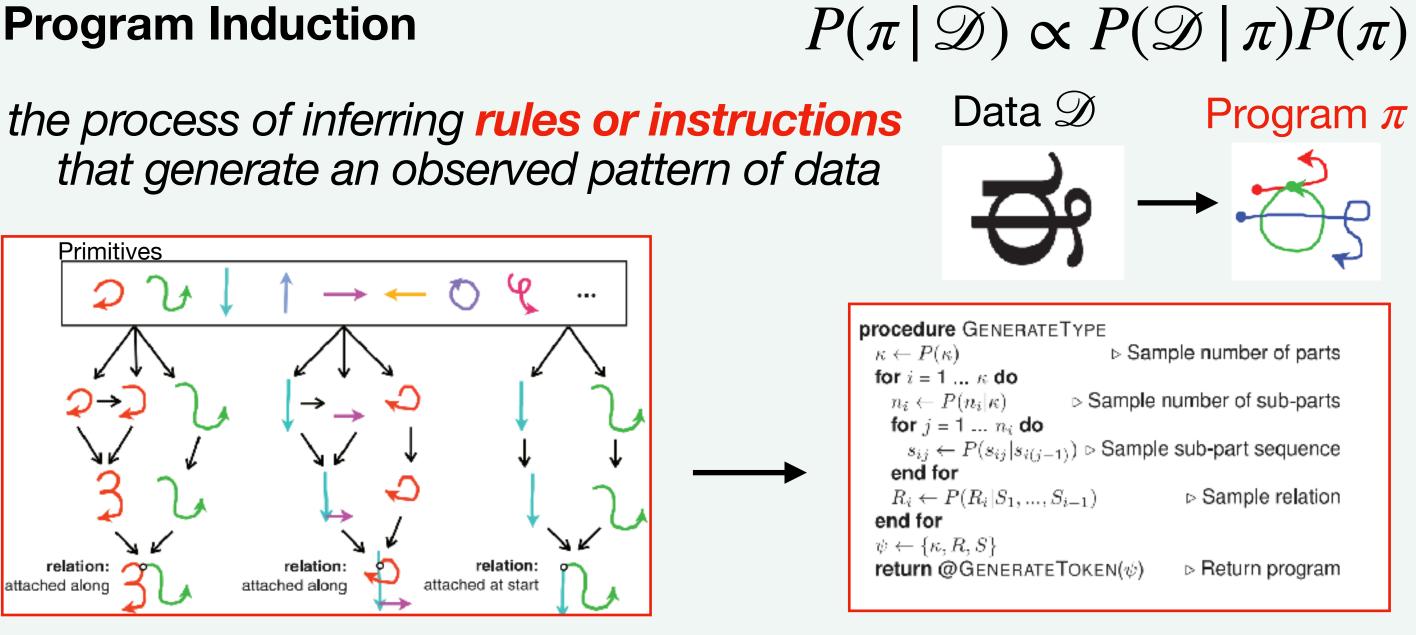
One-shot generalization

Lake et al., (Science 2015)

Parsing into parts and relations

Generalization from related concepts

Program Induction



One-shot generalization

Lake et al., (Science 2015)

List Processing

Sum List

[1 2 3] → 6 [4 6 8 1] → 17

Double

[1 2 3] → [2 4 6] $[4 5 1] \rightarrow [8 10 2]$

Check Evens

[0 2 3] → [T T F] [2 9 6] → [T F T] Text Editing

Abbreviate

Allen Newell -> A.N. Herb Simon → H.S.

Drop Last Three

shrdlu → shr shakey → sha

Extract

ab (c) → c a (bee) see → see

Parsing into parts and relations

Generalization from related concepts

Regexes

Phone	numbers
(555)	867-5309
(650)	555-2368

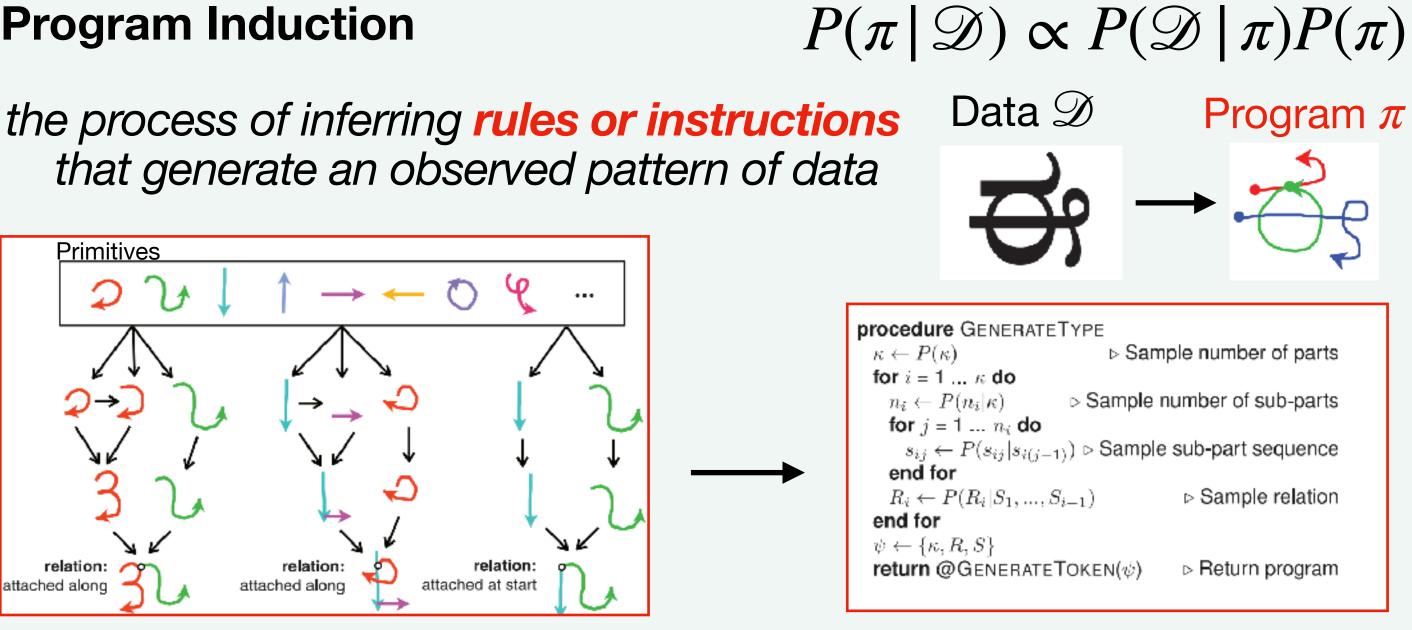
Currency

\$100.25 \$4.50

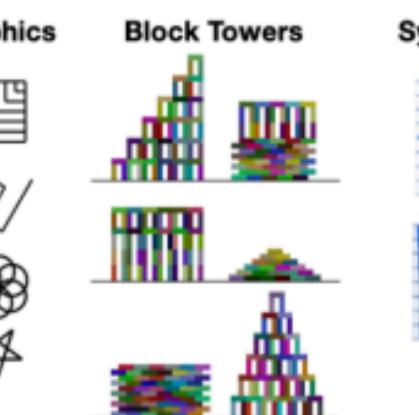
Dates

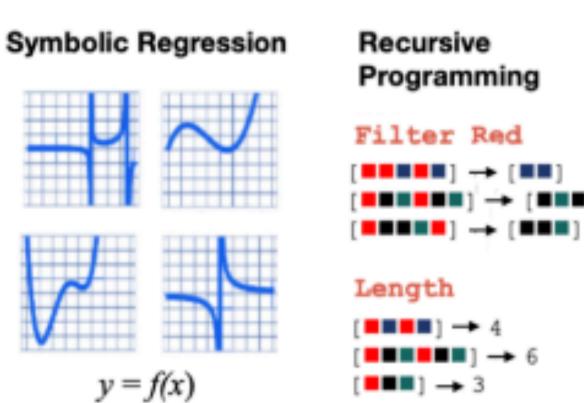
¥1775/0704 ¥2000/0101

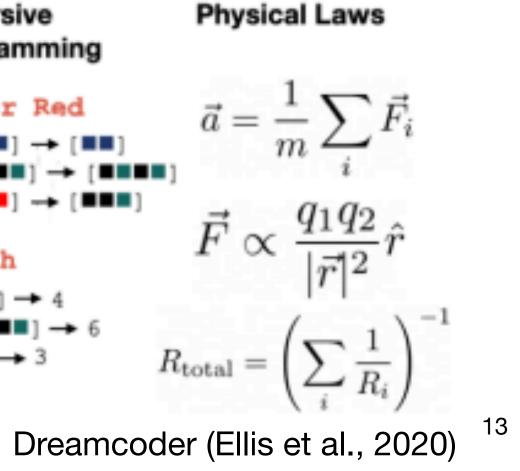
Program Induction



LOGO Graphics







One-shot generalization

Lake et al., (Science 2015)

List Processing

Sum List

[1 2 3] → 6 [4 6 8 1] → 17

Double

[1 2 3] → [2 4 6] $[4 5 1] \rightarrow [8 10 2]$

Check Evens

[0 2 3] → [T T F] [2 9 6] → [T F T] Text Editing

Abbreviate

Allen Newell -> A.N. Herb Simon → H.S.

Drop Last Three

shrdlu → shr shakey → sha

Extract

ab (c) → c a (bee) see → see

Parsing into parts and relations

Generalization from related concepts

Regexes

Phone	numbers
(555)	867-5309
(650)	555-2368

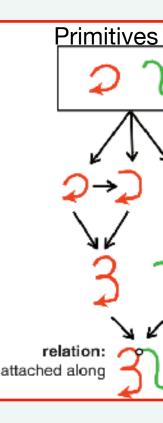
Currency

\$100.25 \$4.50

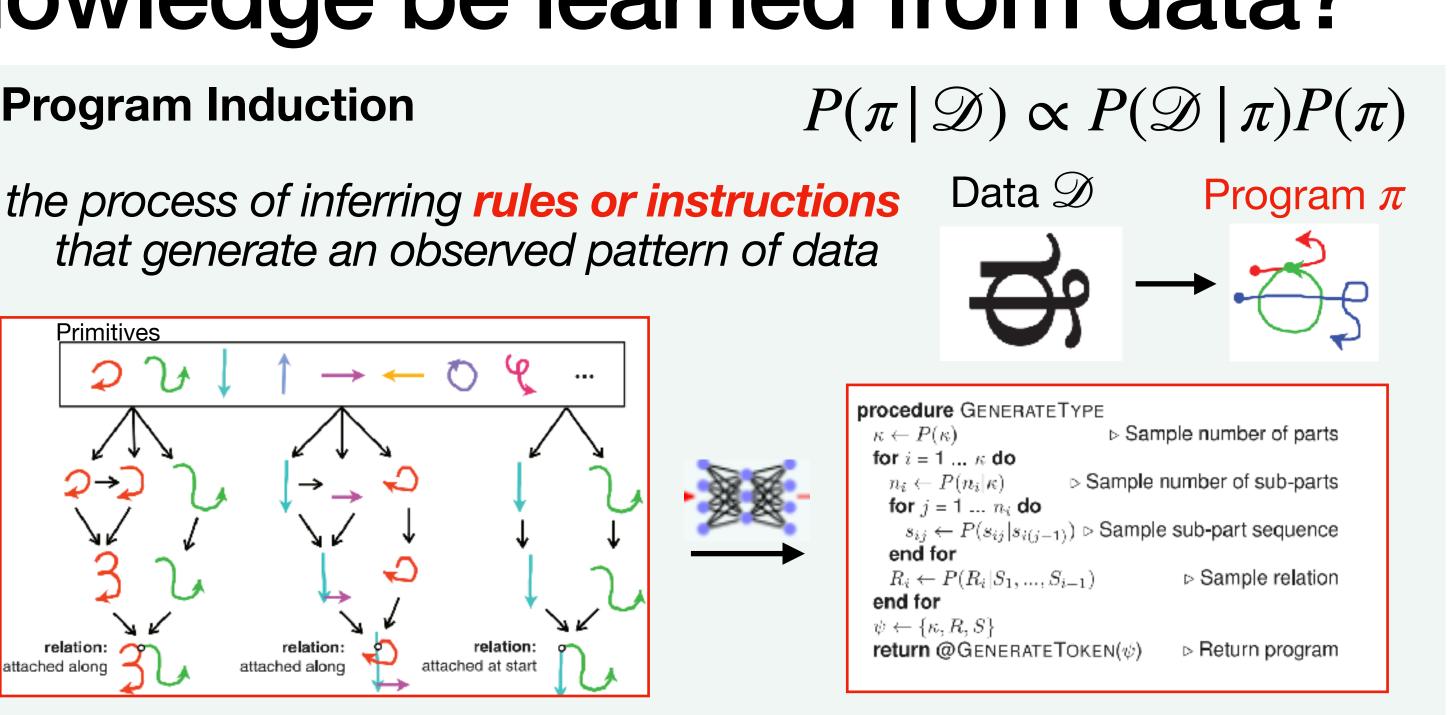
Dates

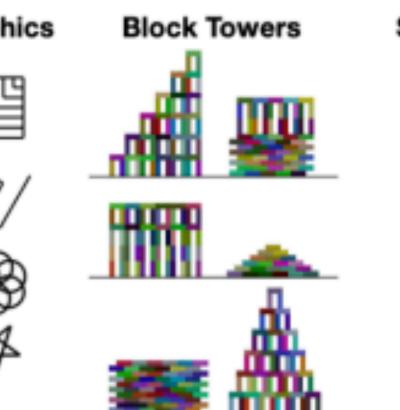
¥1775/0704 ¥2000/0101

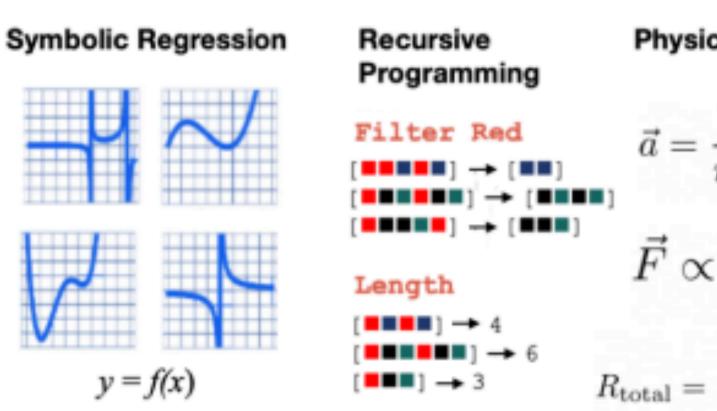
Program Induction



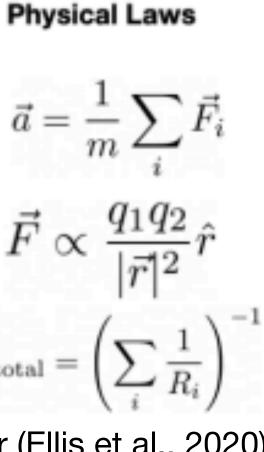
LOGO Graphics







Dreamcoder (Ellis et al., 2020) ¹³

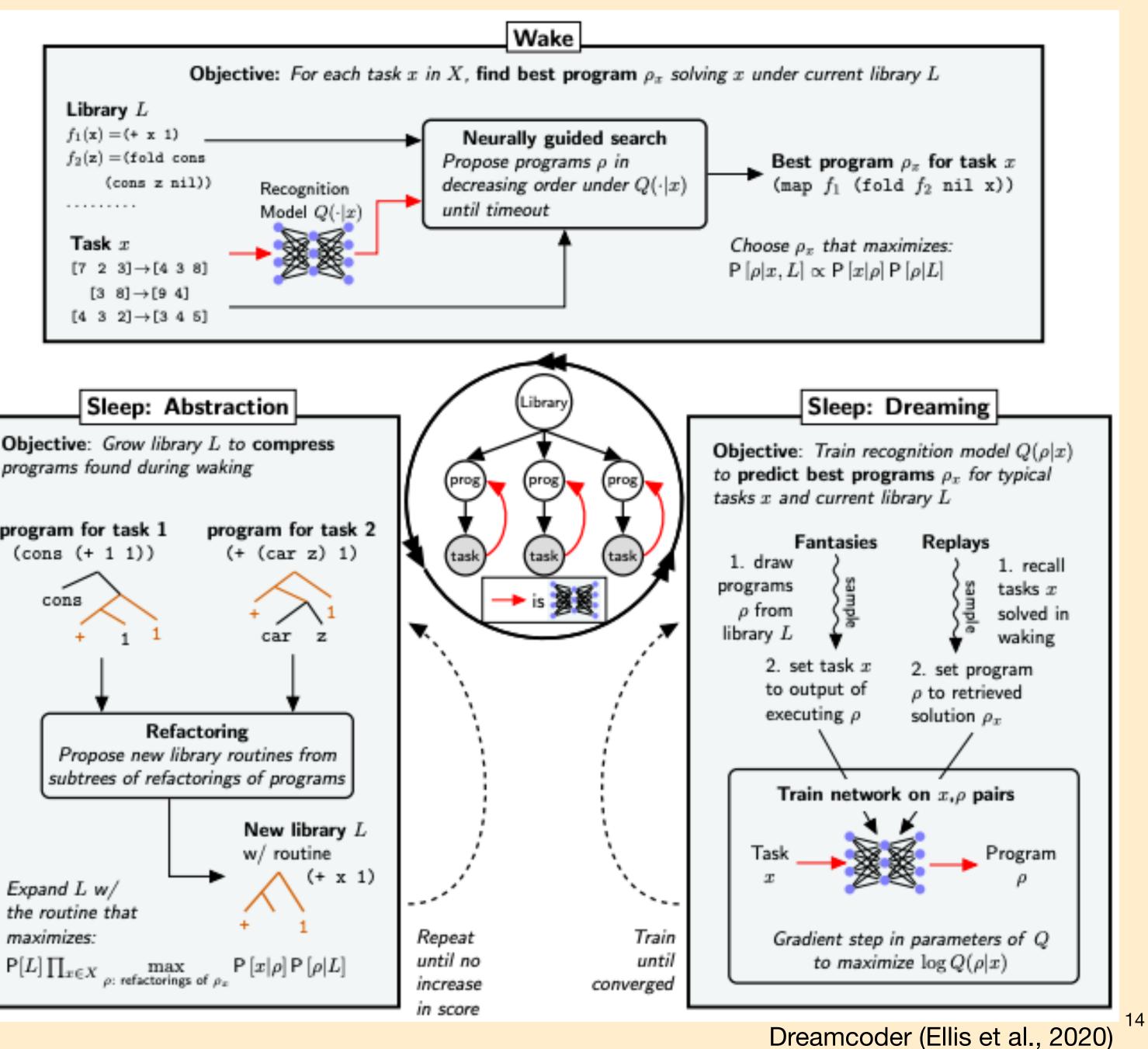


Wake-Sleep Algorithm

- Inspired by Hinton et al., (1995)
- Wake: find the best program to solve the current task using a recognition model (neural network) $\operatorname{arg\,max} P(\mathcal{D} \mid \pi)$
- Sleep: Update $P(\pi)$
 - Abstraction: Grow library to find more compressible programs
 - **Dreaming**: Train recognition model by sampling programs that solved previous experienced tasks (replays) and by sampling tasks that can be solved by programs in the current library (fantasies)

	Libra f1(x) = f2(z) = (Task [7 2 [3 [4 3
	SI
-	ctive: G ams fou
	am for 18 (+ 1

Expand L w/ the routine that maximizes:

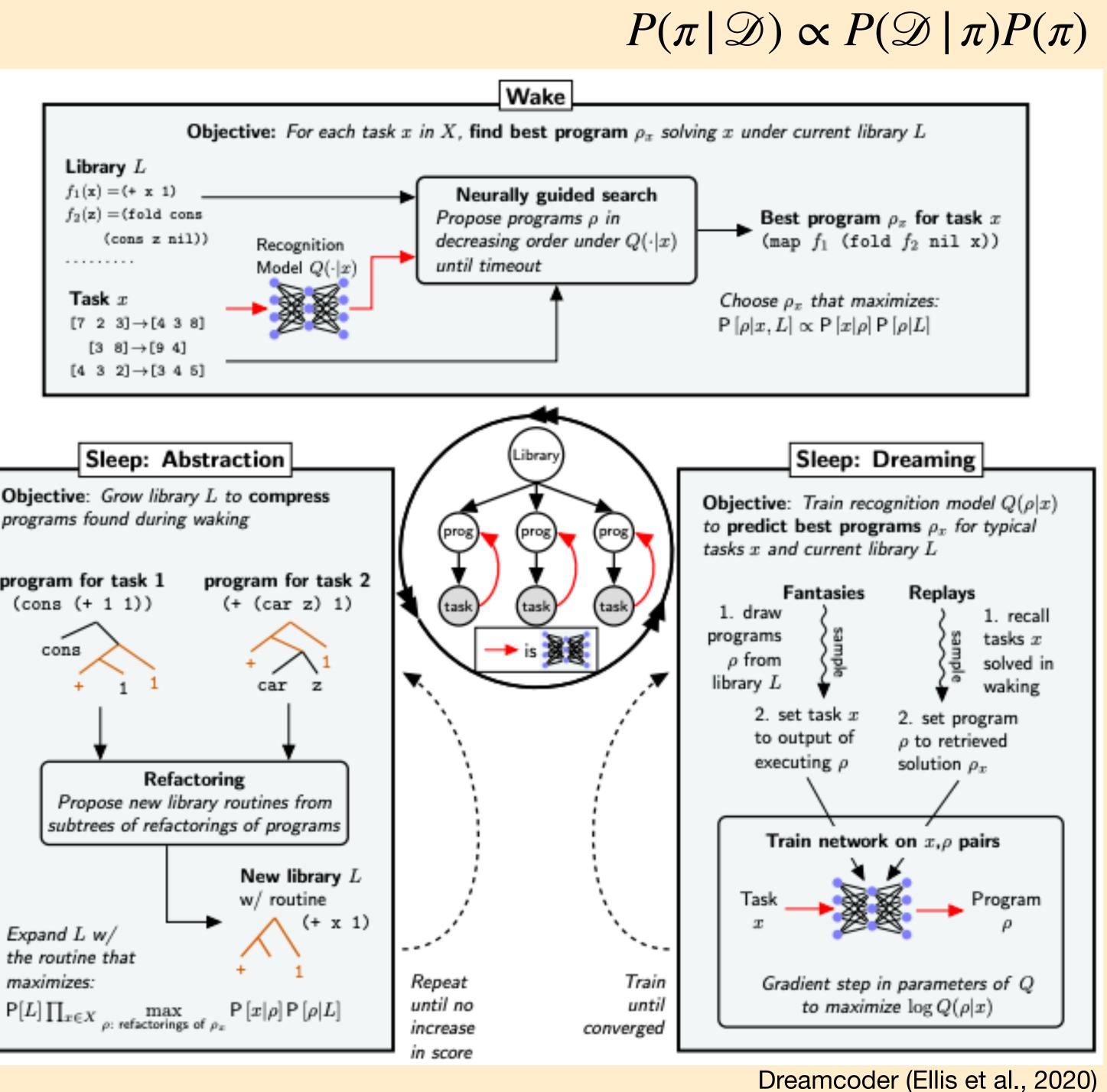


Wake-Sleep Algorithm

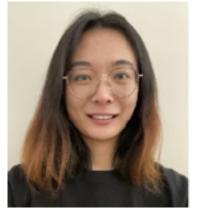
- Inspired by Hinton et al., (1995)
- Wake: find the best program to solve the current task using a recognition model (neural network) $\operatorname{arg\,max} P(\mathcal{D} \mid \pi)$
- Sleep: Update $P(\pi)$
 - Abstraction: Grow library to find more compressible programs
 - **Dreaming**: Train recognition model by sampling programs that solved previous experienced tasks (replays) and by sampling tasks that can be solved by programs in the current library (fantasies)

	Libra f1(x) = f2(z) = (Task [7 2 [3 [4 3
	SI
-	ctive: G ams fou
	am for 18 (+ 1

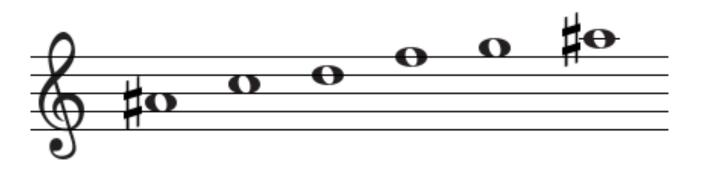
Expand L w/ the routine that maximizes:

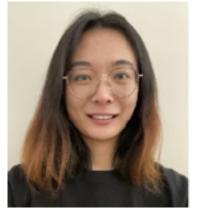


• Can program induction inform us about how people represent the WORID? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

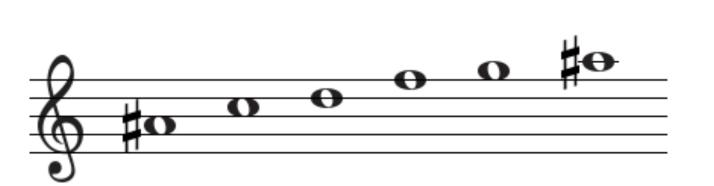


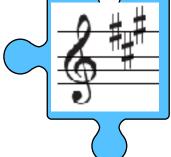
• Can program induction inform us about how people represent the WORID? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

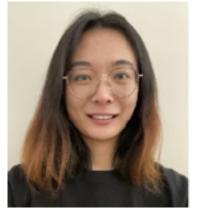




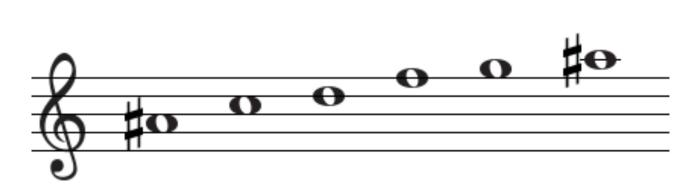
• Can program induction inform us about how people represent the WORID? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

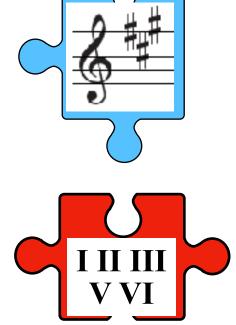


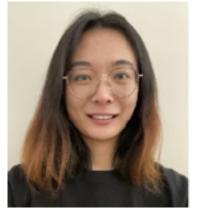




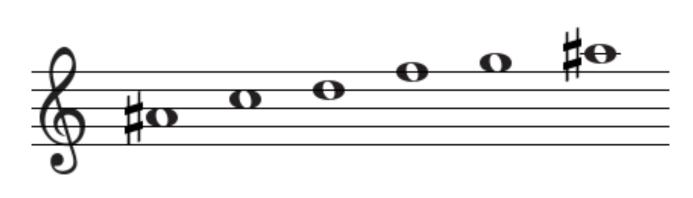
• Can program induction inform us about how people represent the WORID? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

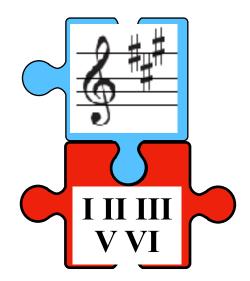


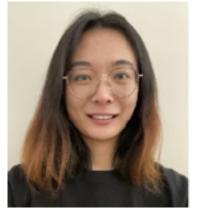




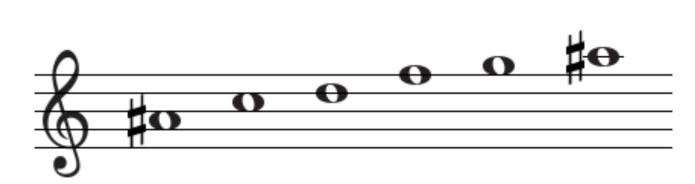
• Can program induction inform us about how people represent the World? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

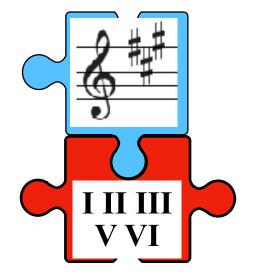




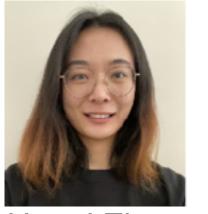


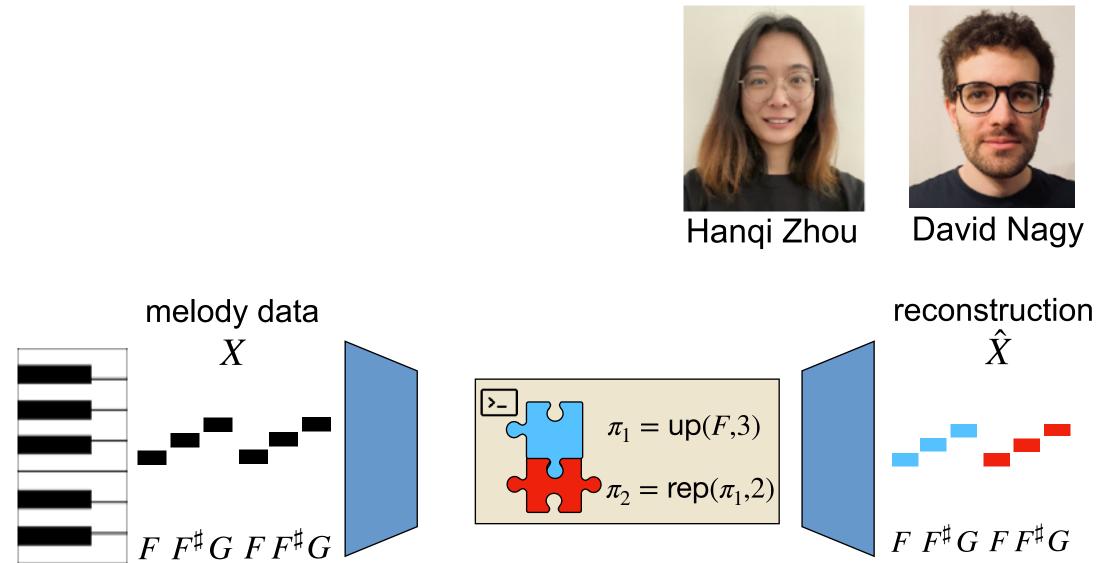
• Can program induction inform us about how people represent the WORD? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)



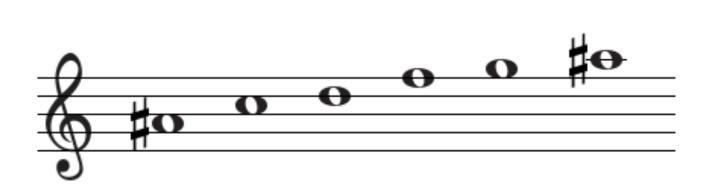


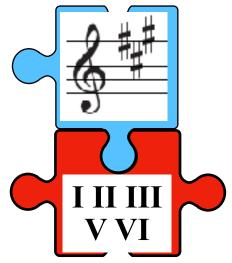
• Program induction under constraints (Zhou, Nagy & Wu, 2024)



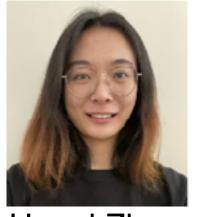


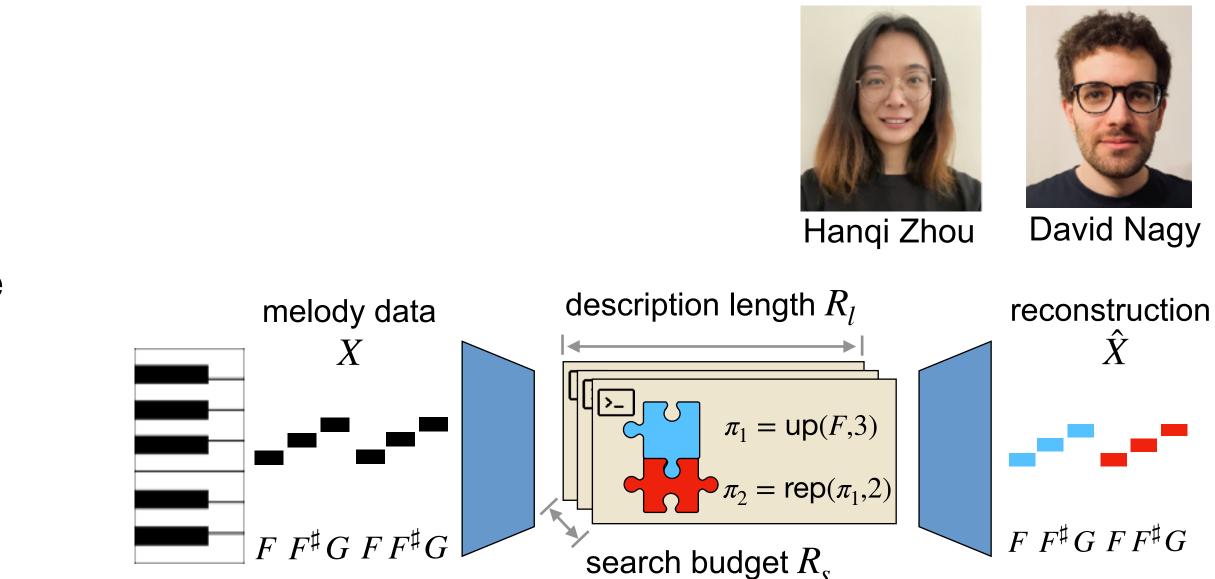
• Can program induction inform us about how people represent the WORD? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)



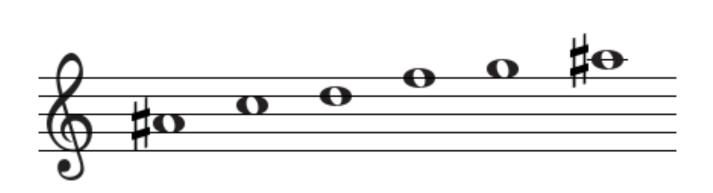


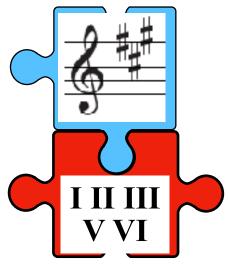
- Program induction under constraints (Zhou, Nagy & Wu, 2024)
 - Encoding melodies as programs under limited resources: description length R_l and search budget R_s



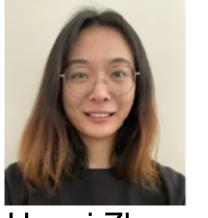


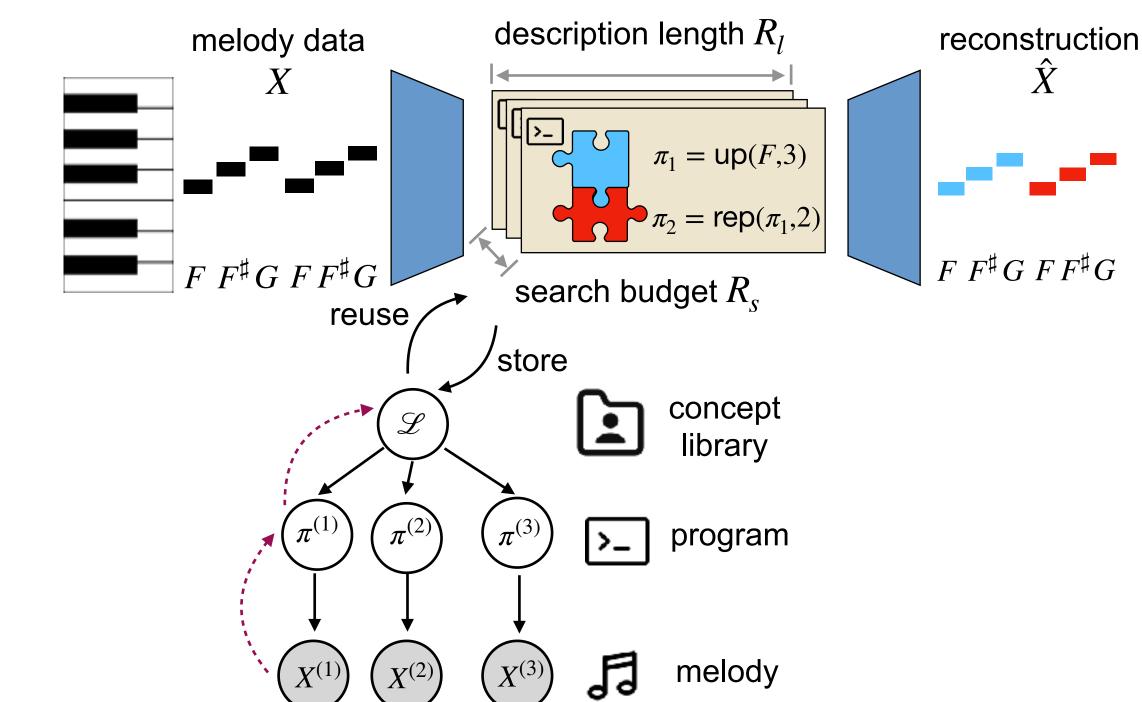
• Can program induction inform us about how people represent the WORD? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

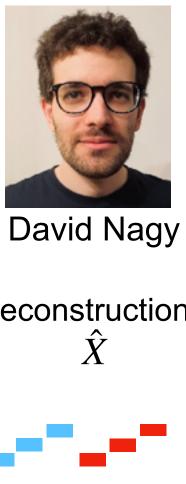




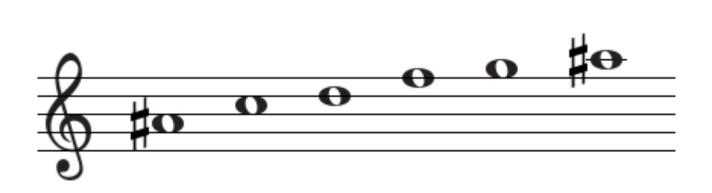
- Program induction under constraints (Zhou, Nagy & Wu, 2024)
 - Encoding melodies as programs under limited resources: description length R_l and search budget R_s
 - We show cognitive constraints drive curriculum effects ...due to storing/reusing programs in a concept library

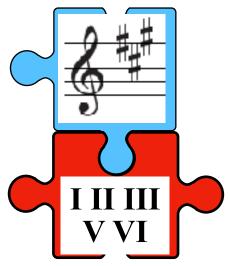




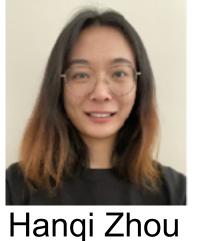


 Can program induction inform us about how people represent the WORD? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

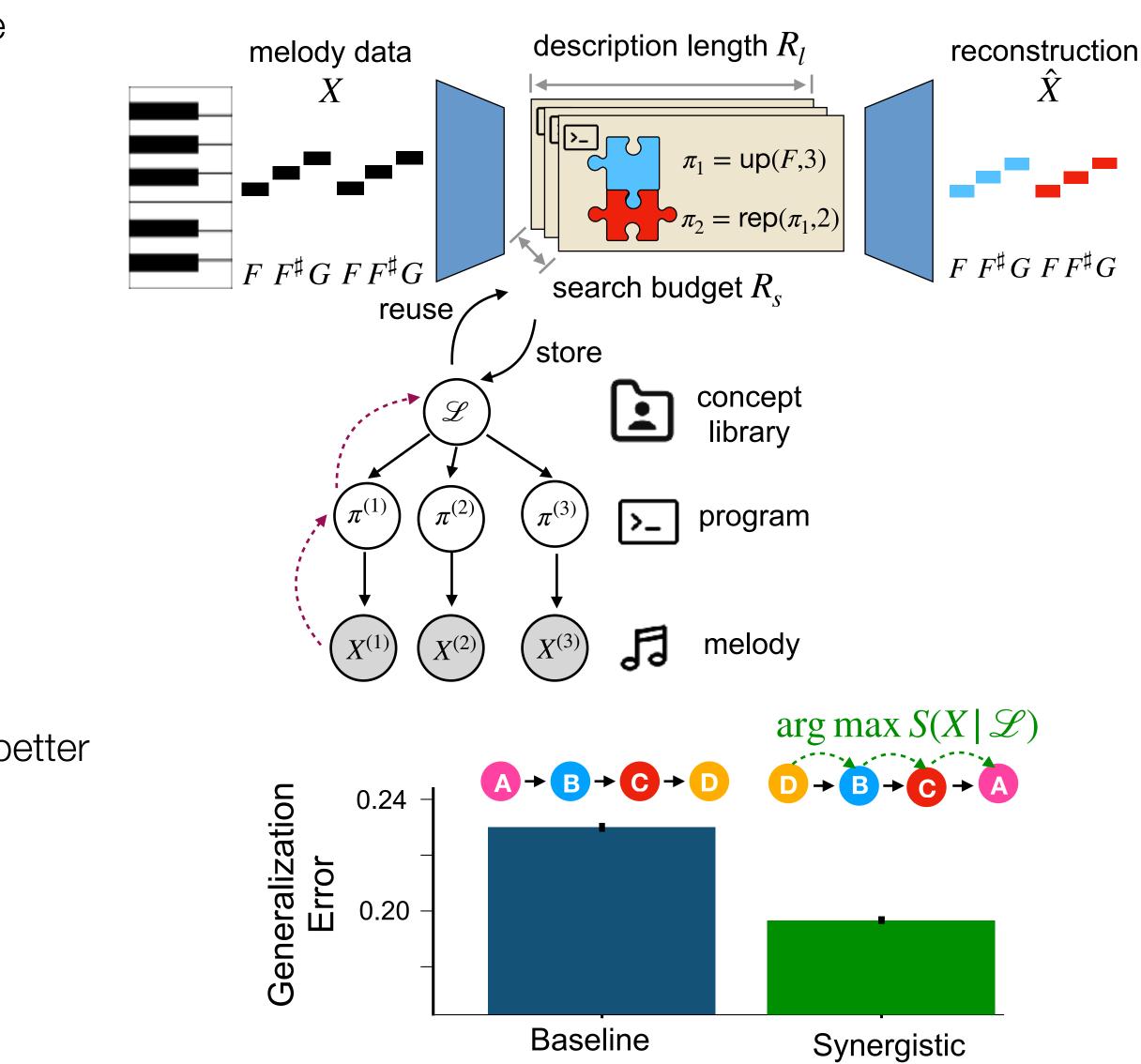


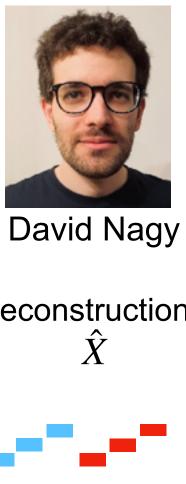


- Program induction under constraints (Zhou, Nagy & Wu, 2024)
 - Encoding melodies as programs under limited resources: description length R_I and search budget R_s
 - We show cognitive constraints drive curriculum effects ...due to storing/reusing programs in a concept library
 - We can *a priori* generate **synergistic curricula** that result in better generalization (for the model)

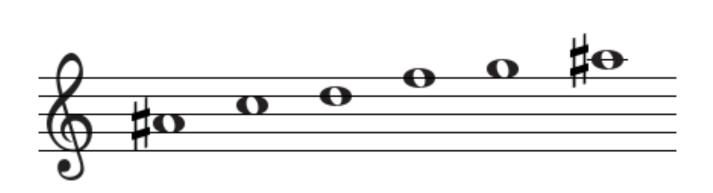


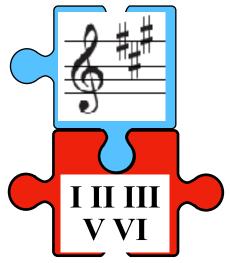
Curricula





• Can program induction inform us about how people represent the WORD? (Fodor, 1975; Piantadosi et al., 2016; Dehaene et al., 2022)

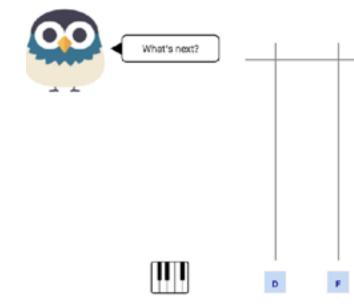




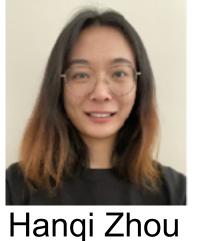
- Program induction under constraints (Zhou, Nagy & Wu, 2024)
 - Encoding melodies as programs under limited resources: description length R_I and search budget R_s
 - We show cognitive constraints drive curriculum effects ...due to storing/reusing programs in a concept library
 - We can *a priori* generate **synergistic curricula** that result in better generalization (for the model)

Next steps

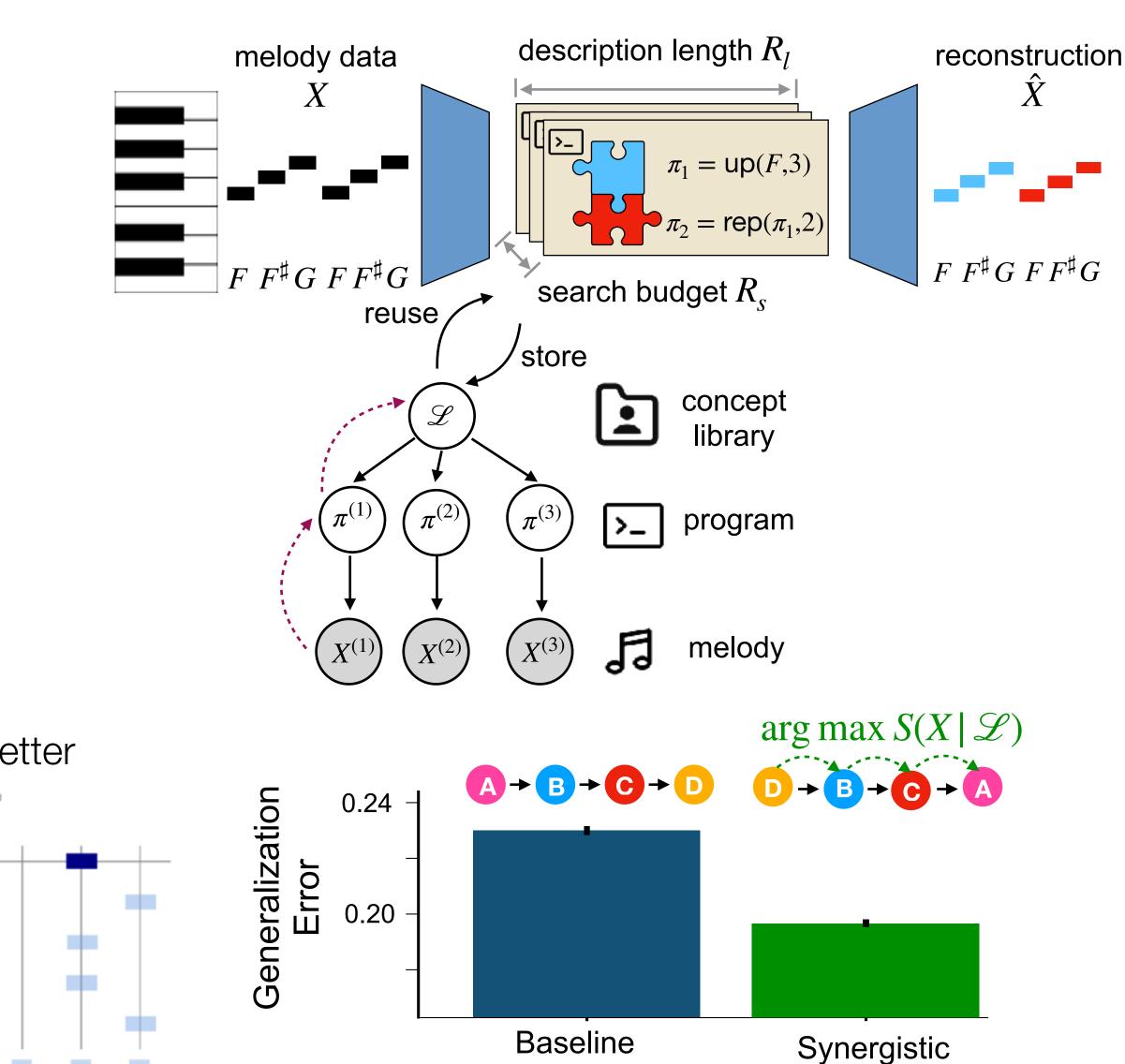
Test our predictions on human learners

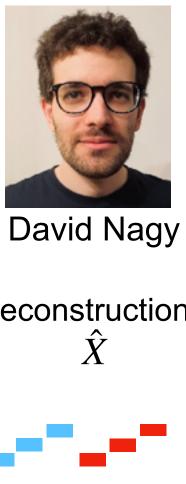


0



Curricula



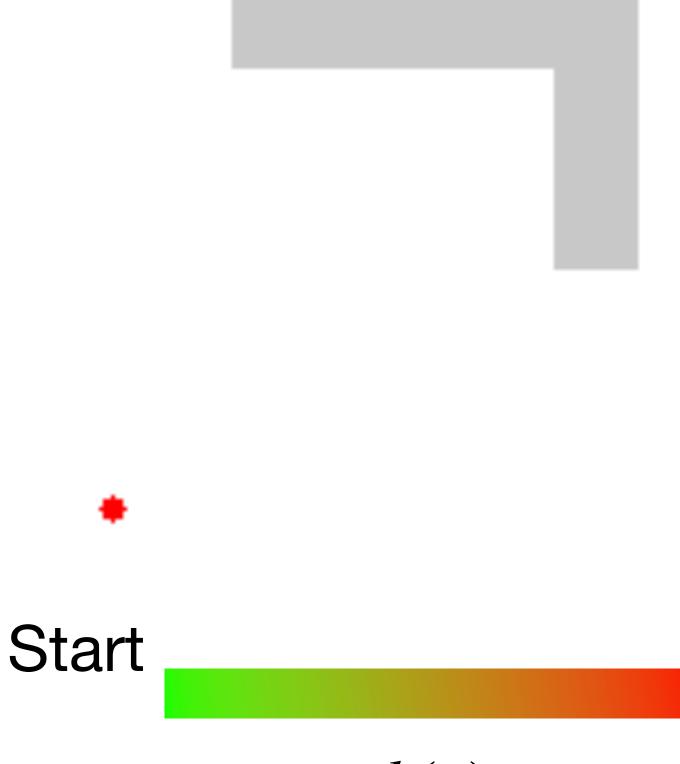


Learning as Search

- A big part of what makes symbolic AI difficult is search
 - explosion
 - There are (typically) no gradients for symbolic representations
- Learning can thus be understood as a search problem
 - Finding which rules/programs capture data
 - Finding which hypotheses to test
- One of the major contributions of symbolic AI research was developing search algorithms
 - A*
 - Montecarlo Tree Search

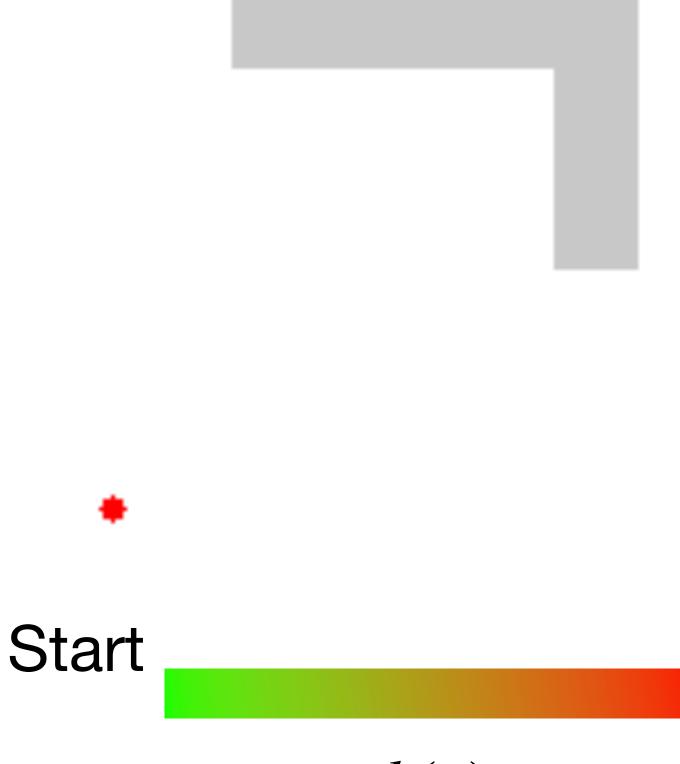
Representing relations between all possible symbols creates a combinatorial

- One of the most popular methods for path-finding and search over graphs (Hart et al., 1968)
- Expand the path by choosing candidate node $n \stackrel{\diamondsuit}{}$ that minimizes cost function f(n) = g(n) + h(n)
 - Keep the current path short: g(n) is the cost of the path so far from the start to *n*
 - Costs can also represent complexity (i.e., the number of symbolic operations)
 - Move towards the goal: h(n) is a heuristic that estimates the cost of the cheapest remaining path from n to the goal (often Euclidean distance)
 - The heuristic avoids calculating the actual remaining cost to the goal, which is very costly
- More efficient than backwards induction, but intractable for any interesting program induction problems



h(n)

- One of the most popular methods for path-finding and search over graphs (Hart et al., 1968)
- Expand the path by choosing candidate node $n \stackrel{\diamondsuit}{}$ that minimizes cost function f(n) = g(n) + h(n)
 - Keep the current path short: g(n) is the cost of the path so far from the start to *n*
 - Costs can also represent complexity (i.e., the number of symbolic operations)
 - Move towards the goal: h(n) is a heuristic that estimates the cost of the cheapest remaining path from n to the goal (often Euclidean distance)
 - The heuristic avoids calculating the actual remaining cost to the goal, which is very costly
- More efficient than backwards induction, but intractable for any interesting program induction problems

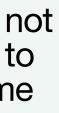


h(n)

- One of the most popular methods for path-finding and search over graphs (Hart et al., 1968)
- Expand the path by choosing candidate node $n \stackrel{\diamondsuit}{}$ that minimizes cost function f(n) = g(n) + h(n)
 - Keep the current path short: g(n) is the cost of the path so far from the start to *n*
 - Costs can also represent complexity (i.e., the number of symbolic operations)
 - Move towards the goal: h(n) is a heuristic that estimates the cost of the cheapest remaining path from n to the goal (often Euclidean distance)
 - The heuristic avoids calculating the actual remaining cost to the goal, which is very costly
- More efficient than **backwards induction**, but intractable for any interesting program induction problems

h(n)

Heuristic: a problem-solving strategy or method that is not guaranteed to find the optimal solution, but is designed to find a satisfactory solution in a reasonable amount of time

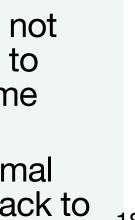


- One of the most popular methods for path-finding and search over graphs (Hart et al., 1968)
- Expand the path by choosing candidate node $n \stackrel{\diamondsuit}{}$ that minimizes cost function f(n) = g(n) + h(n)
 - Keep the current path short: g(n) is the cost of the path so far from the start to *n*
 - Costs can also represent complexity (i.e., the number of symbolic operations)
 - Move towards the goal: h(n) is a heuristic that estimates the cost of the cheapest remaining path from n to the goal (often Euclidean distance)
 - The heuristic avoids calculating the actual remaining cost to the goal, which is very costly
- More efficient than **backwards induction**, but intractable for any interesting program induction problems

h(n)

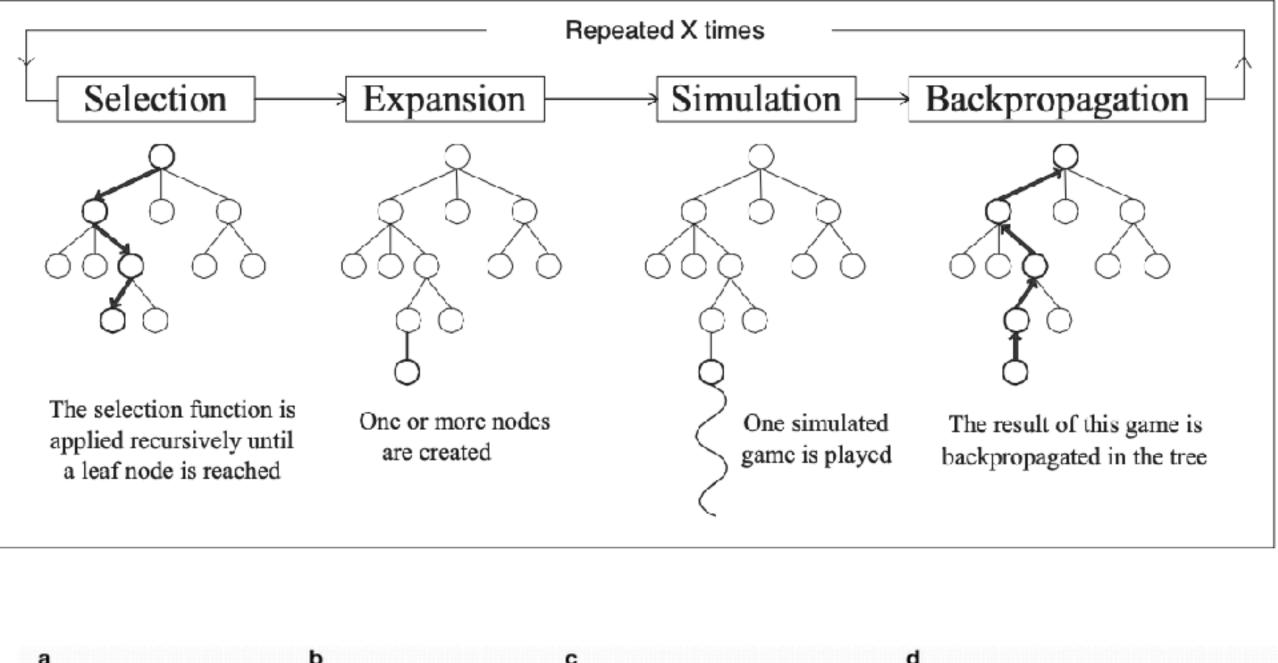
Heuristic: a problem-solving strategy or method that is not guaranteed to find the optimal solution, but is designed to find a satisfactory solution in a reasonable amount of time

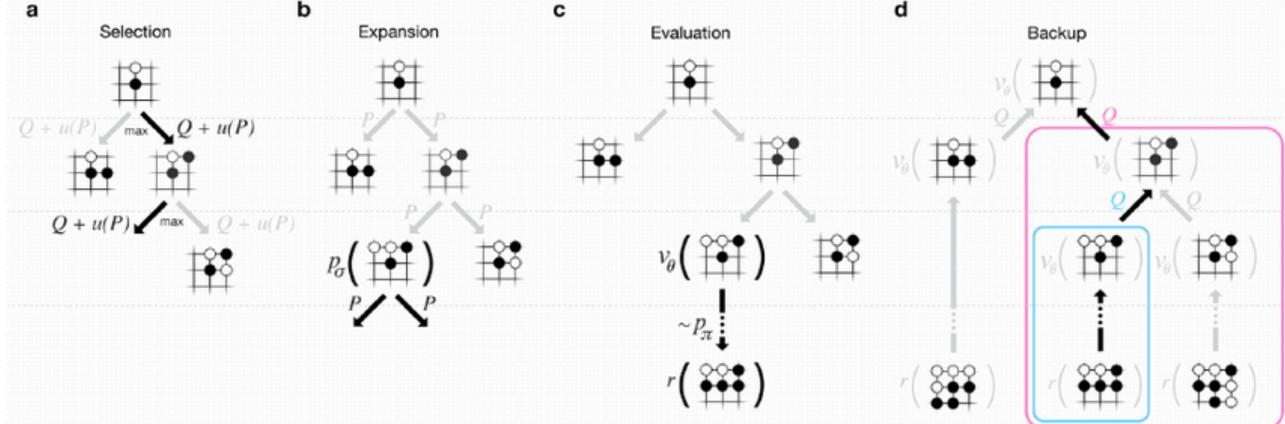
Backwards induction: determining a sequence of optimal choices by reasoning from the endpoint of a problem back to 18 the beginning



Monte Carlo Tree Search

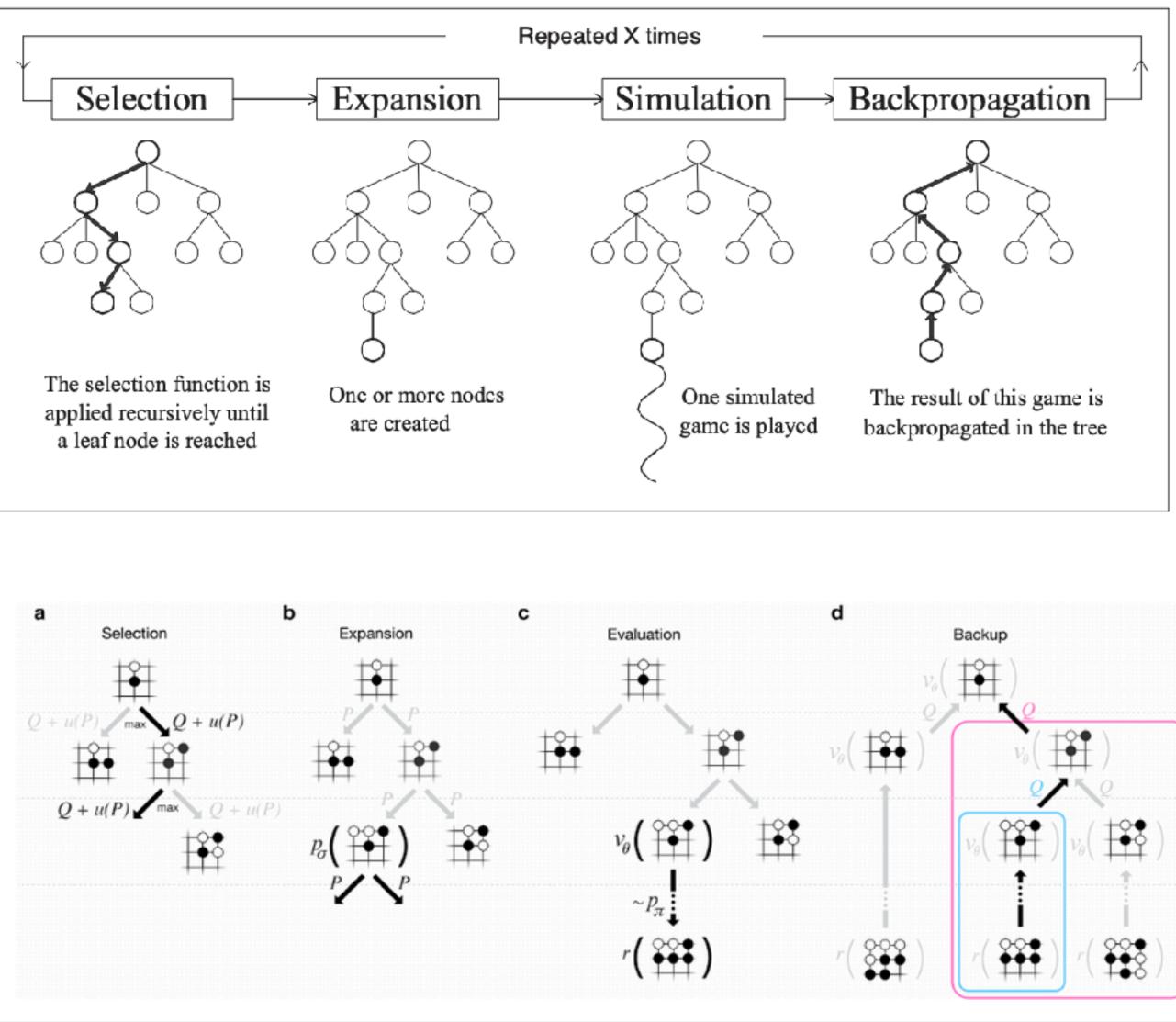
- A key mechanism in AlphaGo (Silver et al., 2016) and other modern RL algorithms
- Select nodes for expansion (often using a heuristic based on reward + *information gain*)
- Expand node and perform simulations
- **Backpropogate** the value of the child to the parent node
 - This allows us to save a heuristic value for the parent node based on previous simulations over the children

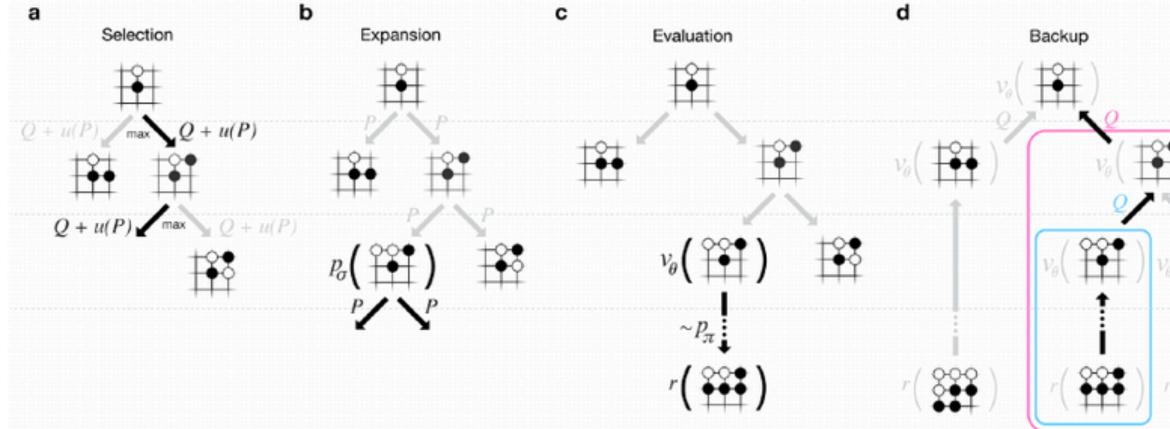




Monte Carlo Tree Search

- A key mechanism in AlphaGo (Silver et al., 2016) and other modern RL algorithms
- Select nodes for expansion (often using a heuristic based on reward + information gain)
- **Expand** node and perform simulations
- **Backpropogate** the value of the child to the parent node
 - This allows us to save a heuristic value for the parent node based on previous simulations over the children





Information gain: The amount of information gained by an observation (i.e., expanding a node). Often approximated using count-based methods:

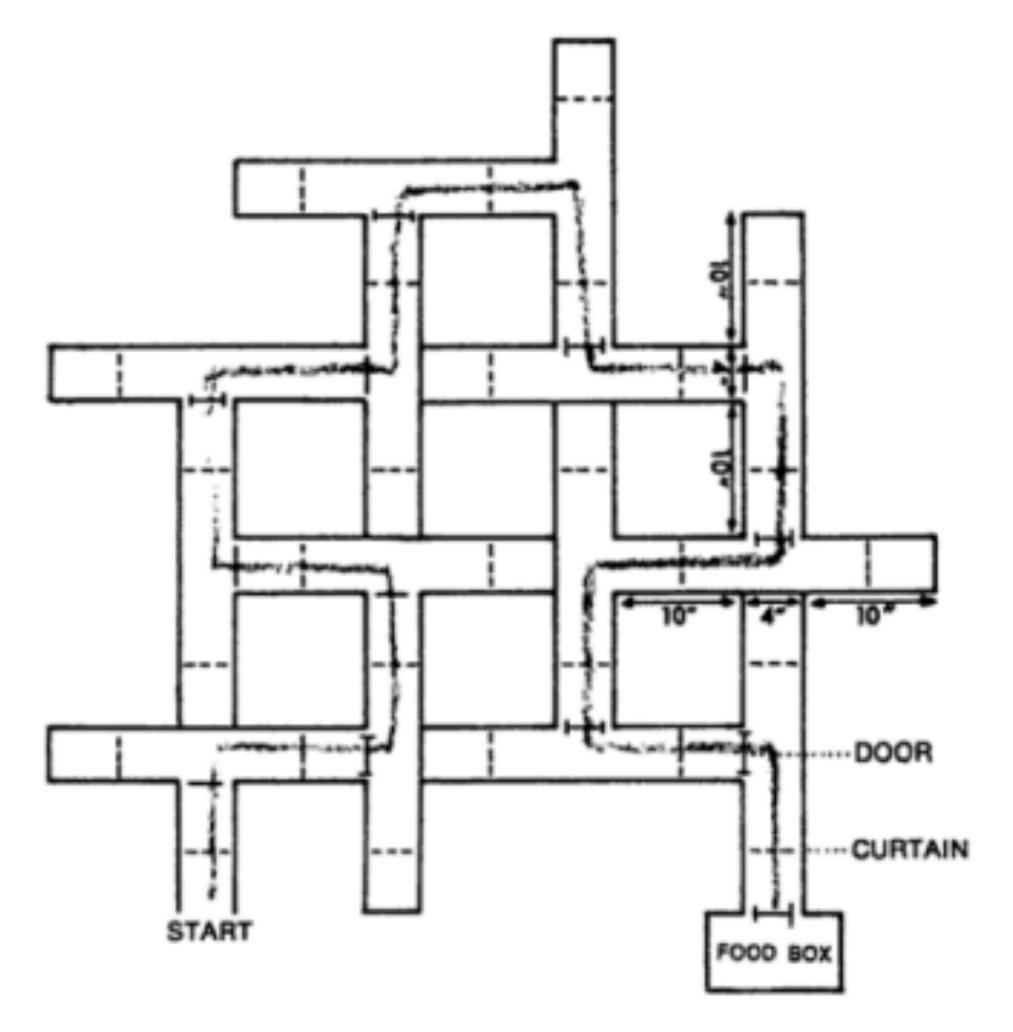
 \uparrow info gain $\propto \downarrow$ fewer visits

Symbolic AI: Summary

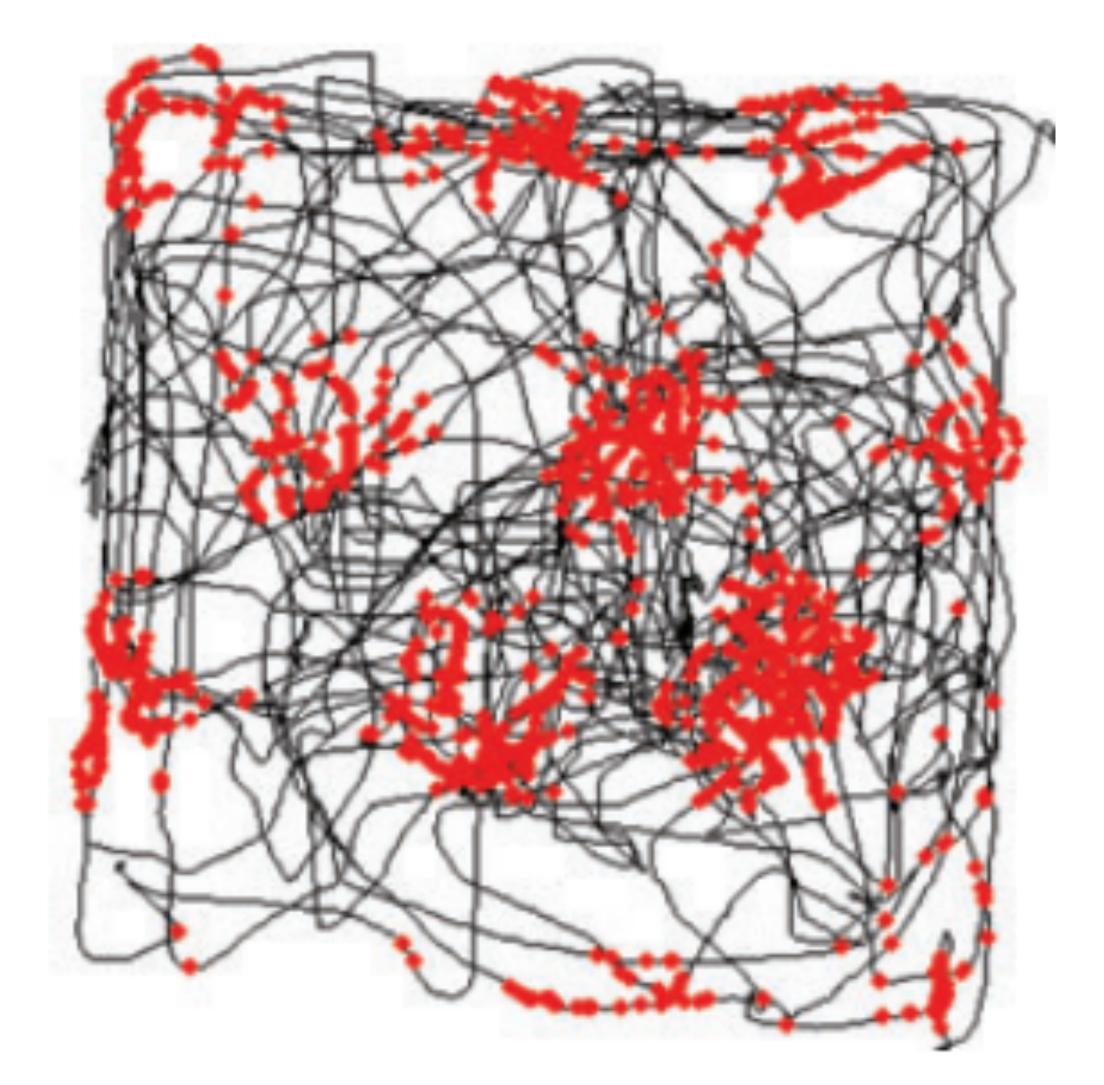
- Symbols and relational rules are a powerful tool for describing the world • Capture rapid generalization and allow for compositional construction of new
 - representations
 - Explicit formulation of relationships in the world that mirror our own Language of Thought and provides interpretable predictions
- Learning is difficult and rules can sometimes be too rigid
 - Compositional hypothesis space leads to a combinatorial explosion of possible symbolic representations, where search can be very costly
 - Learning is often framed as a search problem, where heuristic solutions provide a valuable aid
- Neurosymbolic AI might offer the best of both worlds by combining the fast learning of subsymbolic AI (i.e., neural networks) with the powerful abstractions of symbolic AI

5 minute break

Cognitive Maps

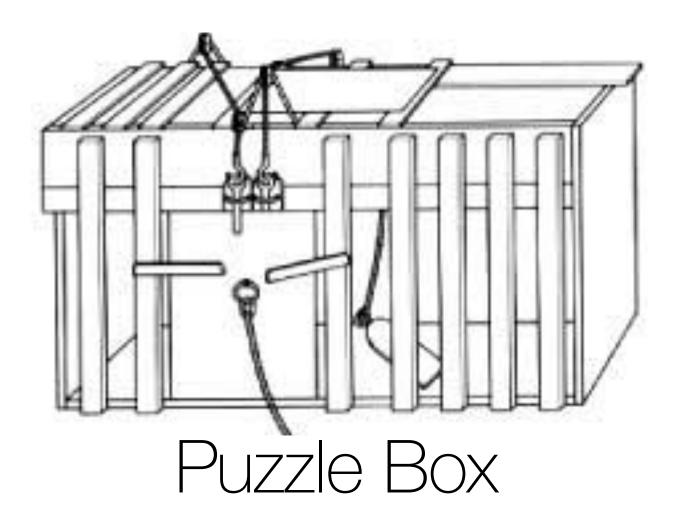


Tolman (1948)

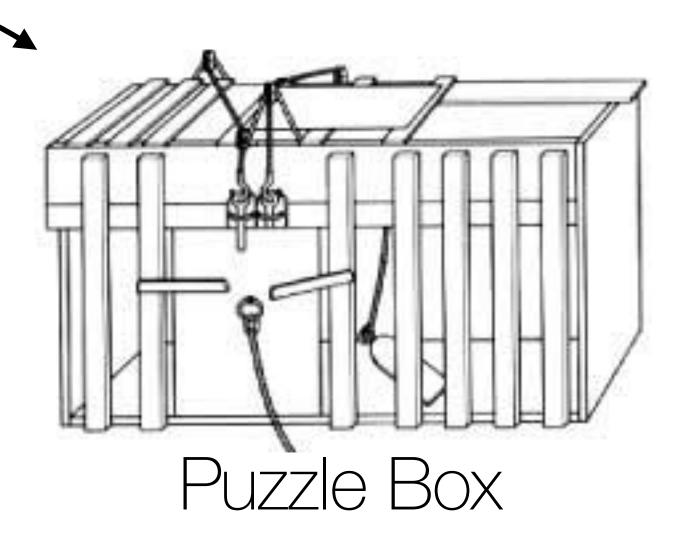


Moser et al., (2008)

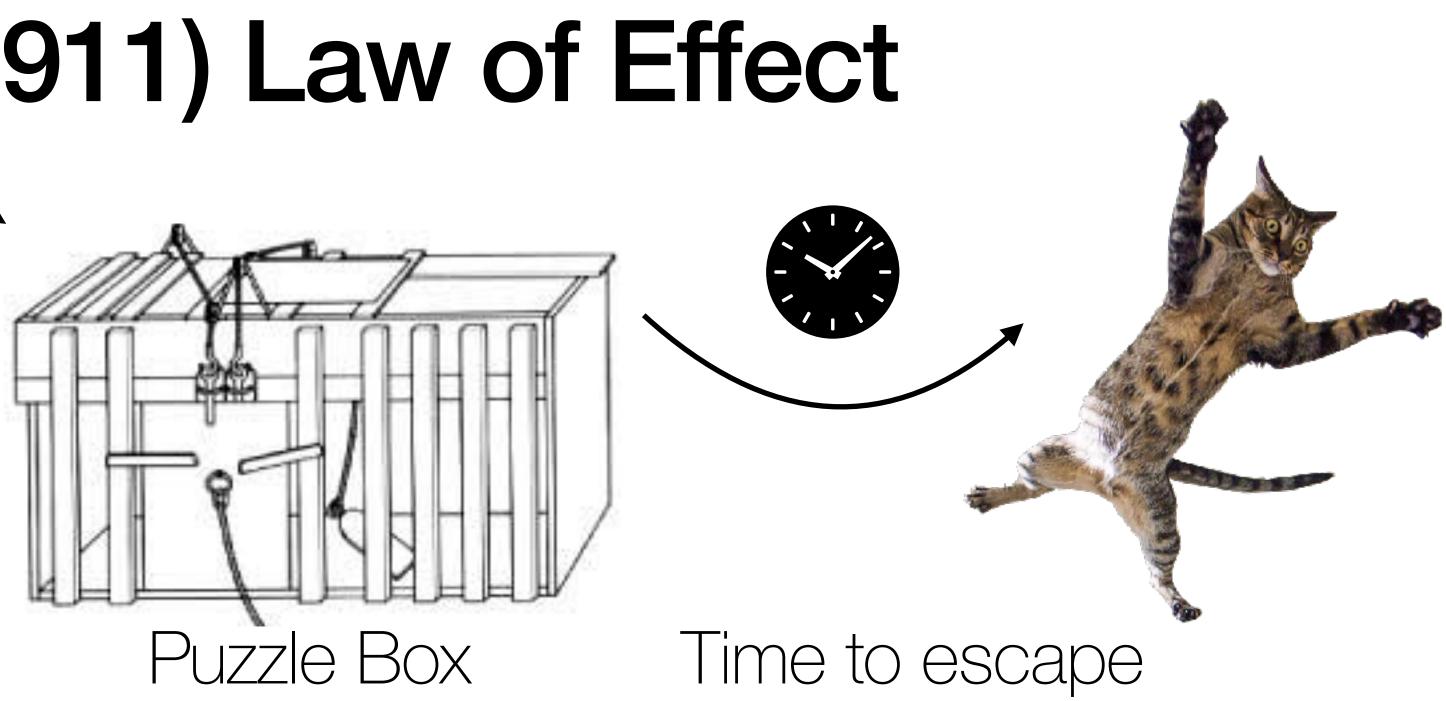
The story so far ...



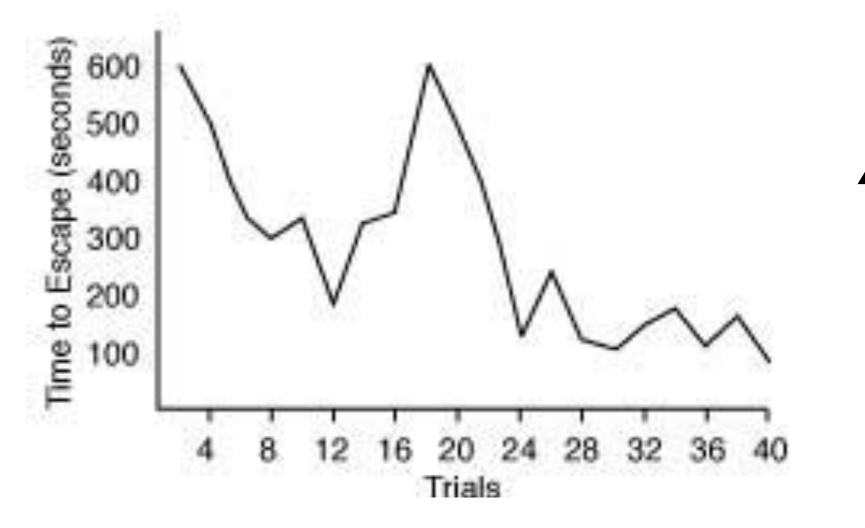
Cat

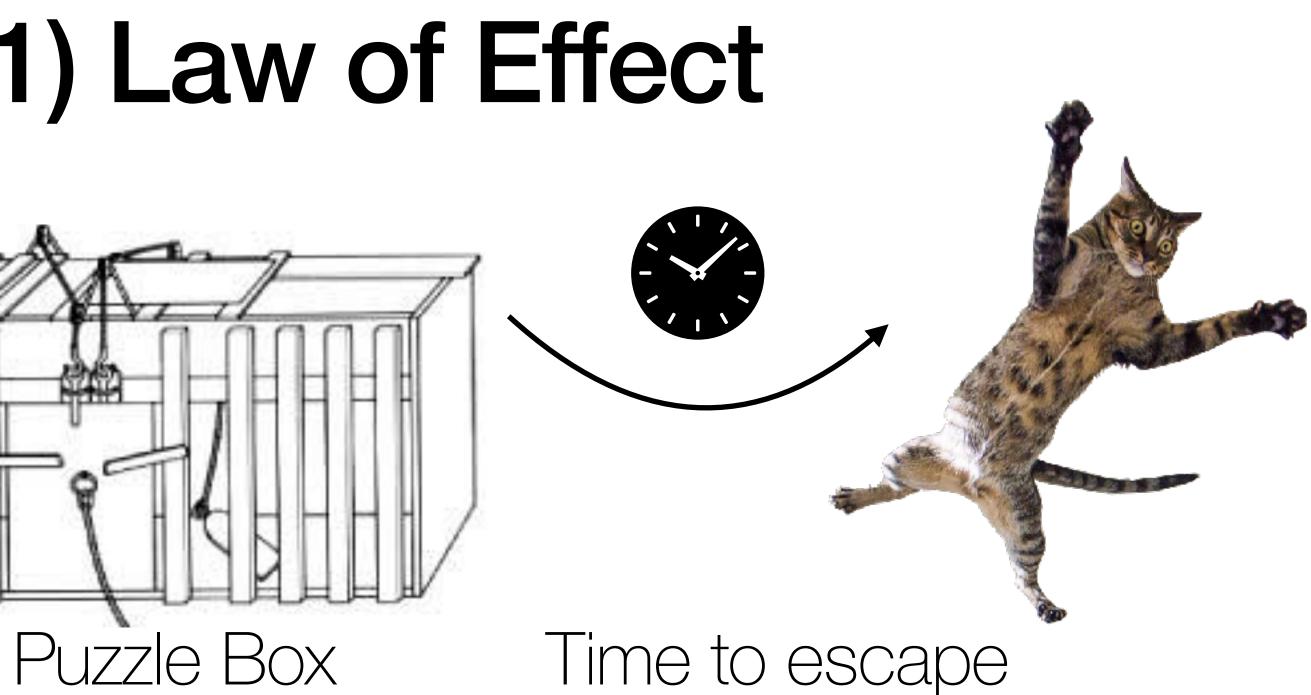


Cat



Cat





Actions associated with satisfaction are strengthened, while those associated with discomfort become weakened.

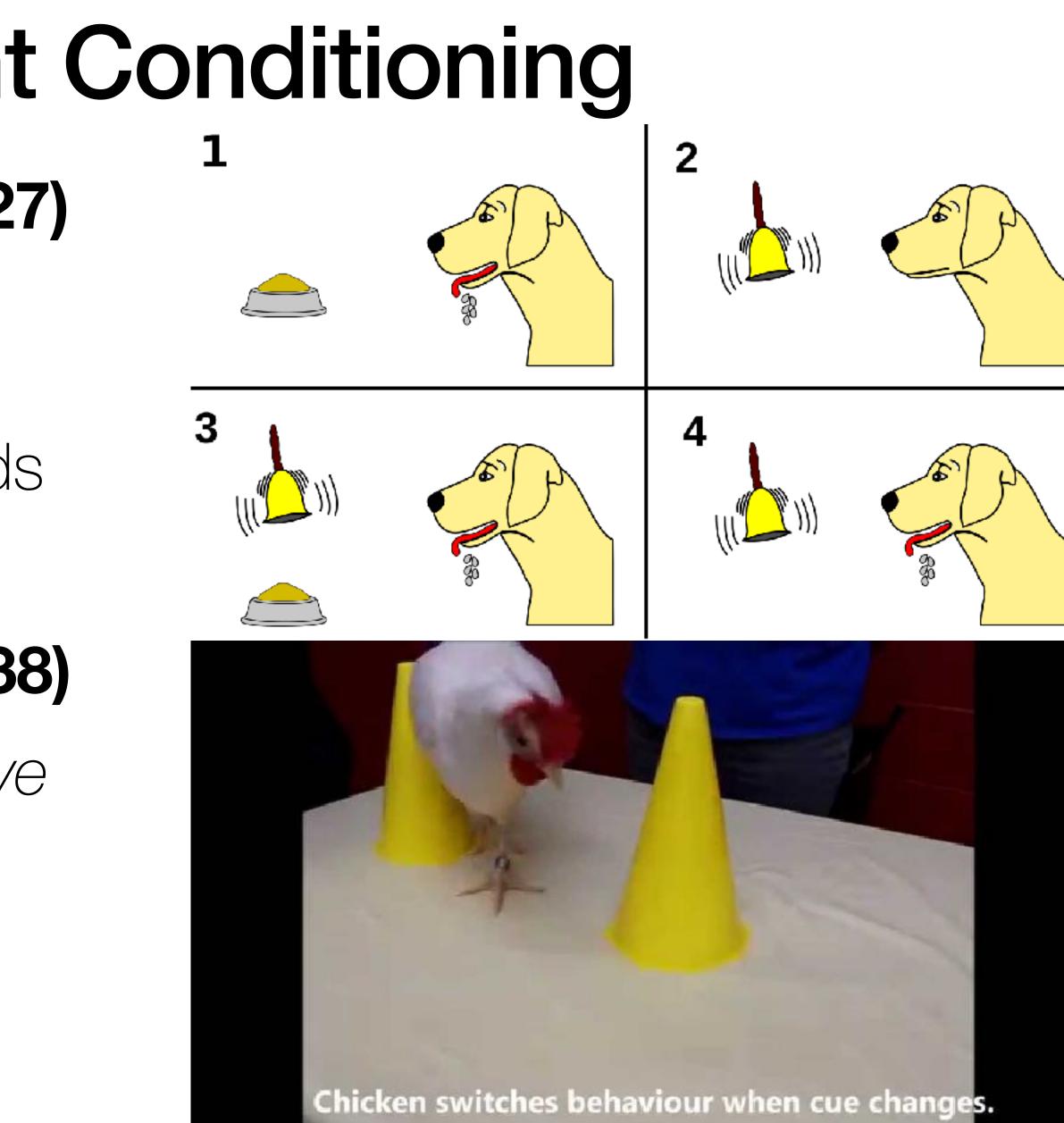
Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

Learning as the *passive* coupling of stimulus (bell ringing) and response (salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Learning as the *active* shaping of behavior in response to rewards or punishments



Edward Tolman (1886 - 1959)

- Raised by an adament Quaker mother
- Studied at MIT, Harvard, and Giessen
- Inspired by Gestalt psychologists like Kurt Koffka and Kurt Lewin
- Coined "Purposive Behaviorism"
 - Behavior needs to be studied in the context of the purpose or goals of behavior
- In contrast to other behaviorists at the time, Tolman believed in latent learning and the need to talk about hidden mental states in how we make decisions

Lewin, Tolman, & Hull

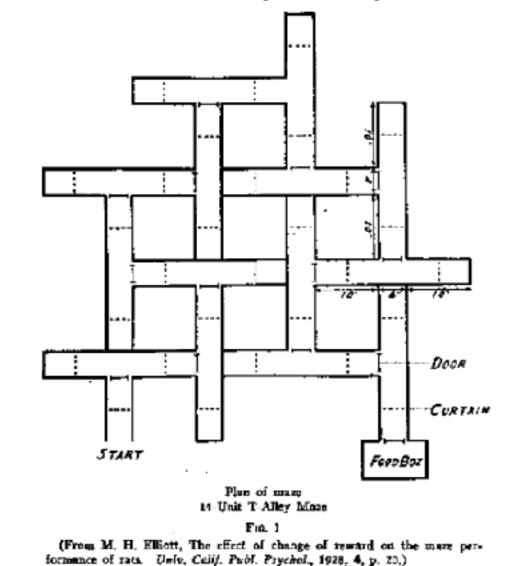
Tolman and Cognitive maps

- signals to outgoing responses (S-R Learning)
- Rather, "latent learning" establishes something like a "field map of the environment" gets etablished (S-S learning)

Stimulus-Response (S-R) Learning

Learning is not just a telephone switchboard connecting incoming sensory

Stimulus-Stimulus (S-S) Learning



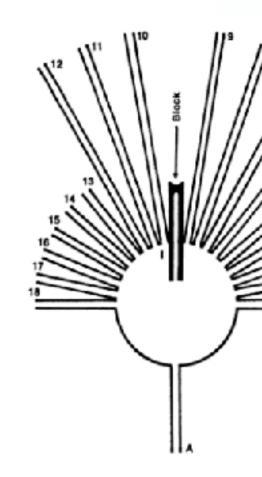
Tolman (1948): Different interpretations

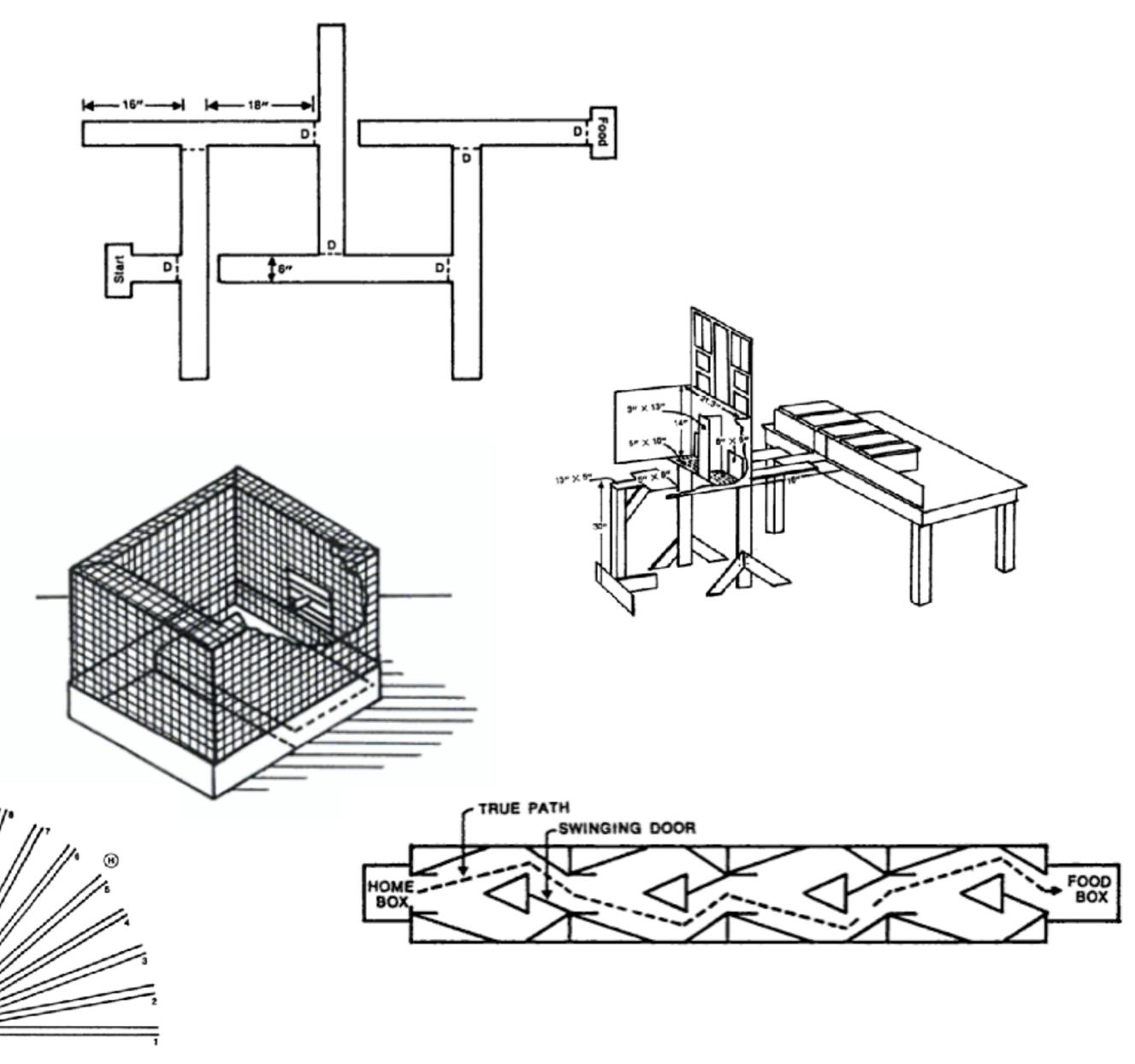
- S-R school: learning consists of strenthening/weakening of S-R connections (like a telephone exchange)
 - subgroup a) more frequent responses are strengthened (Law of Exercise)
 - subgroup b) more rewarded responses are strengthened (Law of Effect)
- S-S school: in the course of learning, "a field map of the environment gets established"
 - Sampling of stimuli is not passive, but active and selective during learning w.r.t. to a goal or purpose
 - Stimuli are not just routed to associations, but used to construct some new map-like representation that captures the relational structure of the environment
 - The nature of these map-like representations (strip-like vs. broad) have consequences for generalization

"All students agree as to the facts. They disagree, however on theory and explanation"

Experiments

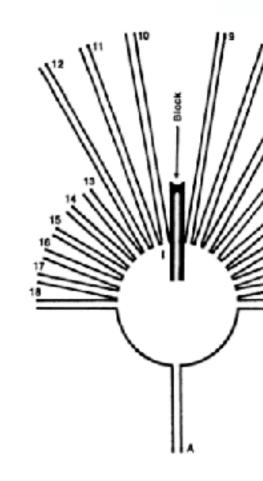
- 1. Latent Learning
- 2. Vicarious trial and error
- 3. Searching for the stimulus
- 4. Hypotheses
- 5. Spatial orientation

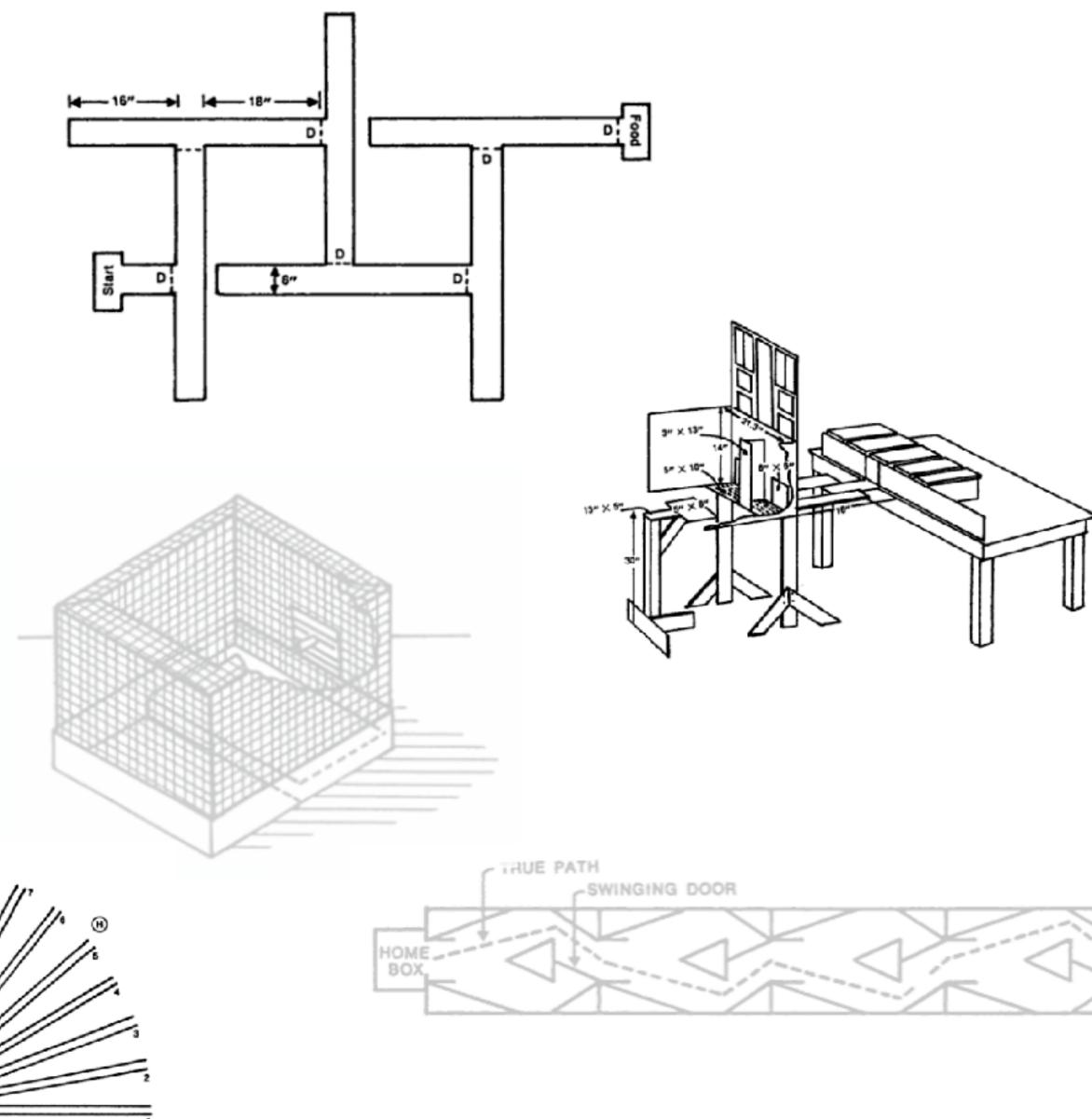




Experiments

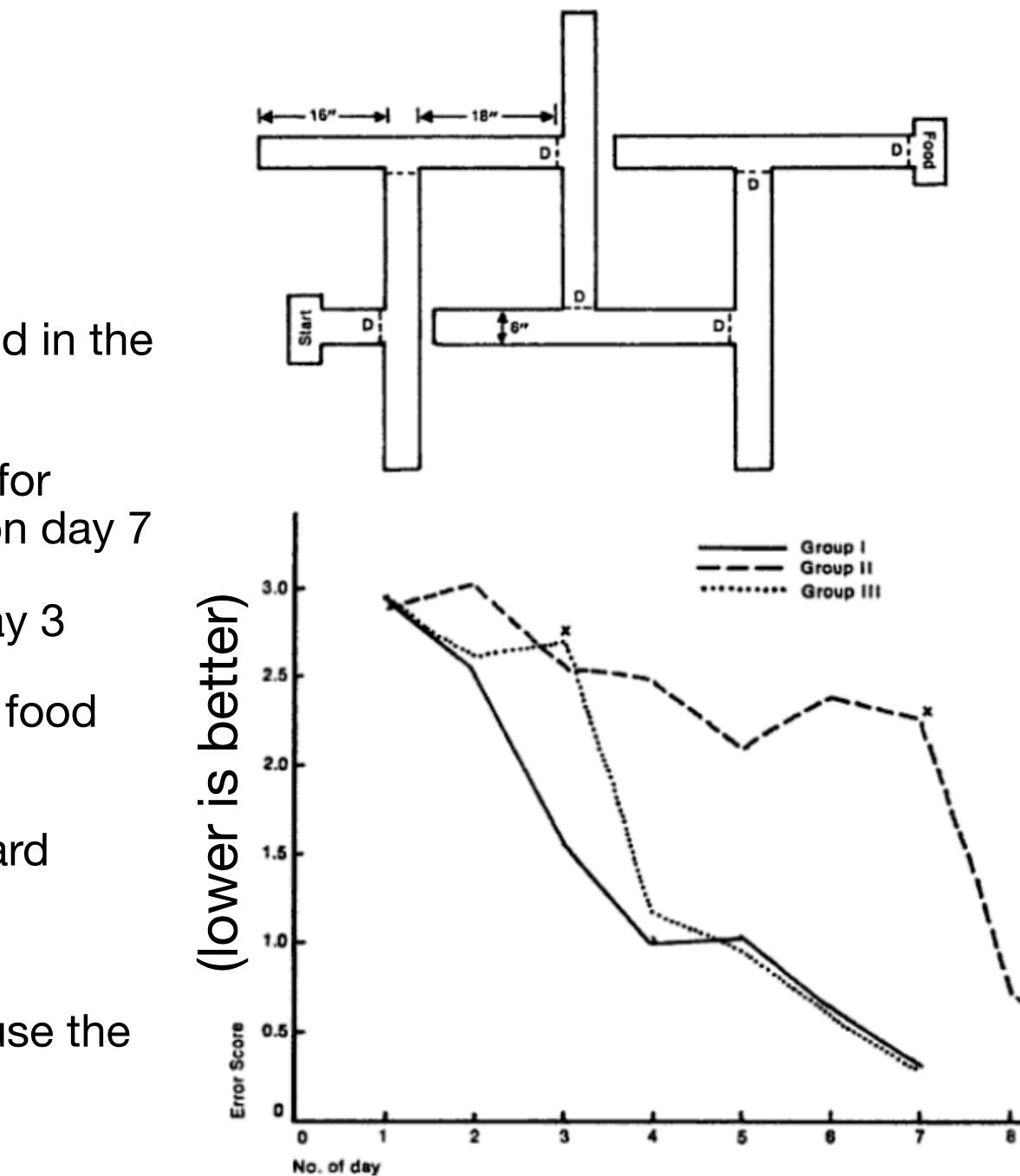
- 1. Latent Learning
- 2. Vicarious trial and error
- 3. Searching for the stimulus
- 4. Hypotheses
- 5. Spatial orientation



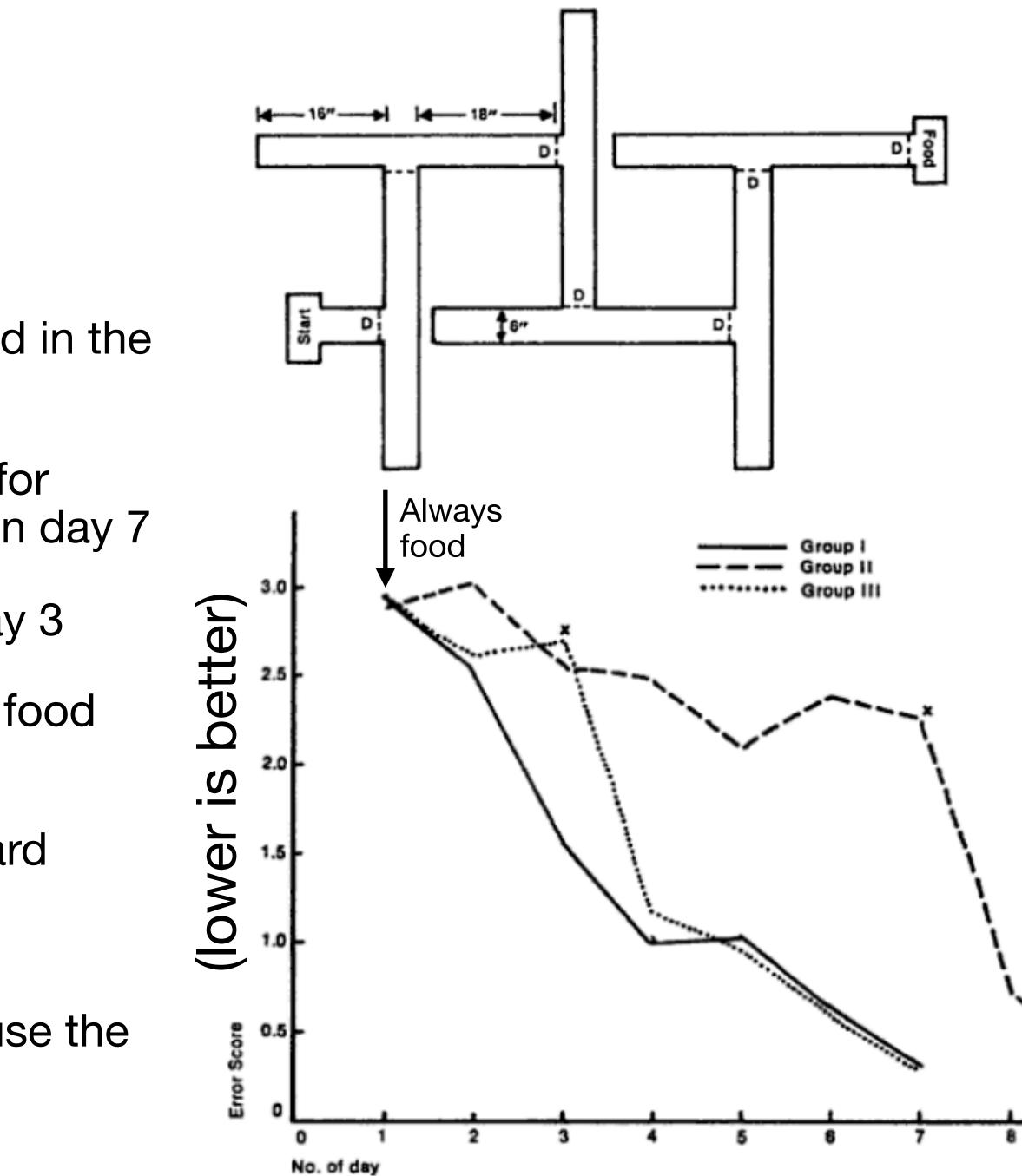


·	-		-	-	~	
	~	Þ	r Ç	0	ç	
~	-			0.	~	

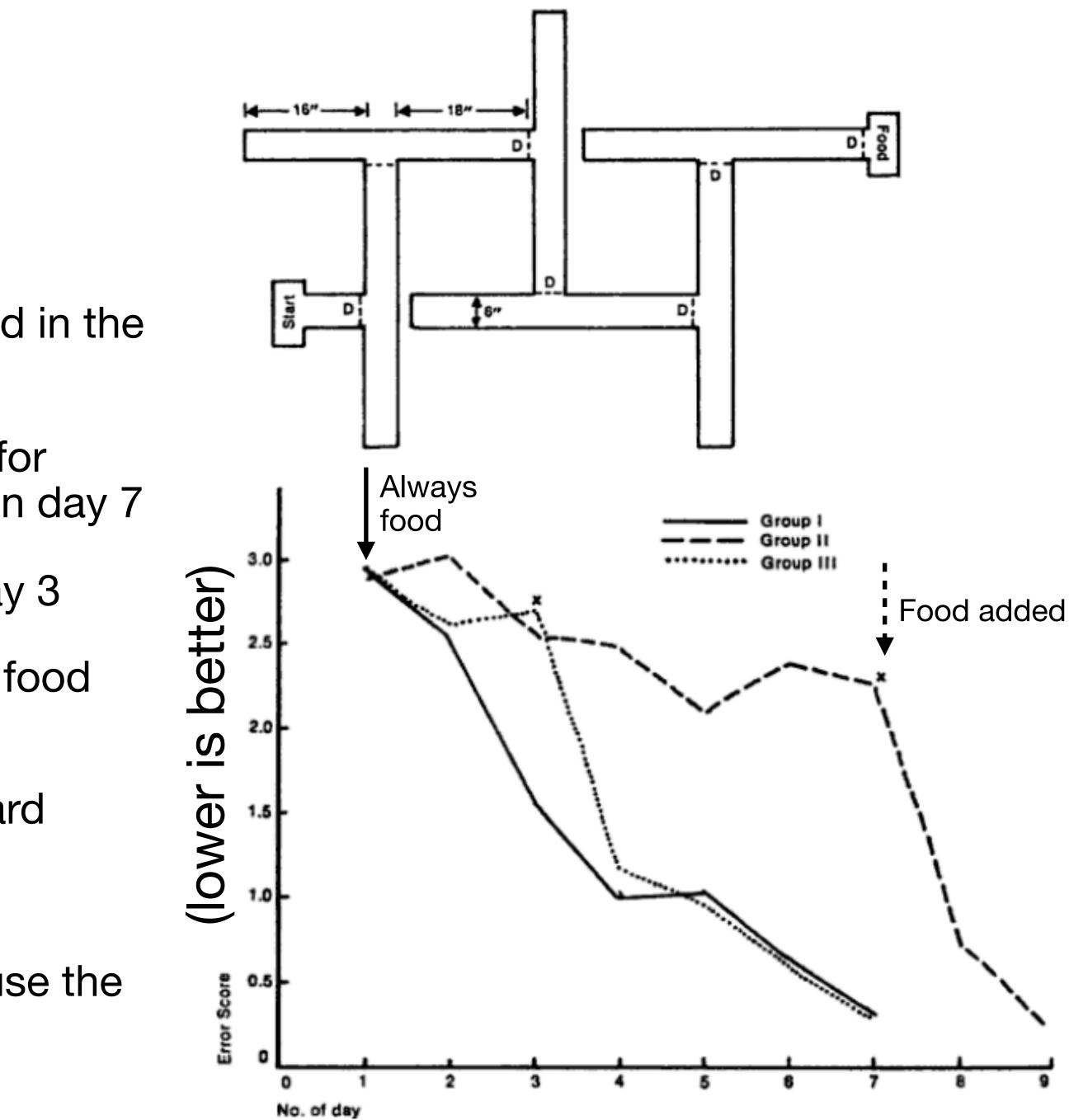
- Blodgett (1929) Maze navigation task
 - Group 1 [Control]: one trial a day with food in the goal box at the end
 - **Group 2** [Late food] No food in the maze for days 1-6, then food provided at the end on day 7
 - Group 3 [Early food] ... food added on day 3
- Learning curves dropped dramatically when food was added
 - This suggests latent learning prior to reward
 - "They had been building up a 'map"
 - Once the reward was added, they could use the map rather than starting from scratch



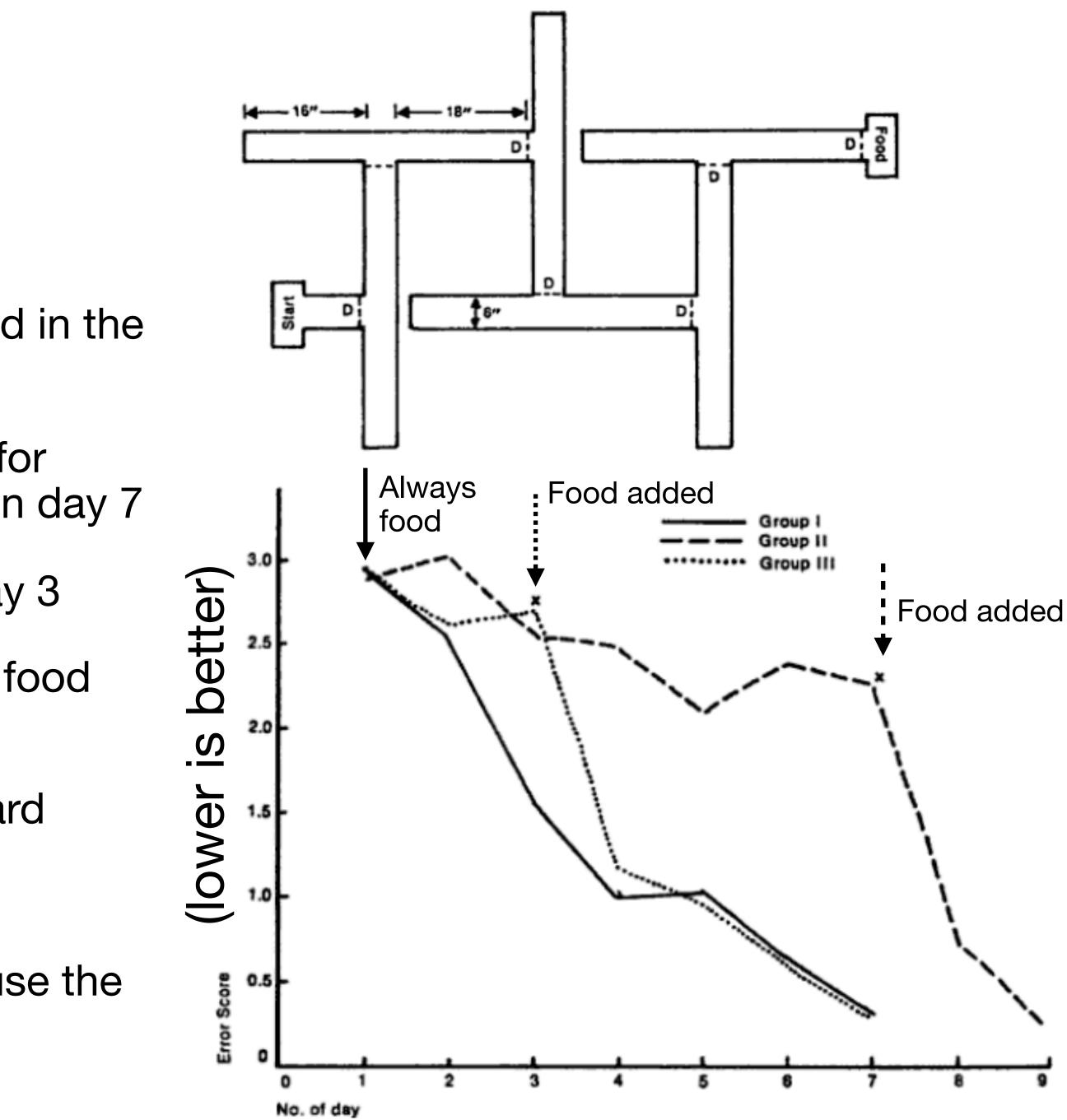
- Blodgett (1929) Maze navigation task
 - Group 1 [Control]: one trial a day with food in the goal box at the end
 - **Group 2** [Late food] No food in the maze for days 1-6, then food provided at the end on day 7
 - Group 3 [Early food] ... food added on day 3
- Learning curves dropped dramatically when food was added
 - This suggests latent learning prior to reward
 - "They had been building up a 'map"
 - Once the reward was added, they could use the map rather than starting from scratch



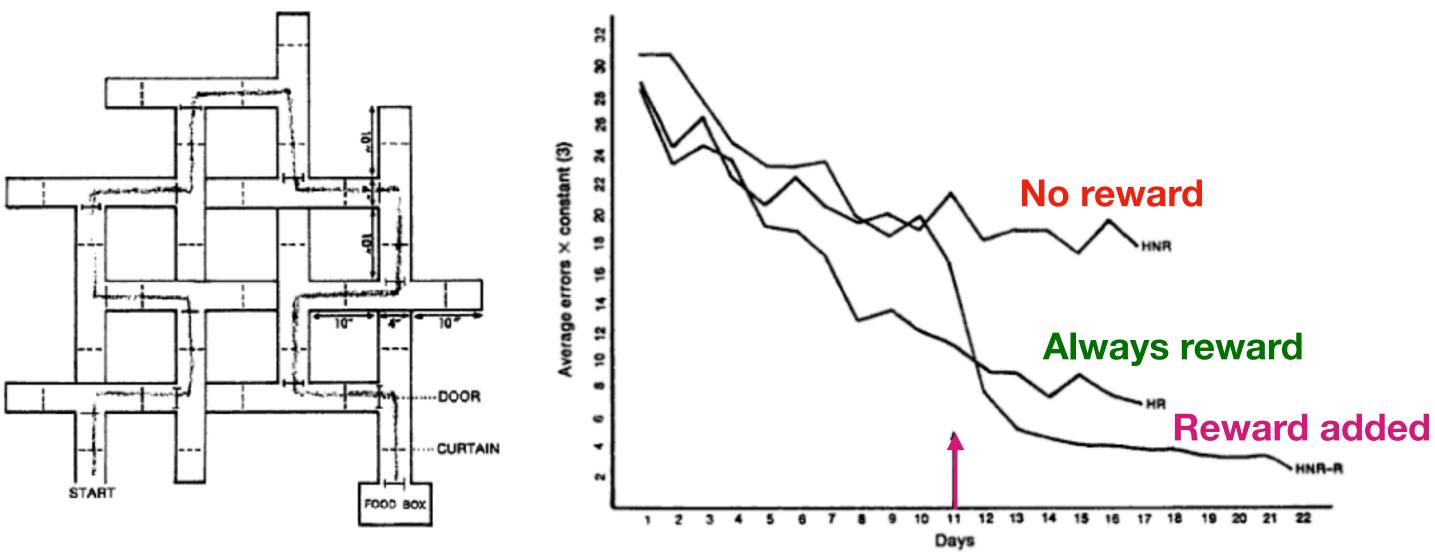
- Blodgett (1929) Maze navigation task
 - **Group 1** [Control]: one trial a day with food in the goal box at the end
 - Group 2 [Late food] No food in the maze for days 1-6, then food provided at the end on day 7
 - Group 3 [Early food] ... food added on day 3
- Learning curves dropped dramatically when food was added
 - This suggests latent learning prior to reward
 - "They had been building up a 'map'"
 - Once the reward was added, they could use the map rather than starting from scratch



- Blodgett (1929) Maze navigation task
 - **Group 1** [Control]: one trial a day with food in the goal box at the end
 - Group 2 [Late food] No food in the maze for days 1-6, then food provided at the end on day 7
 - Group 3 [Early food] ... food added on day 3
- Learning curves dropped dramatically when food was added
 - This suggests latent learning prior to reward
 - "They had been building up a 'map'"
 - Once the reward was added, they could use the map rather than starting from scratch

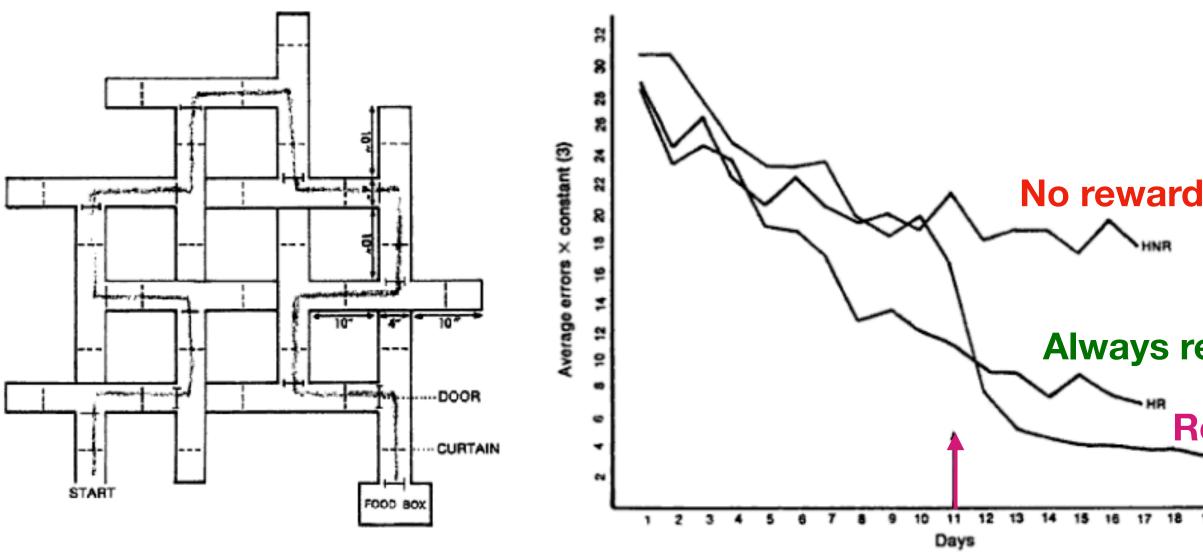


- Replicates with more complex environment (Tolman & Honzik, 1930)
- Always reward better than no reward
- Adding reward later produces the same dramatic drop in error

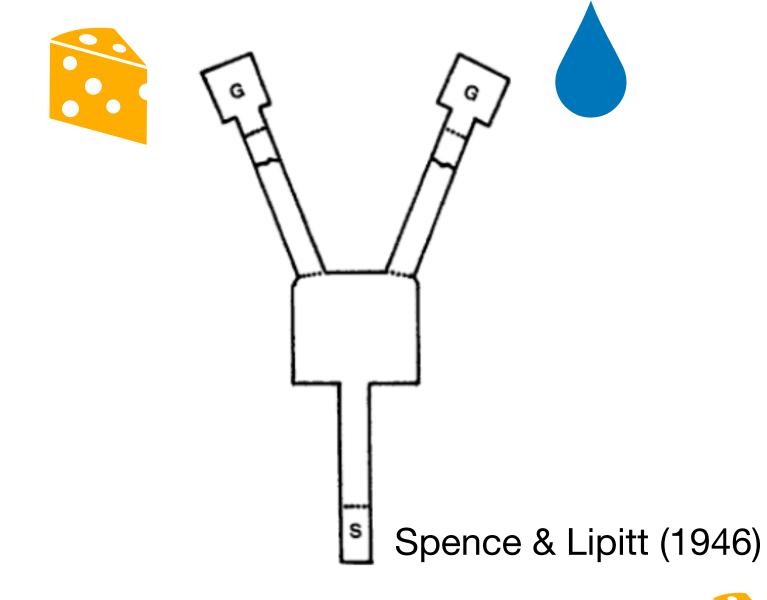


Tolman & Honzik (1930)

- Replicates with more complex environment (Tolman & Honzik, 1930)
- Always reward better than no reward
- Adding reward later produces the same dramatic drop in error



Tolman & Honzik (1930)



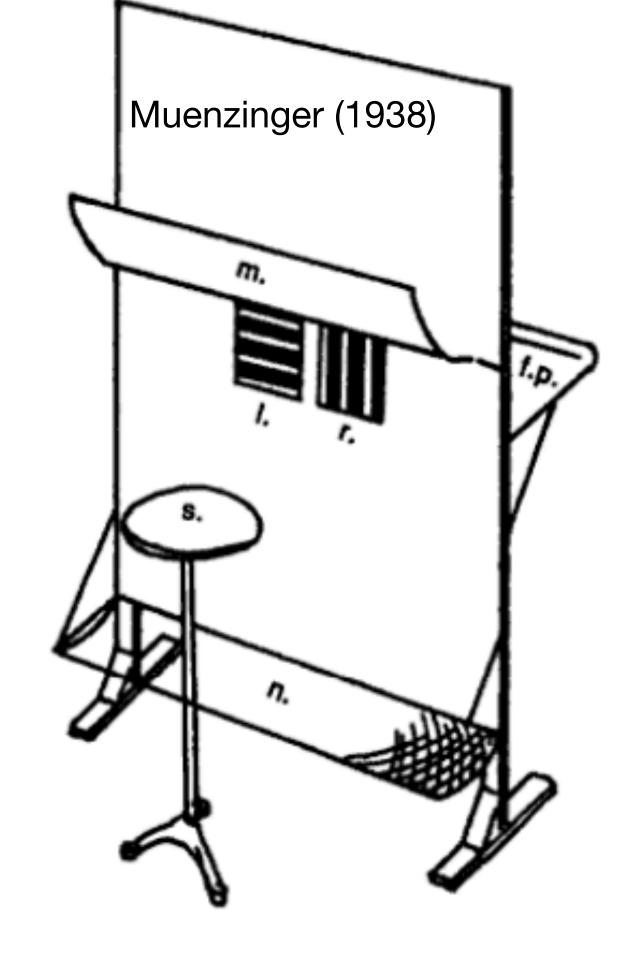
- Y-maze with separate food 4 + water

 rewards
- Rats exposed to maze while satiated (no hunger + no thirst)
 - One group reintroduced when hungry goes left towards
 - Another group reintroduced when lacksquarethirsty goes right towards

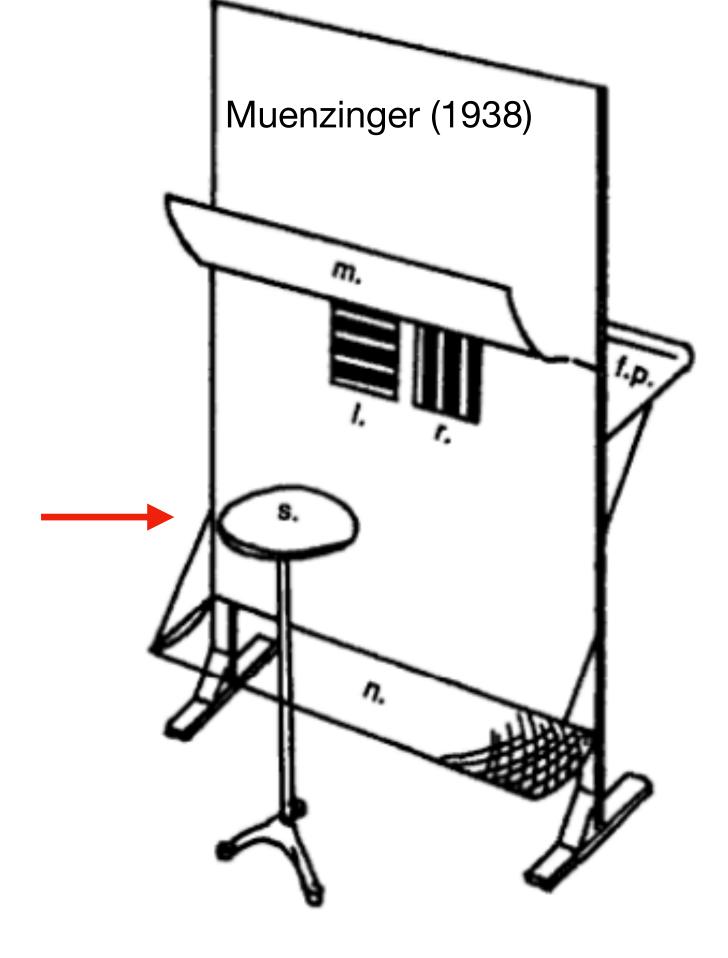
Always reward

Reward added

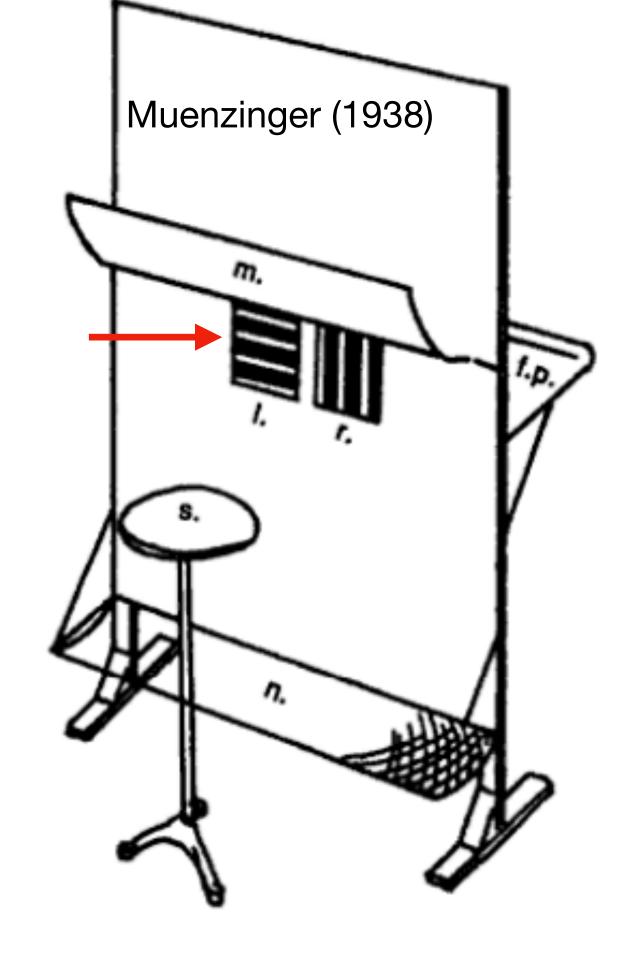
- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)



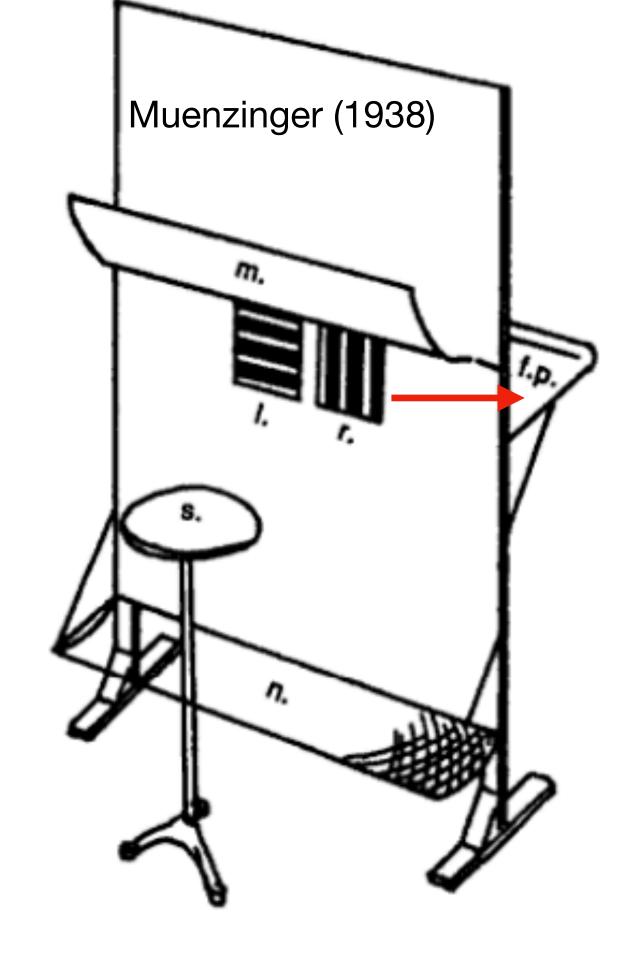
- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)



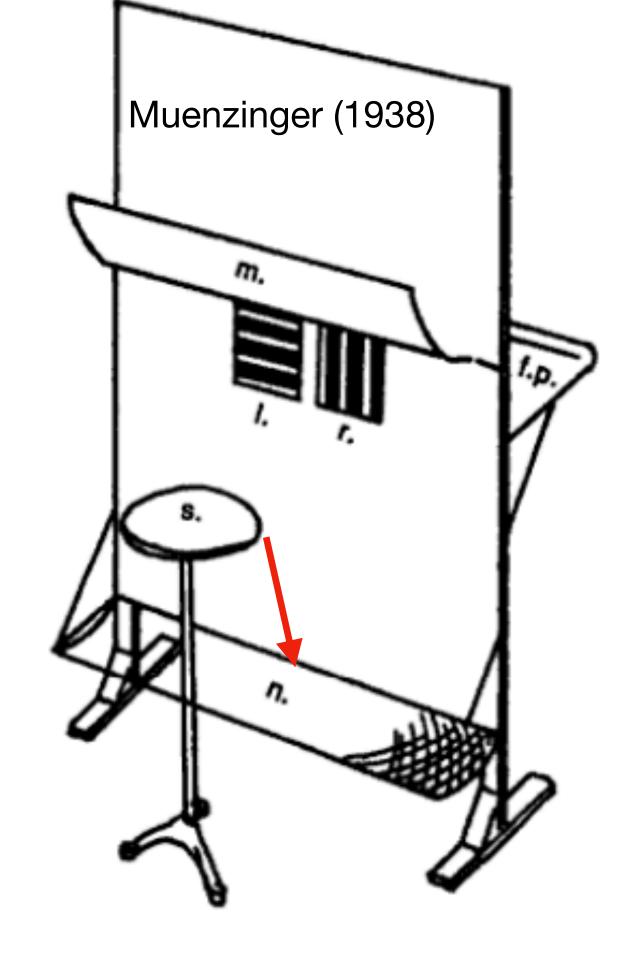
- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)



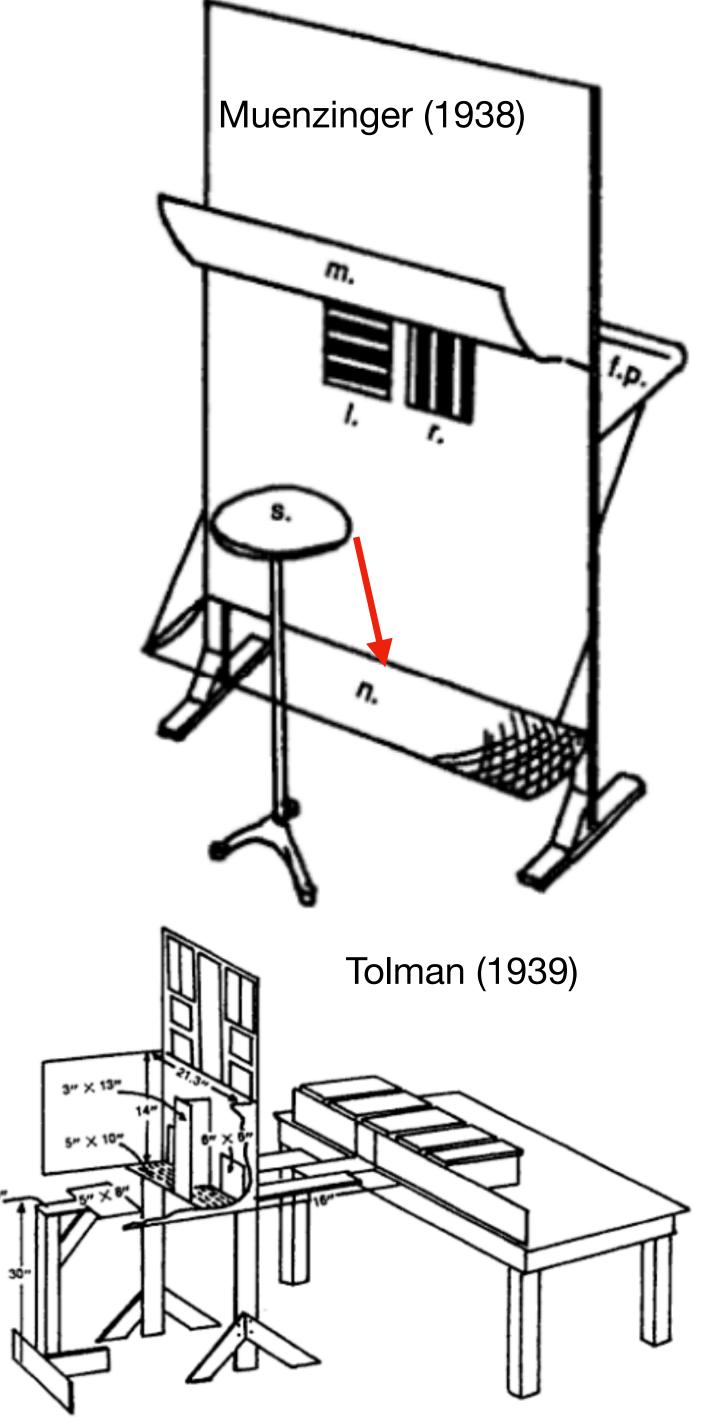
- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)



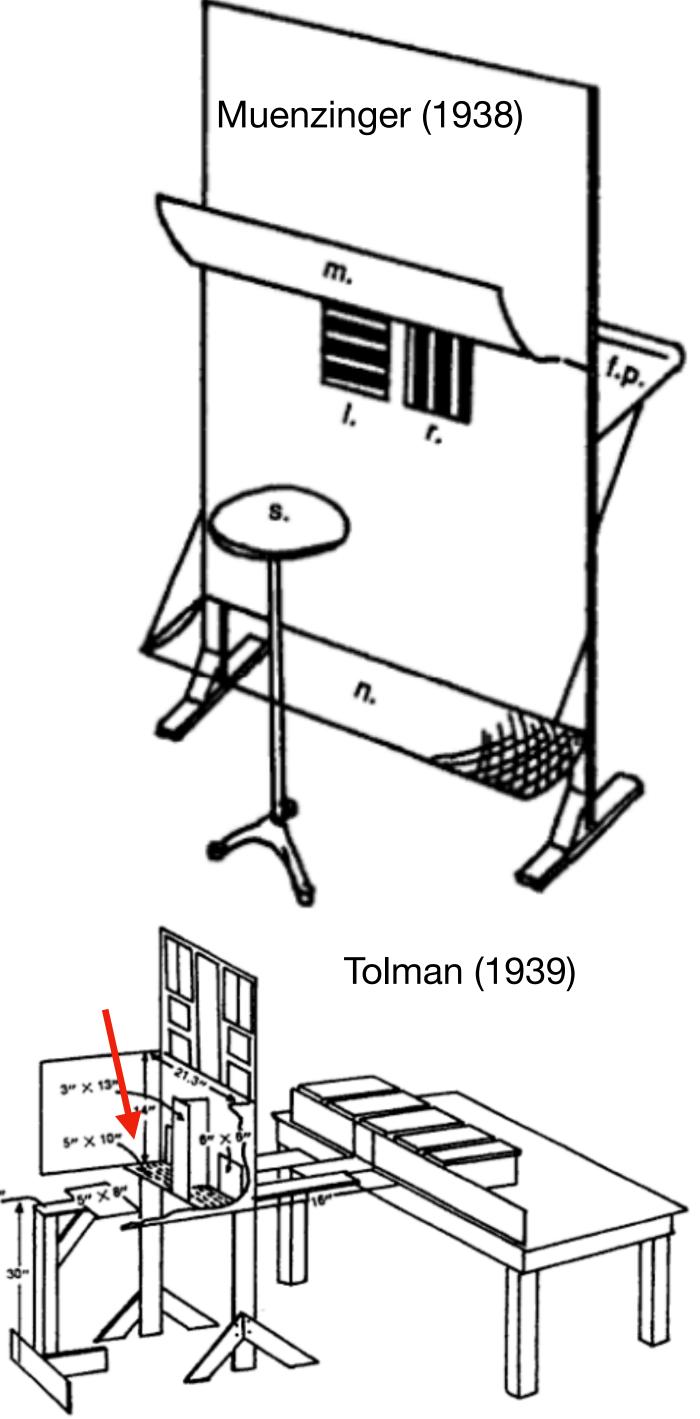
- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)



- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)

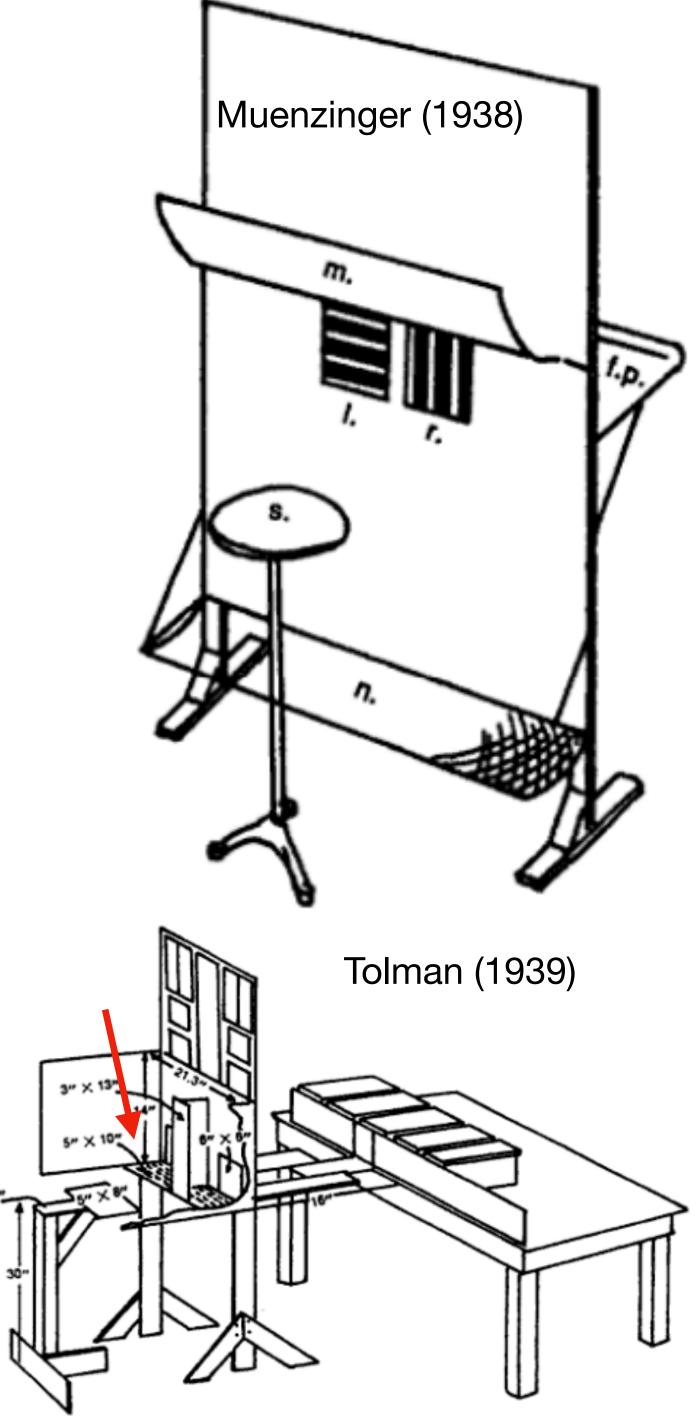


- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)

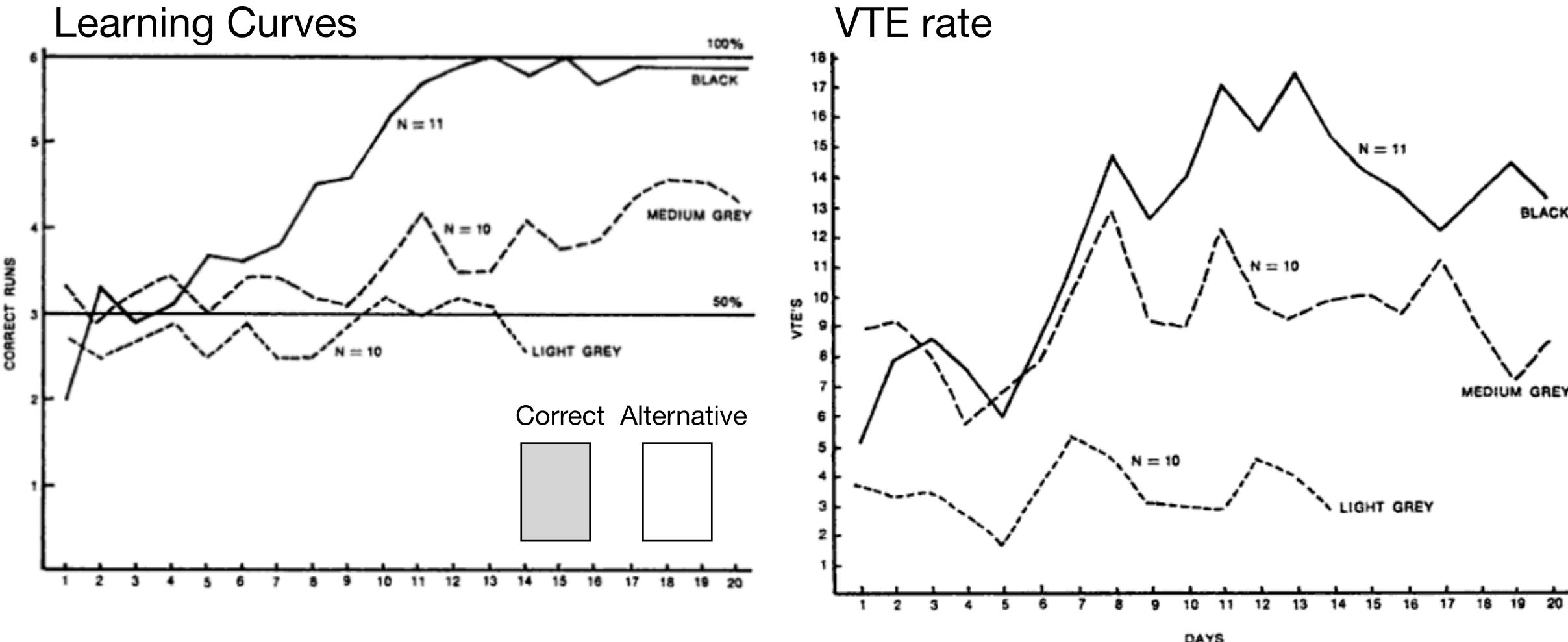


- Animal put on jumping stand, facing two doors (I vs. r) with different visual properties (e.g., horizontal vs. vertical stripes)
 - One door is correct, the other incorrect
 - location is randomly swapped but visual features are predictive
 - If the animal jumps towards the correct door, it opens and reveals food on a platform behind... and if incorrect
- Tolman (1939) added landing platforms infront of the doors
 - When the choice was easy (black vs. white stimuli), the animals learned quicker and did more VTEing than for hard problems
 - After learning had been established, VTEs went down
 - Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)

Vicarious trial and error (VTE): hesitating, looking-back-and-forth behavior observed in rats when confronted with a choice



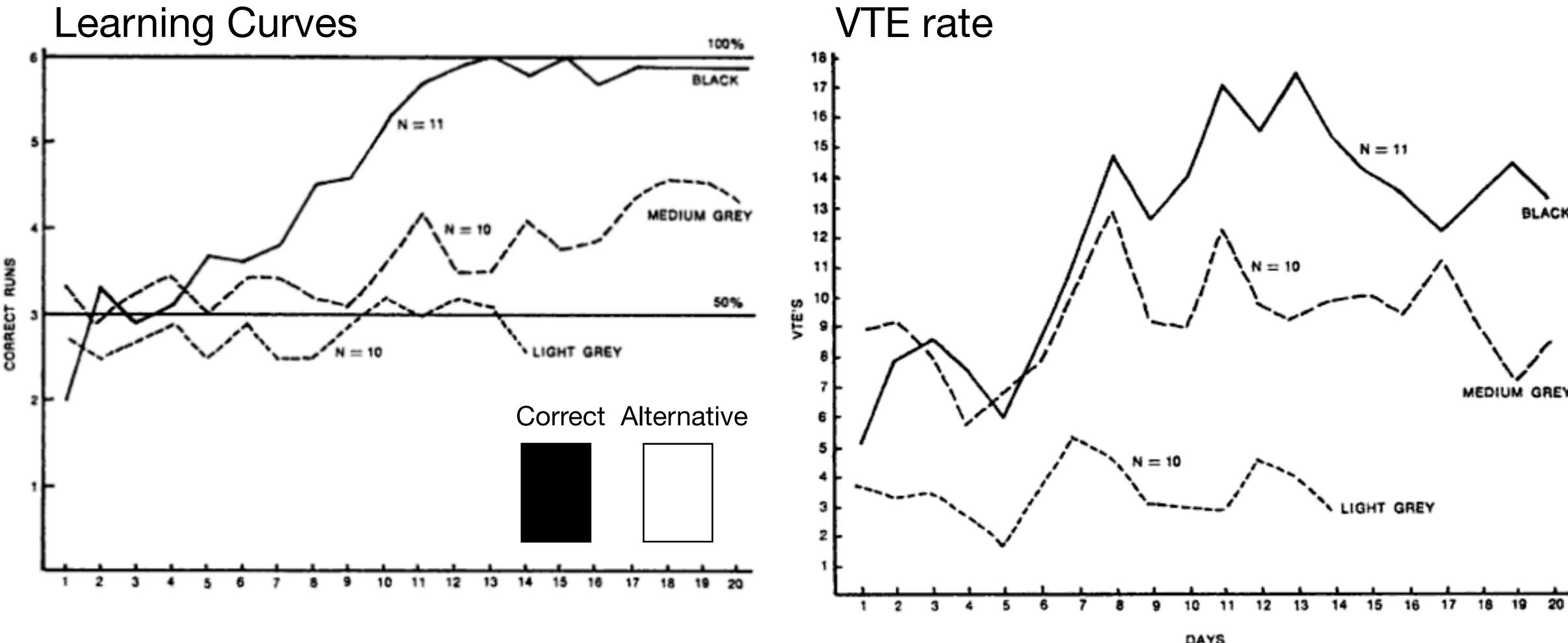
- VTEs coincide with the start of learning, and fade away afterwards
- Not just passive association of stimuli, but active selecting and comparison of stimuli



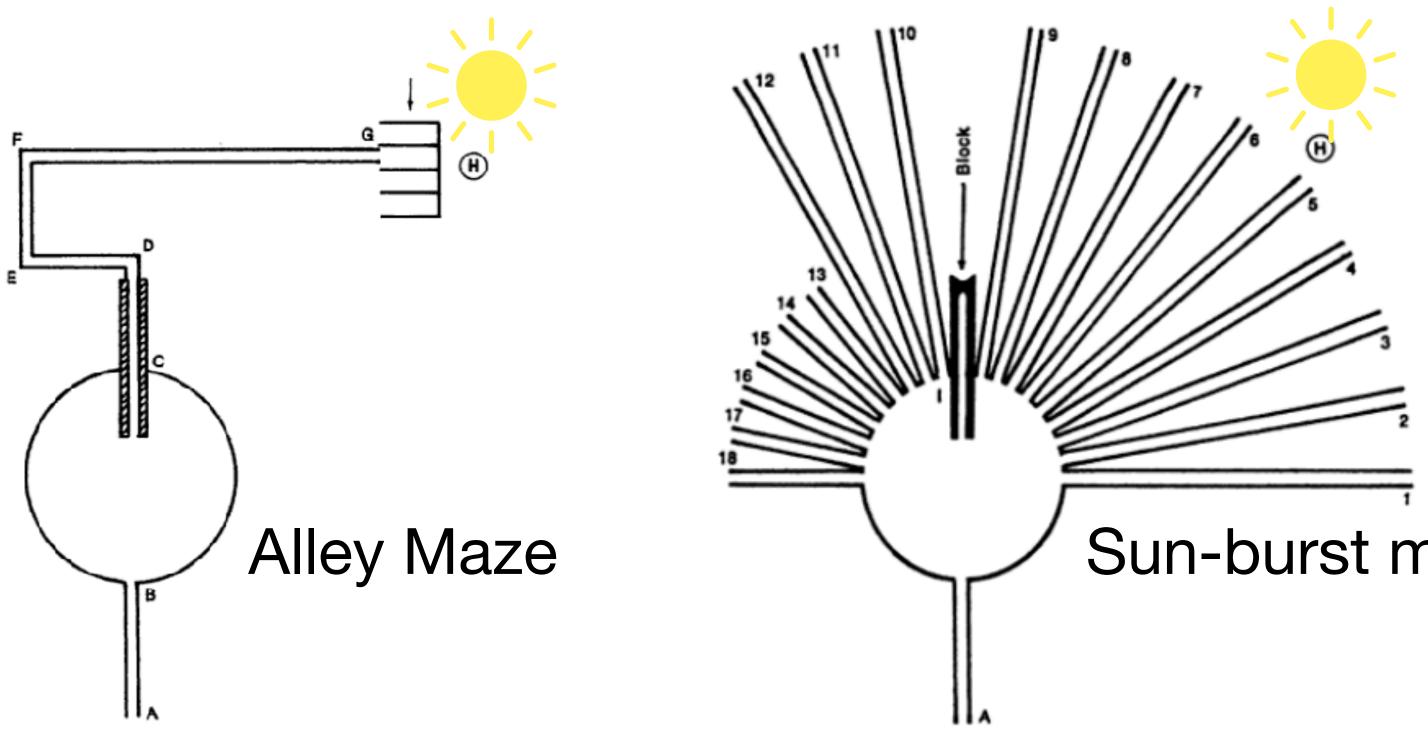
- VTEs coincide with the start of learning, and fade away afterwards
- Not just passive association of stimuli, but active selecting and comparison of stimuli



- VTEs coincide with the start of learning, and fade away afterwards
- Not just passive association of stimuli, but active selecting and comparison of stimuli

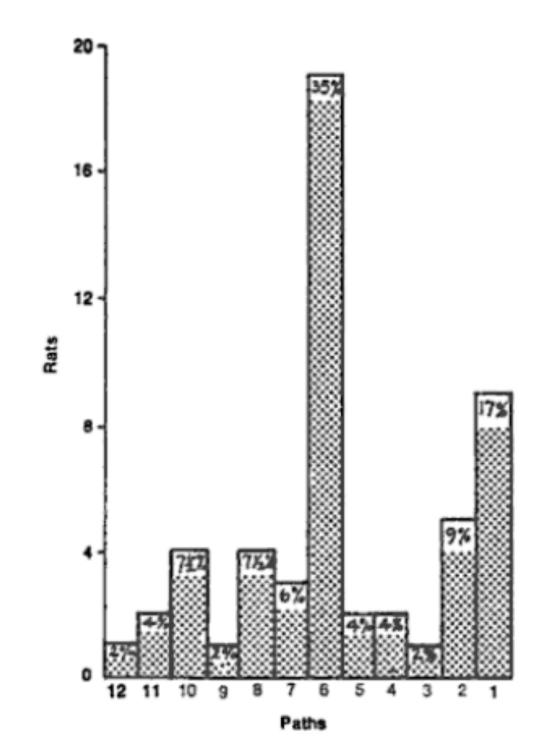


- 3 trials of alley maze task, where H was a light shining from G-F
- Afterwards, rats transferred to sun-burst maze
 - Initially tried the C-D move, but found it blocked

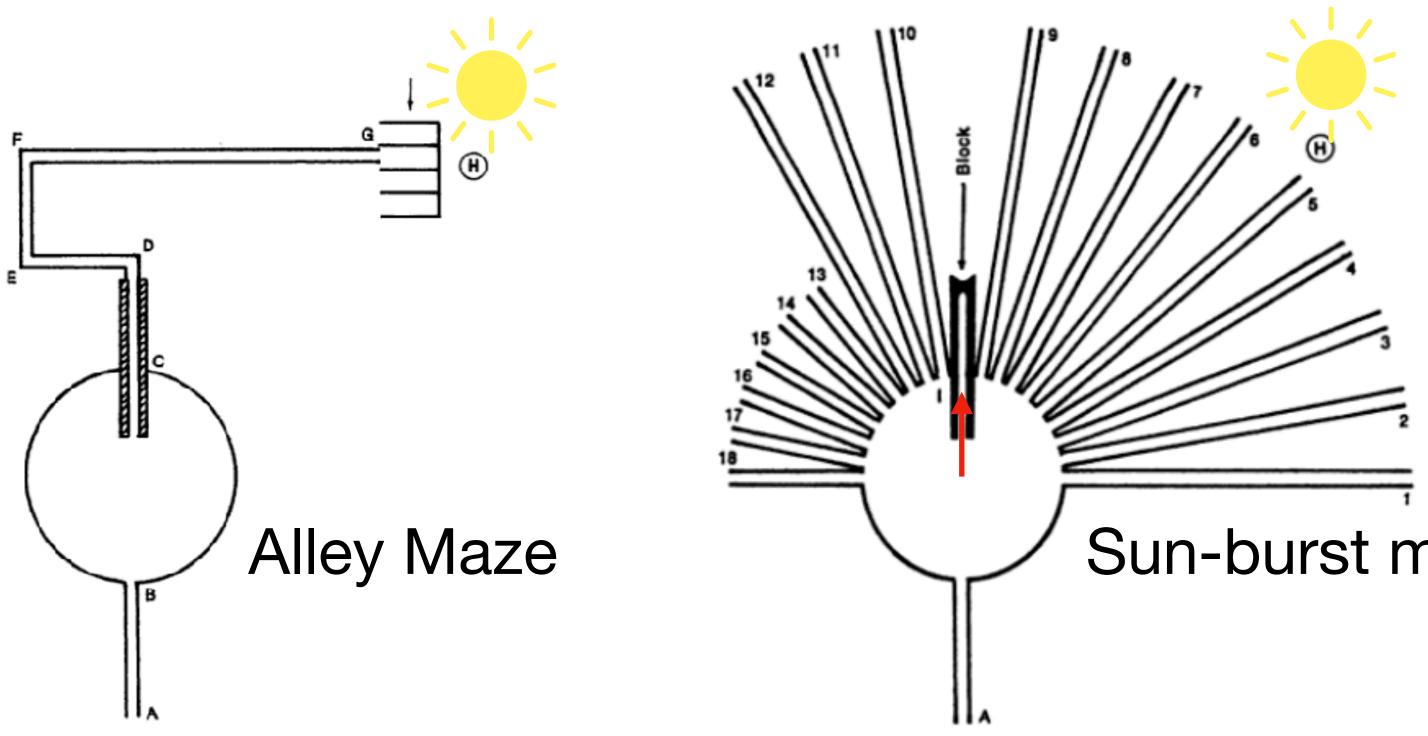


Tolman, Ritchie, & Kalish (1946)

Sun-burst maze

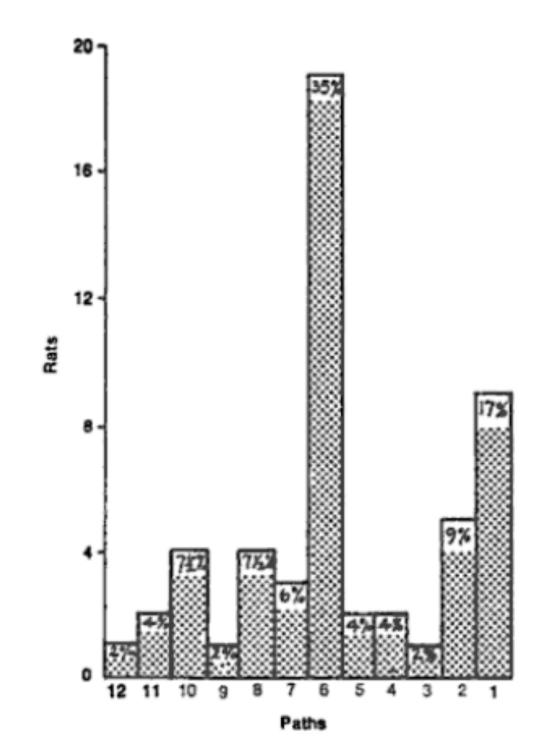


- 3 trials of alley maze task, where H was a light shining from G-F
- Afterwards, rats transferred to sun-burst maze
 - Initially tried the C-D move, but found it blocked

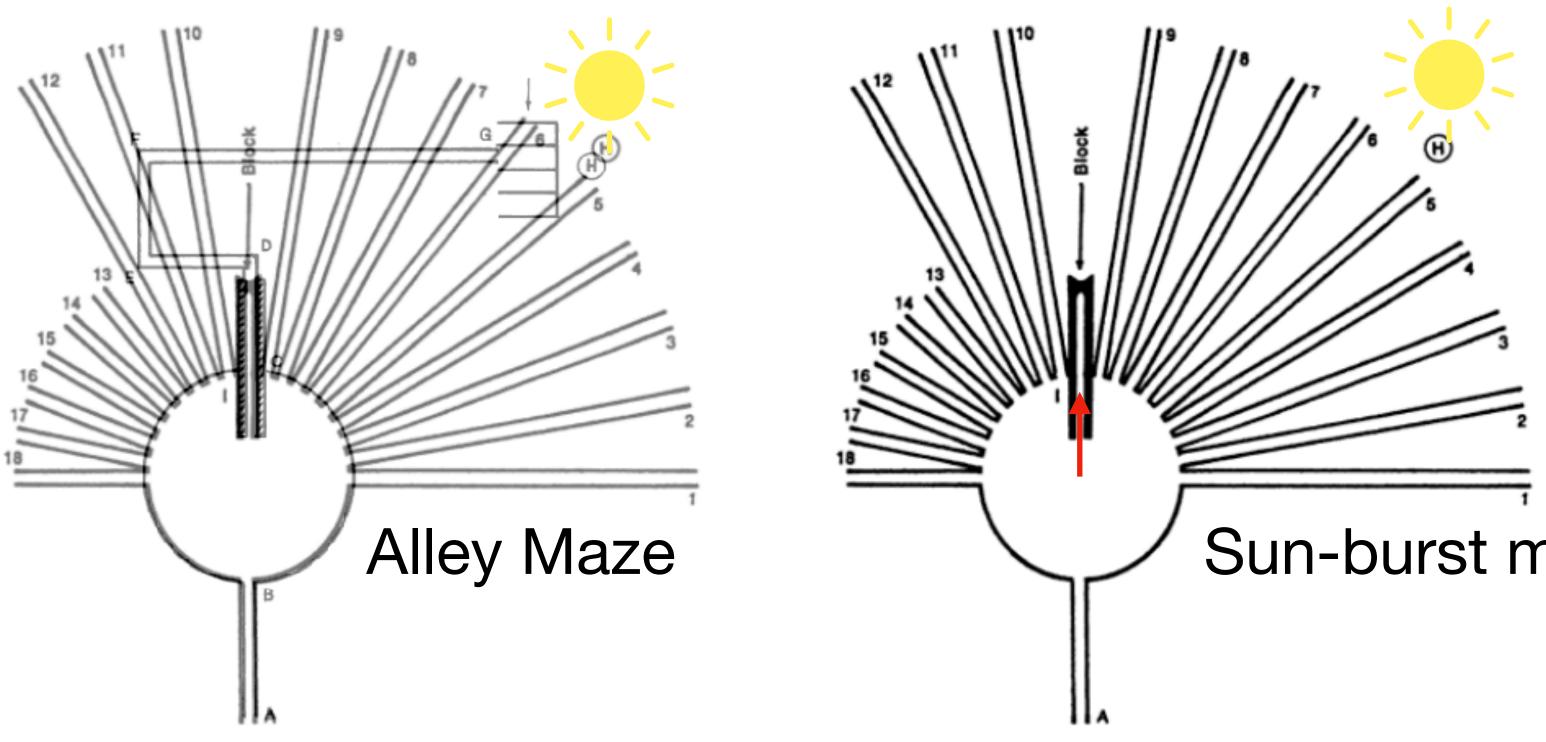


Tolman, Ritchie, & Kalish (1946)

Sun-burst maze

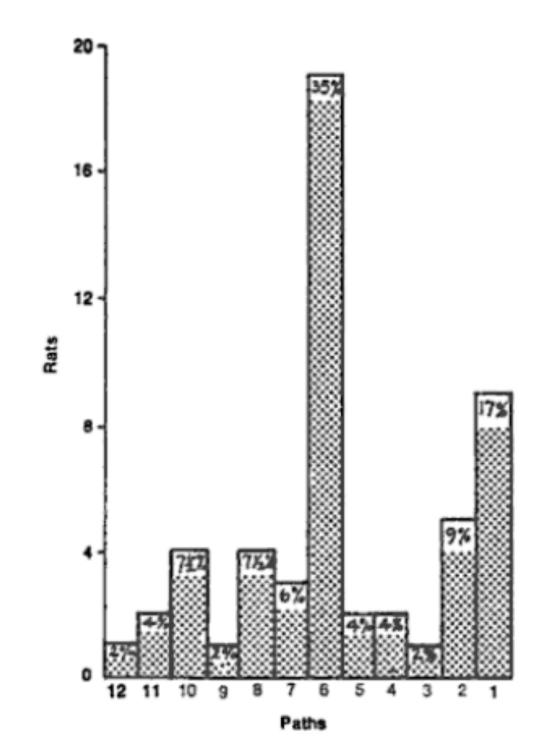


- 3 trials of alley maze task, where H was a light shining from G-F
- Afterwards, rats transferred to sun-burst maze
 - Initially tried the C-D move, but found it blocked

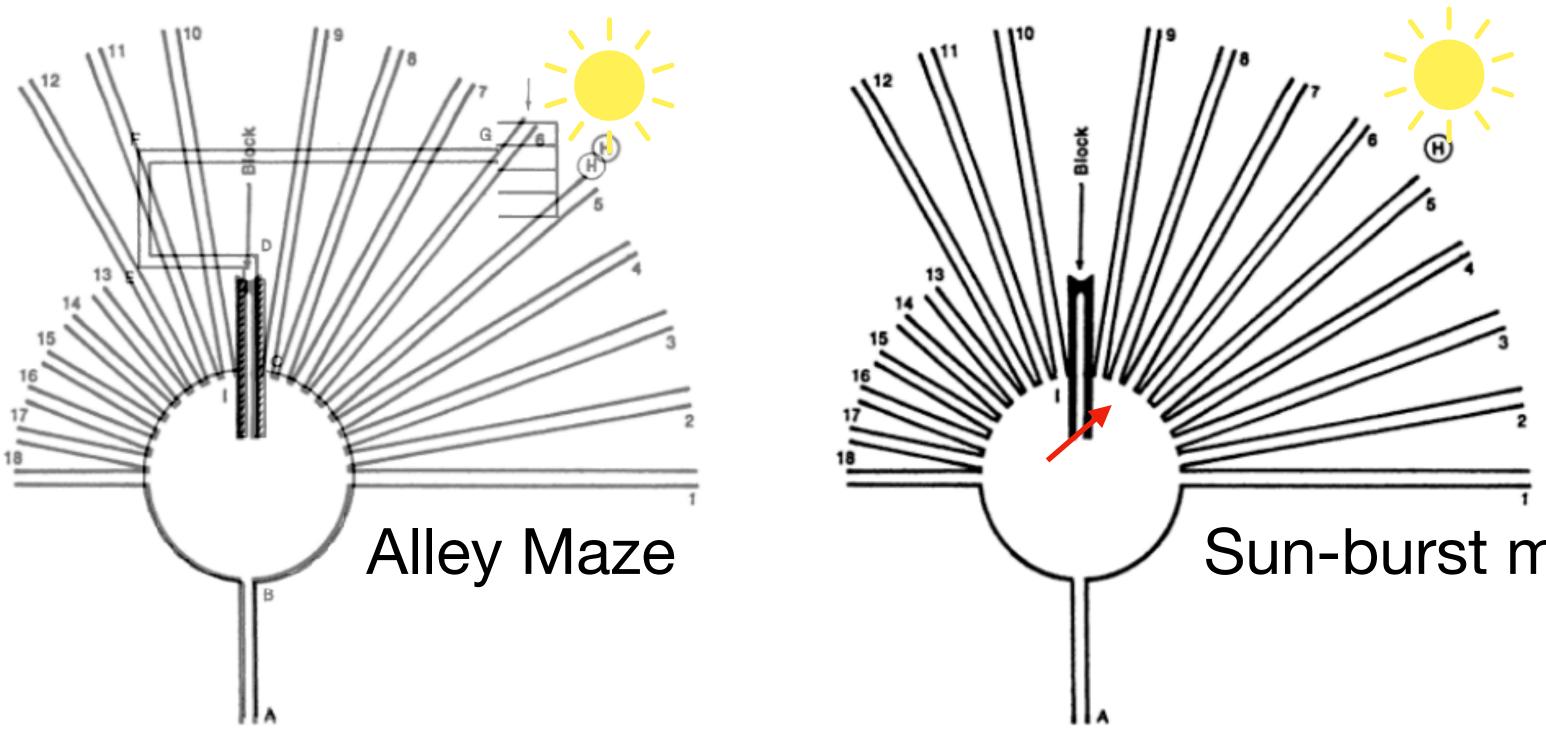


Tolman, Ritchie, & Kalish (1946)

Sun-burst maze

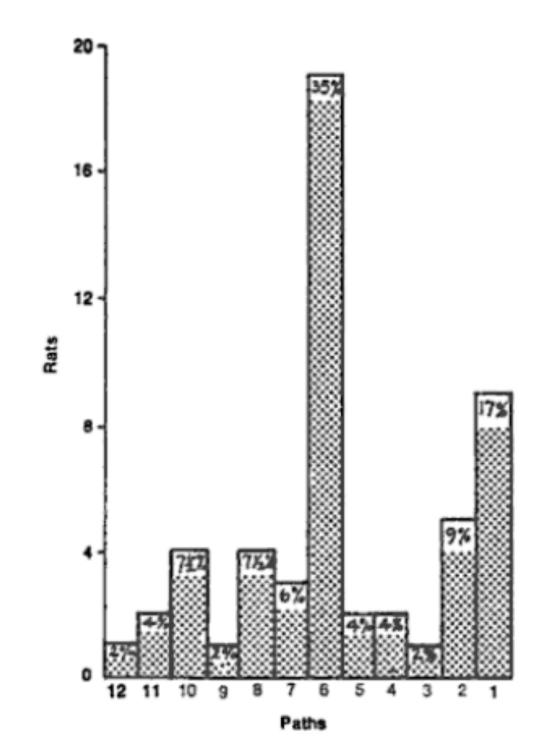


- 3 trials of alley maze task, where H was a light shining from G-F
- Afterwards, rats transferred to sun-burst maze
 - Initially tried the C-D move, but found it blocked



Tolman, Ritchie, & Kalish (1946)

Sun-burst maze



Cognitive Maps shape generalization

- The nature of the maps we learn shape how we generalize
 - adequately it will serve in the new set-up"
- - narrow maps induced by :
 - 1) damaged brains
 - 2) impoverished environments
 - 3) overdose of repetition
 - 4) too strongly motivational/frustrating conditions

• "the narrower and more strip-like the original map, the less will it carry over successfully to the new problem; whereas, the wider and the more comprehensive it was, the more

• What conditions favor learning a narrow strip-map vs. a broad comprehensive map?

Maladaptive psychopathologies

• **Regression** to childlike behavior

"take an example, the overprotected middle-aged woman [...] who, after losing her husband, regressed [...] into dressing in too youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring continuous care [...]"

Fixation on various addictive behaviors \bullet

"If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original path is no longer correct"

- **Displacement** of agression towards outgroups \bullet
 - "The individual comes no longer to distinguish the true locus of the cause of his frustration"

 - [displace their frustration] onto a mere convenient outgroup

 - "nothing more than such irrational displacements of our aggressions onto outgroups"

• "The poor Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords"

• "the southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie,

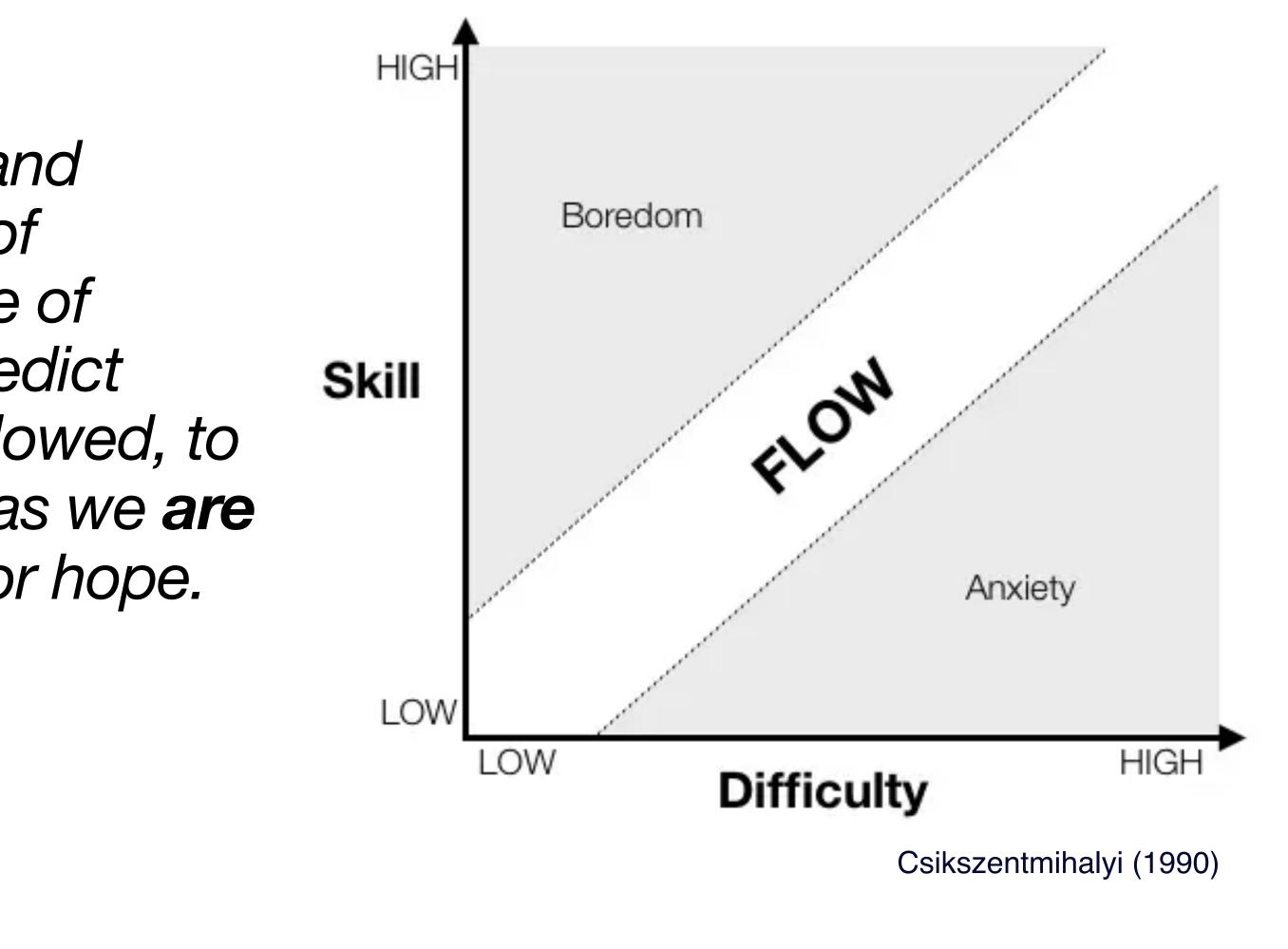
• [physicists vs. humanities, psychologists vs. all other depts., university vs. secondary school, americans vs. russians]...

What is the solution?

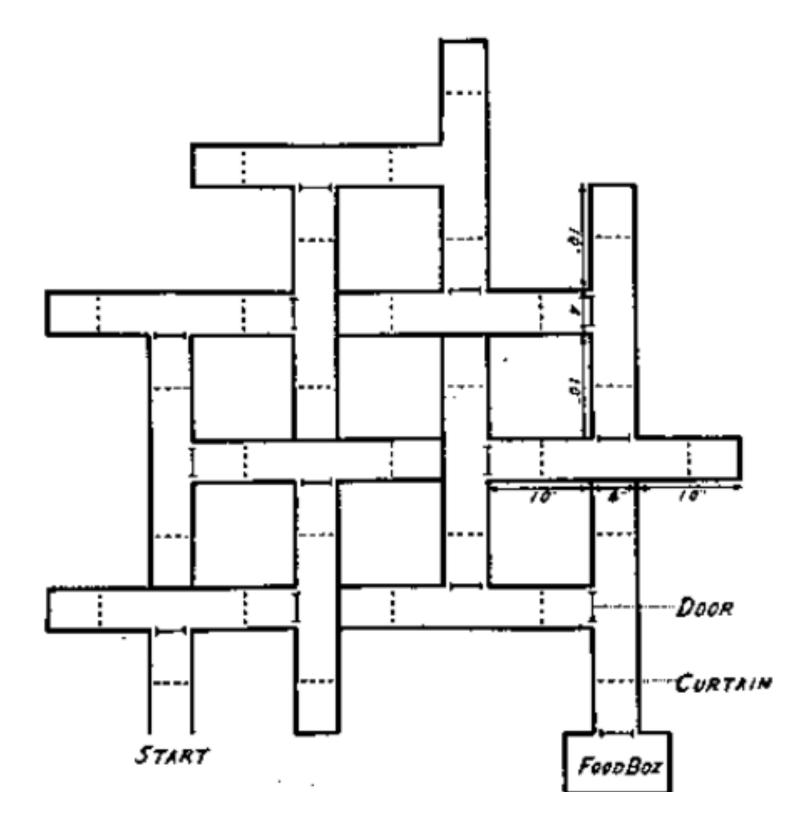
"We must, in short, subject our children and ourselves ... to the optimal conditions of moderate motivation and of an absence of unnecessary frustrations.... I cannot predict whether or not we will be able, or be allowed, to do this; but I **can** say that, only insofar as we **are** able and **are** allowed, have we cause for hope.

What is the solution?

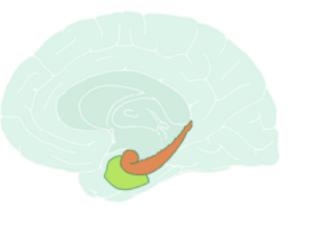
"We must, in short, subject our children and ourselves ... to the optimal conditions of moderate motivation and of an absence of unnecessary frustrations.... I cannot predict whether or not we will be able, or be allowed, to do this; but I can say that, only insofar as we are able and are allowed, have we cause for hope.

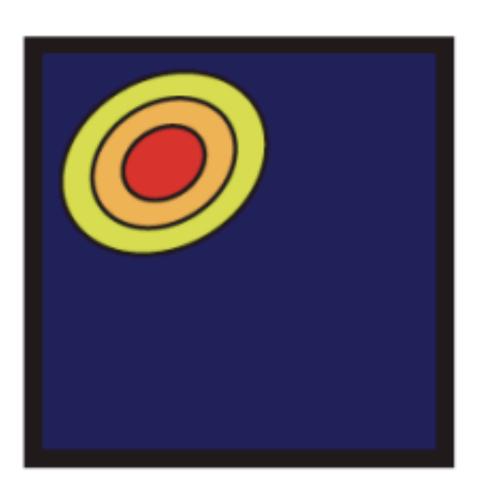


Cognitive Maps in the Brain



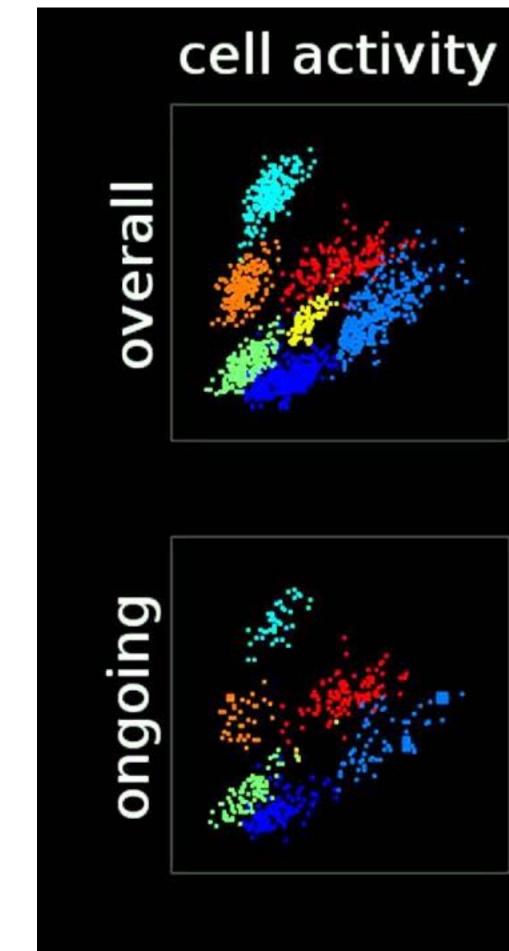
Place cells in the hippocampus represent location in an environment

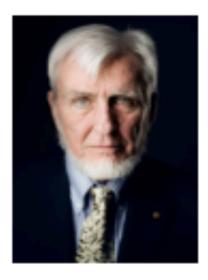




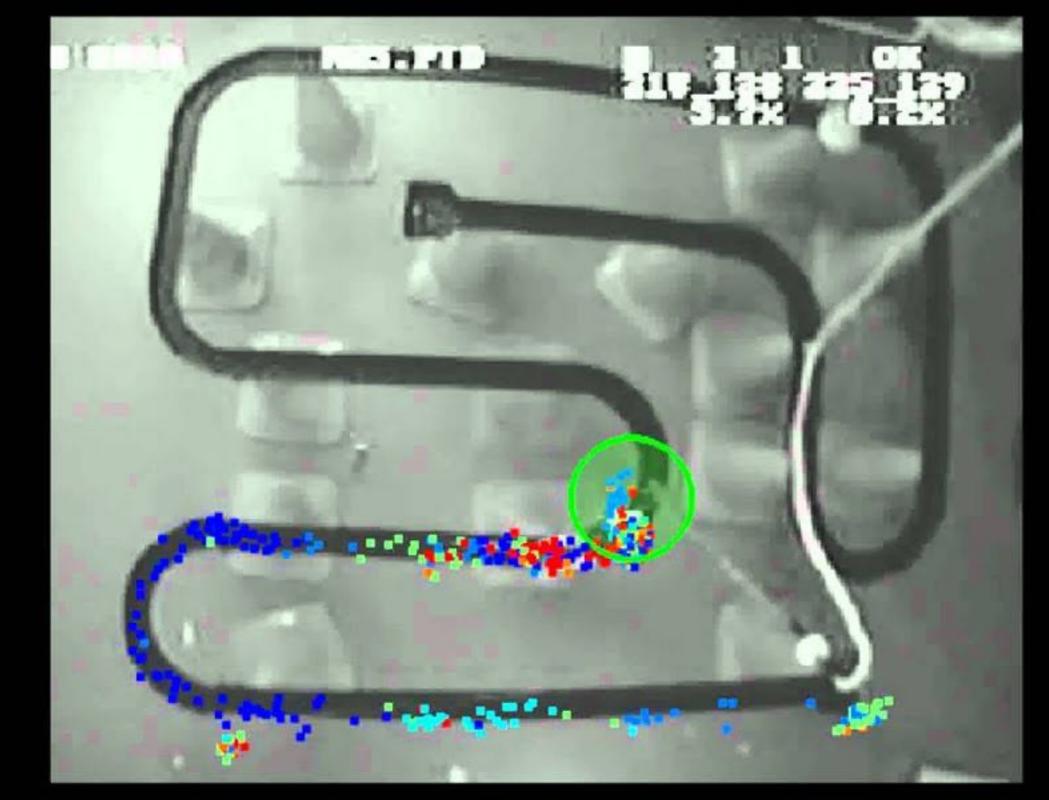
Place Cell

(O'keefe & Nadel 1978)



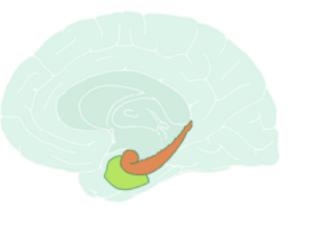


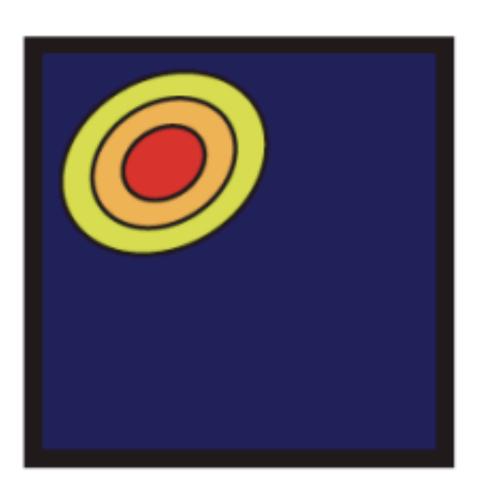
John O'Keefe Nobel Prize in Physiology or Medicine 2014



Wilson Lab (MIT)

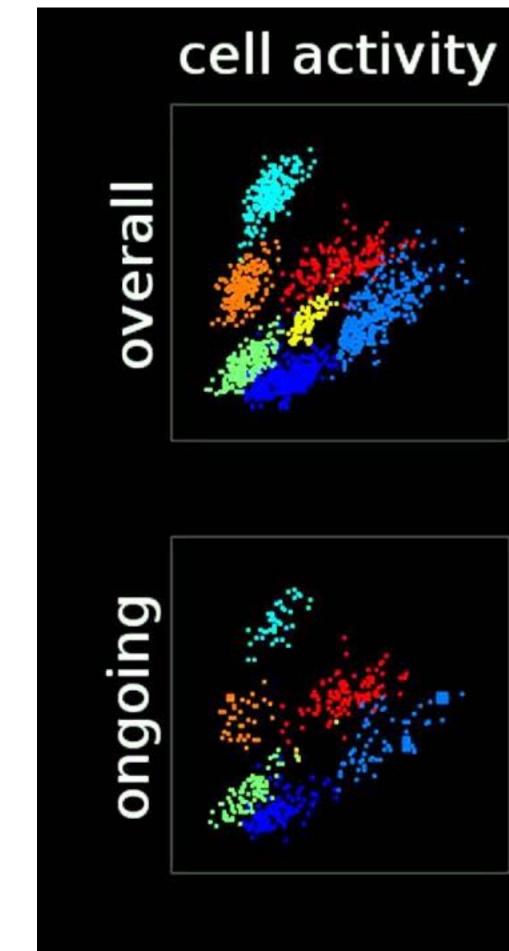
Place cells in the hippocampus represent location in an environment

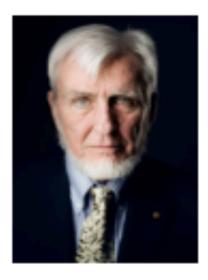




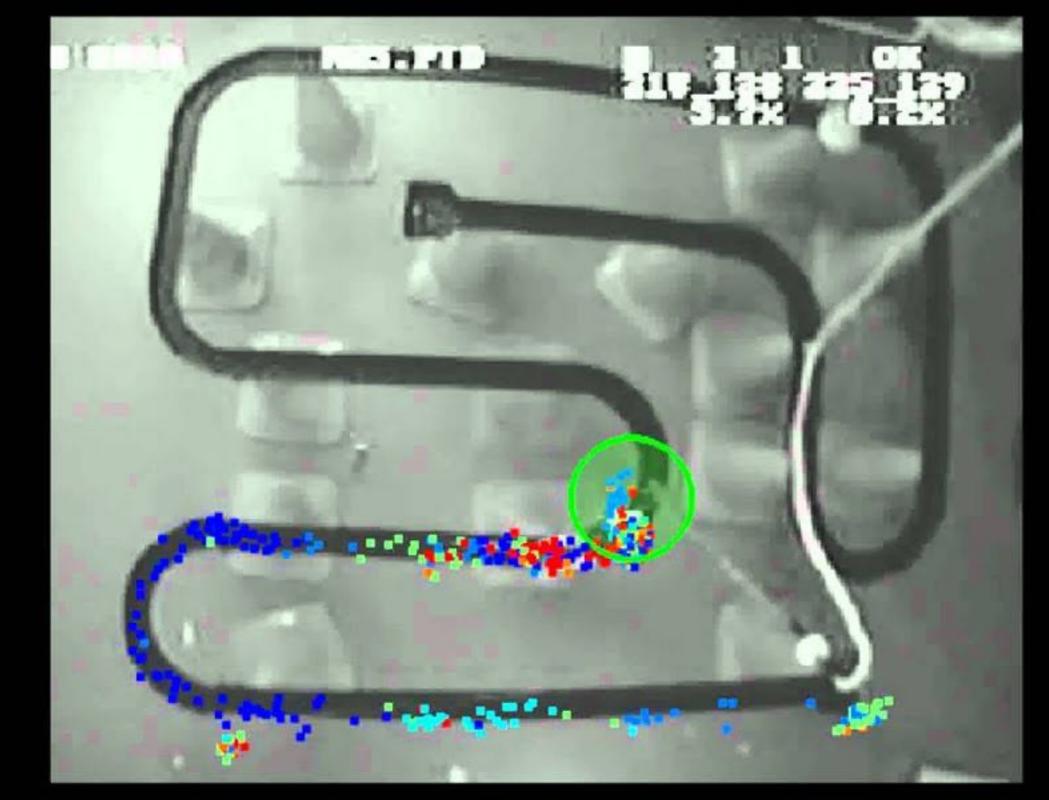
Place Cell

(O'keefe & Nadel 1978)



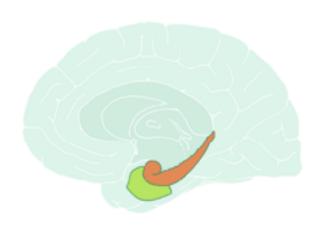


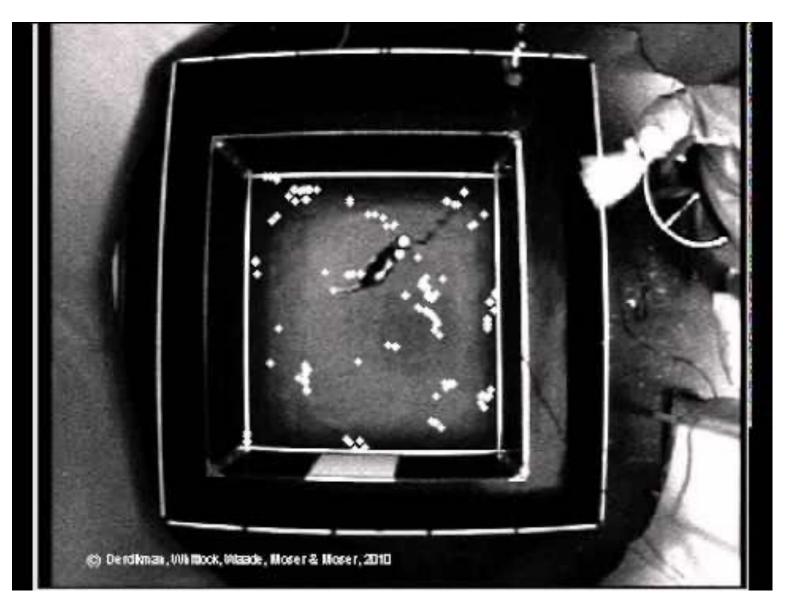
John O'Keefe Nobel Prize in Physiology or Medicine 2014



Wilson Lab (MIT)

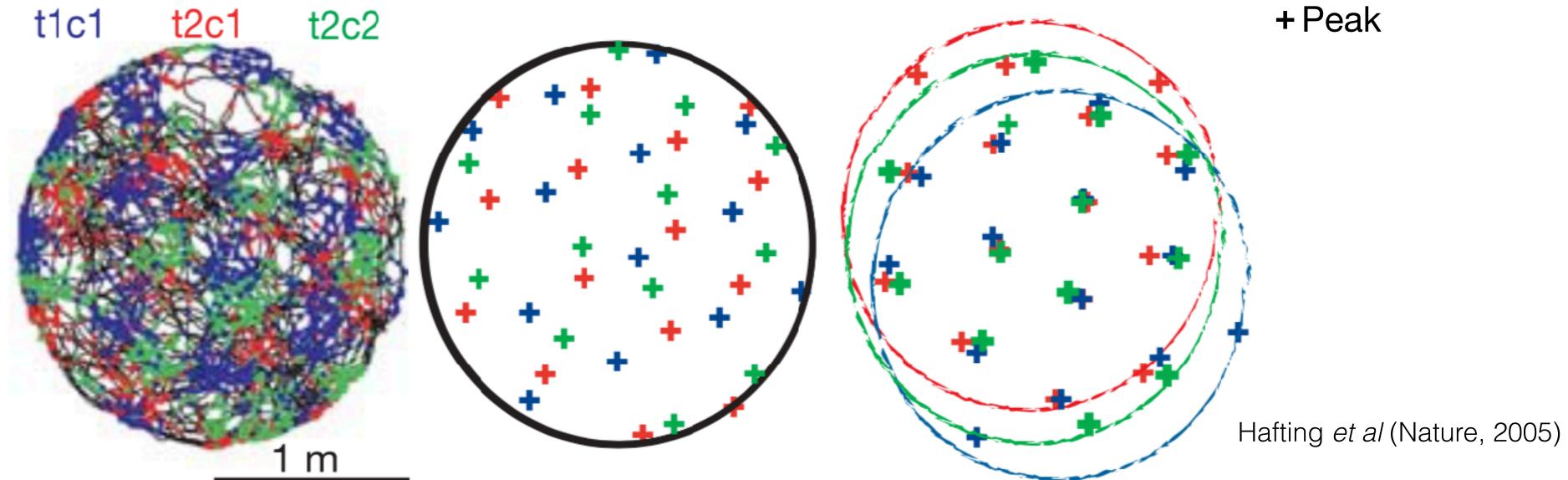
Grid cells in the Entorhinal Cortex provide a coordinate system

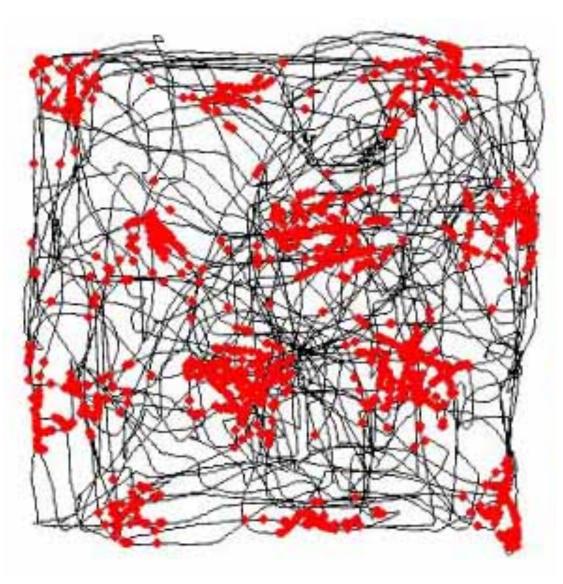




t2c1

Edvard and Maj-Britt Moser Nobel Prize in Physiology or Medicine 2014



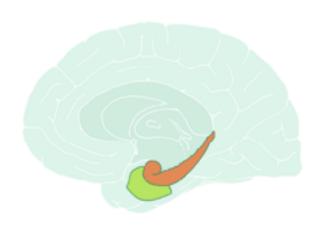


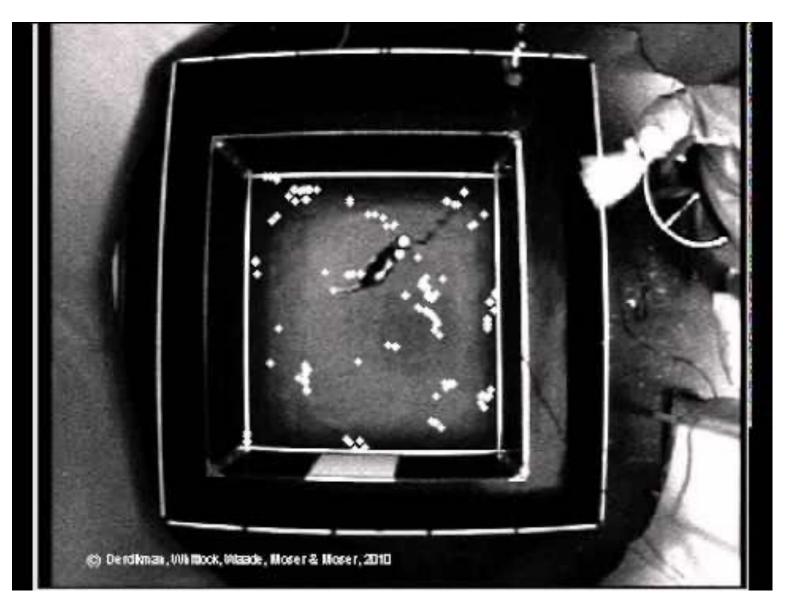
Trajectory

Peaks



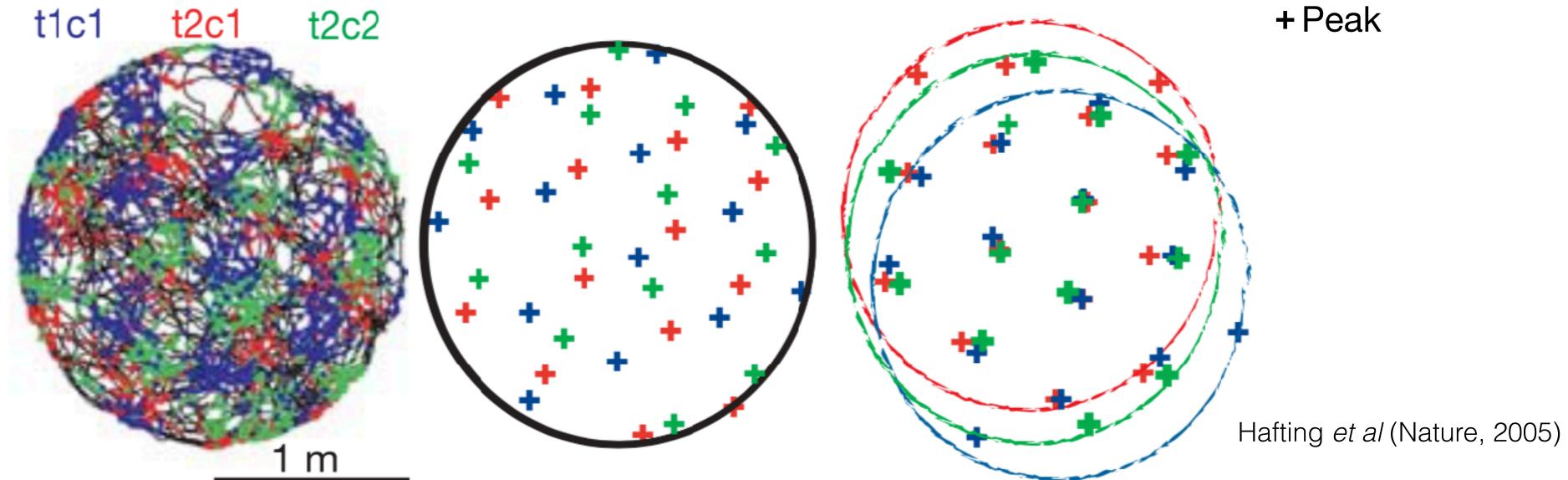
Grid cells in the Entorhinal Cortex provide a coordinate system

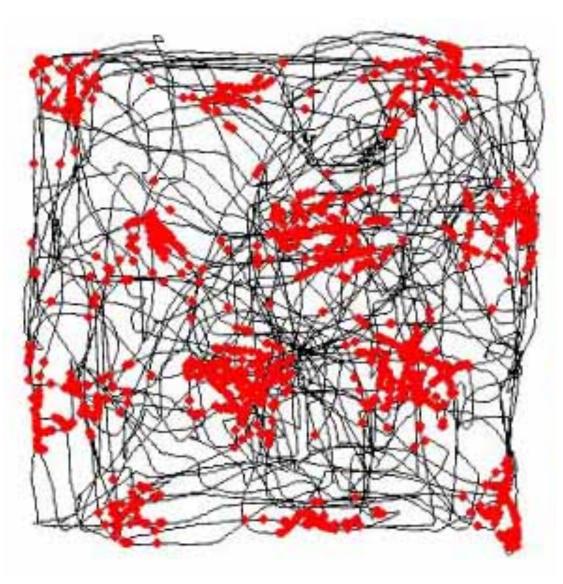




t2c1

Edvard and Maj-Britt Moser Nobel Prize in Physiology or Medicine 2014



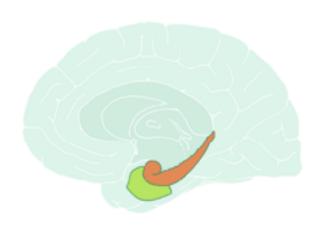


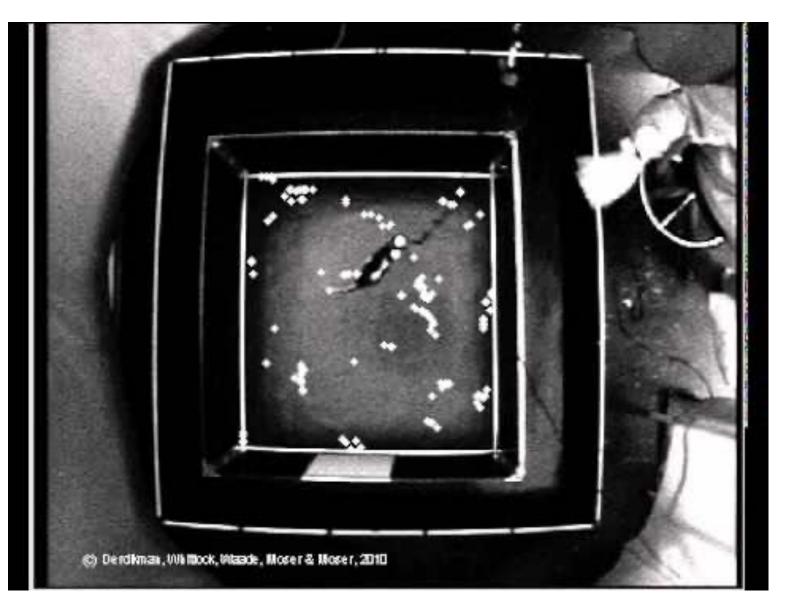
Trajectory

Peaks



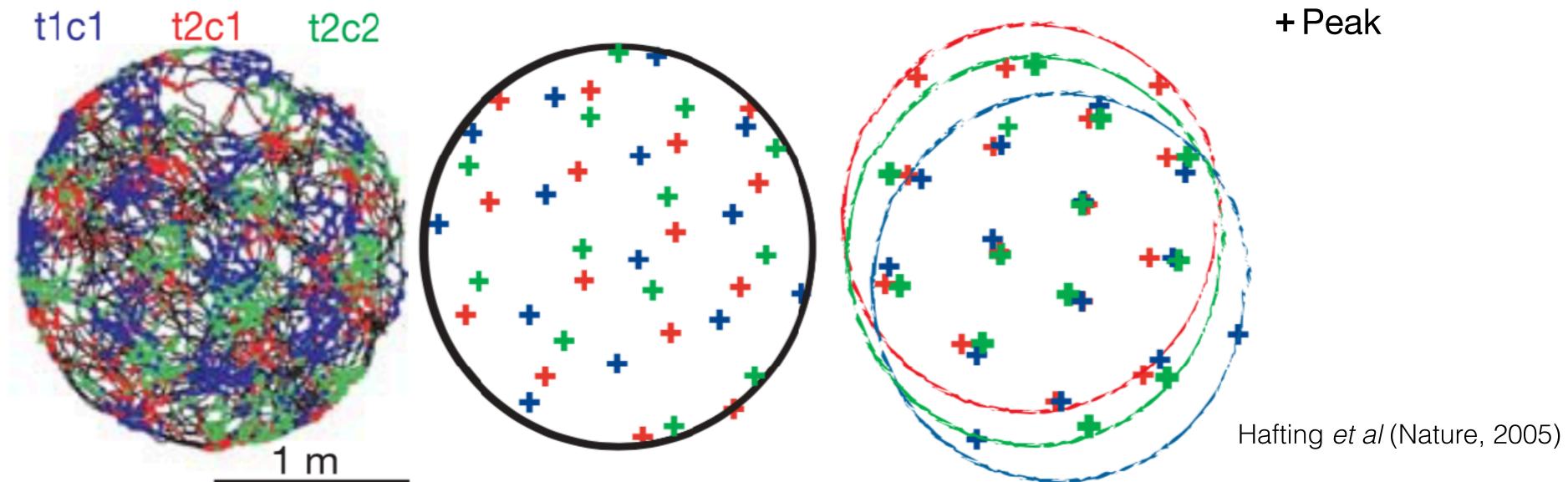
Grid cells in the Entorhinal Cortex provide a coordinate system

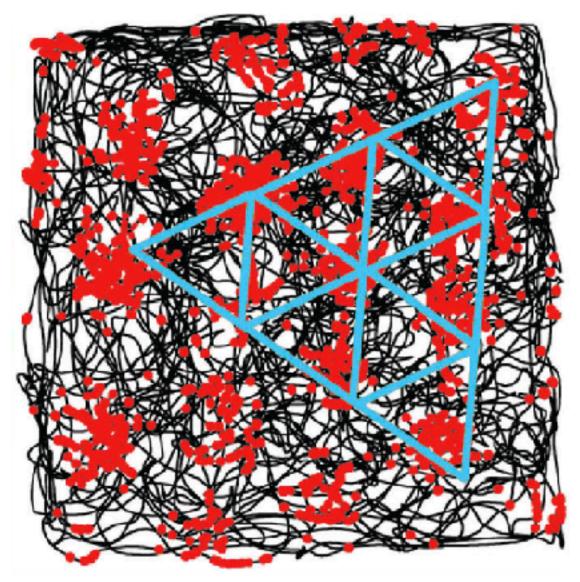




t2c1

Edvard and Maj-Britt Moser Nobel Prize in Physiology or Medicine 2014



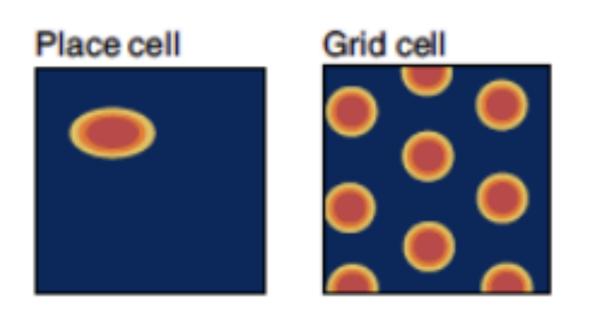


Trajectory

Peaks



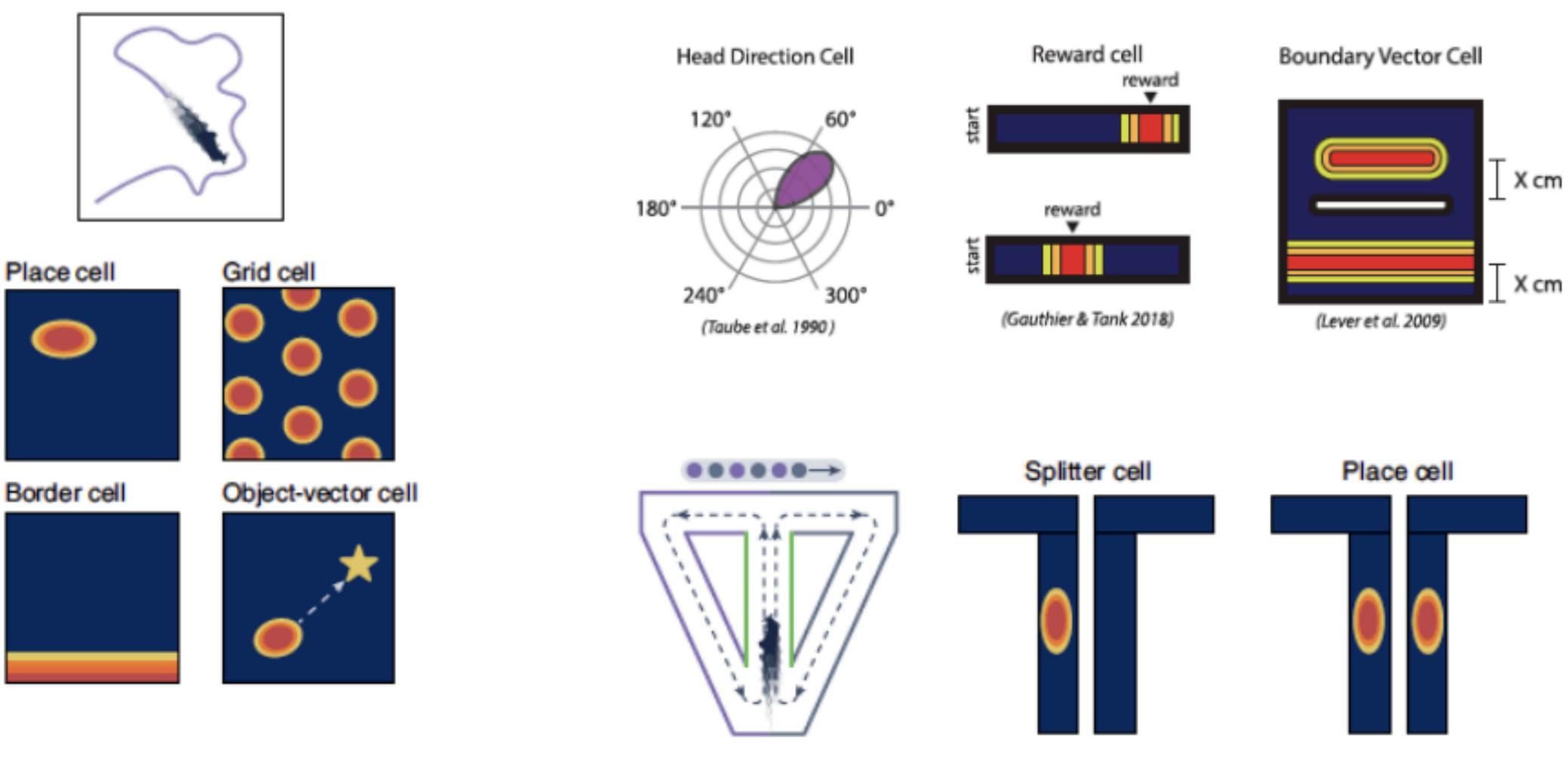
"Hippocampal Zoo"



Whittington et al,. (2022)

Behrens et al., (2018)

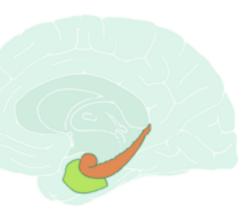
"Hippocampal Zoo"



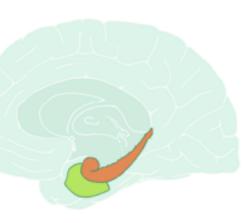
Whittington et al,. (2022)

Behrens et al., (2018)

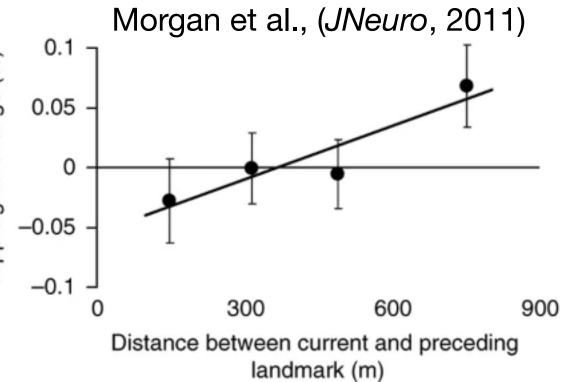
- The Hippocampus represents spatial distance between landmarks (Morgan et al., 2011) nand between events (Nielson et al., 2015)
- The Entorhinal Cortex (EC) encodes the direction of travel (Doeller et al., 2015)
 - Participants moved in a VR environment
 - When direction aligned with one of the 3 axes of their grid cells, we observe stronger BOLD activation in the EC
 - These angles are remarkably robust, and are preserved (in the same environment) when participants return to the scanner days or weeks later



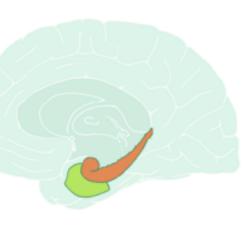
- The Hippocampus represents spatial distance between landmarks (Morgan et al., 2011) nand between events (Nielson et al., 2015)
- The Entorhinal Cortex (EC) encodes the direction of travel (Doeller et al., 2015)
 - Participants moved in a VR environment
 - When direction aligned with one of the 3 axes of their grid cells, we observe stronger BOLD activation in the EC
 - These angles are remarkably robust, and are preserved (in the same environment) when participants return to the scanner days or weeks later

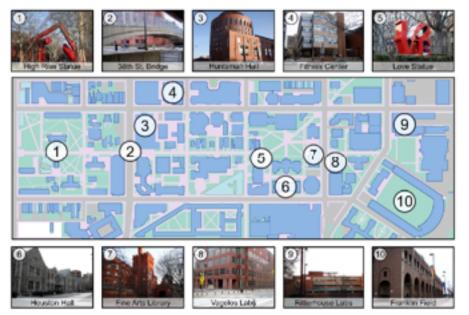


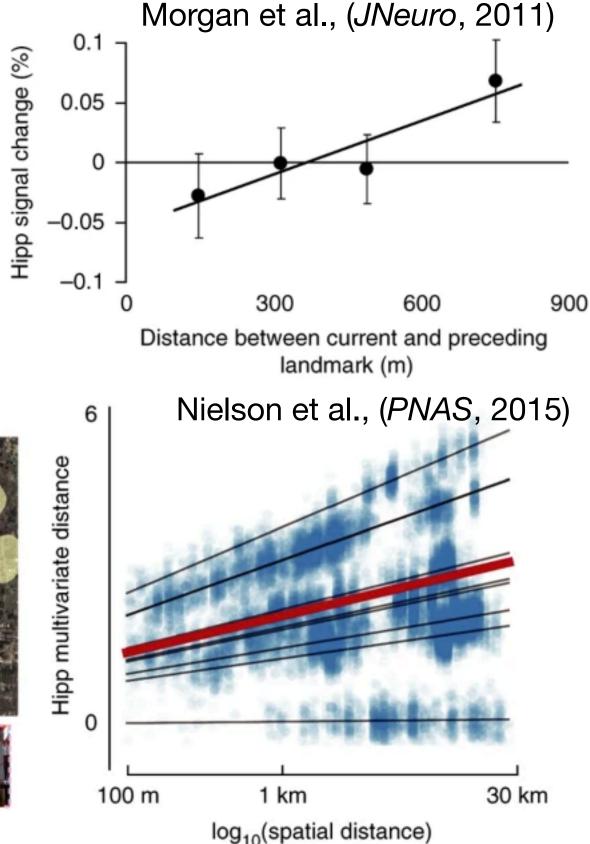




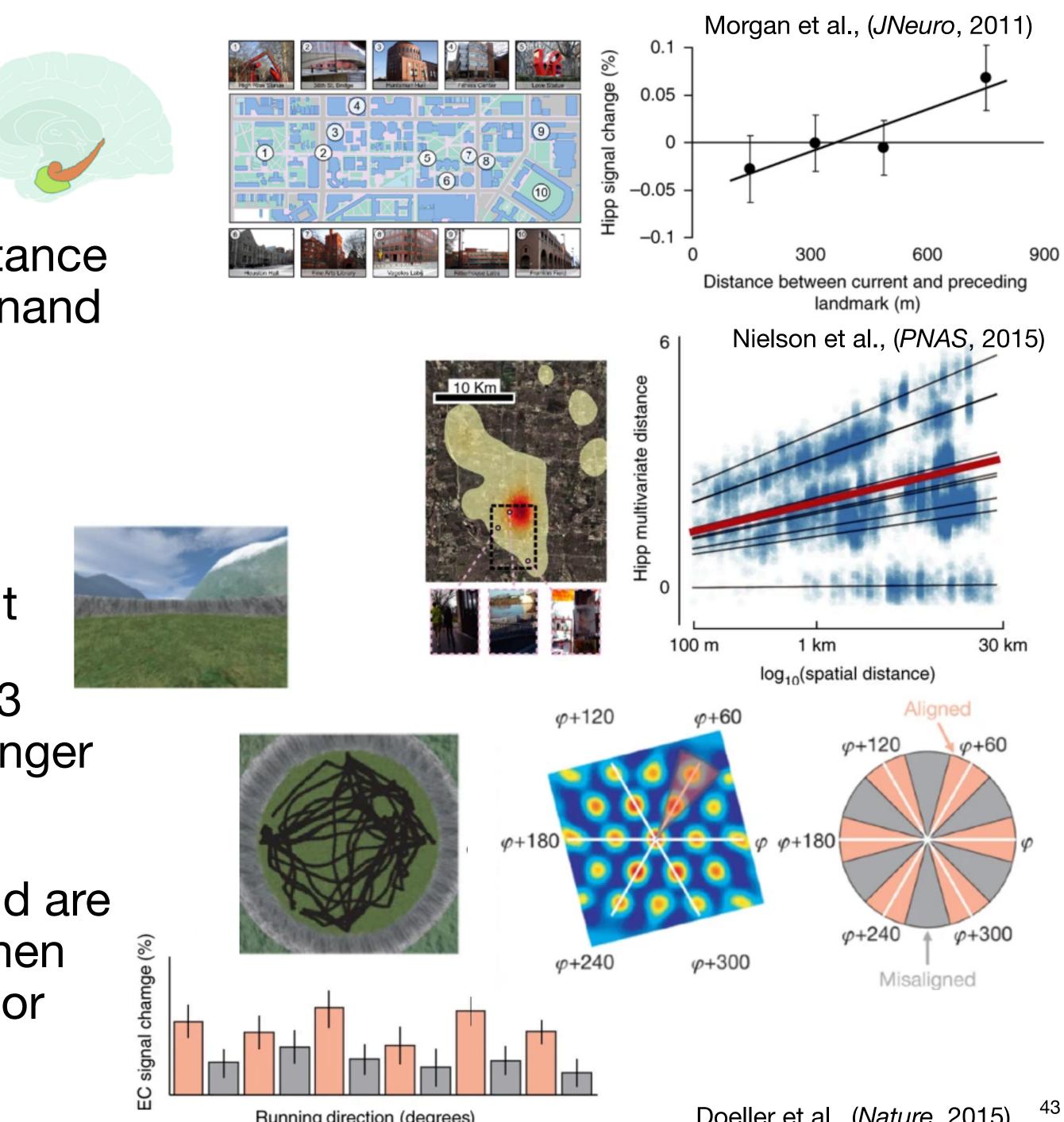
- The Hippocampus represents spatial distance between landmarks (Morgan et al., 2011) nand between events (Nielson et al., 2015)
- The Entorhinal Cortex (EC) encodes the direction of travel (Doeller et al., 2015)
 - Participants moved in a VR environment
 - When direction aligned with one of the 3 axes of their grid cells, we observe stronger BOLD activation in the EC
 - These angles are remarkably robust, and are preserved (in the same environment) when participants return to the scanner days or weeks later







- The Hippocampus represents spatial distance between landmarks (Morgan et al., 2011) nand between events (Nielson et al., 2015)
- The Entorhinal Cortex (EC) encodes the direction of travel (Doeller et al., 2015)
 - Participants moved in a VR environment
 - When direction aligned with one of the 3 axes of their grid cells, we observe stronger BOLD activation in the EC
 - These angles are remarkably robust, and are preserved (in the same environment) when participants return to the scanner days or weeks later

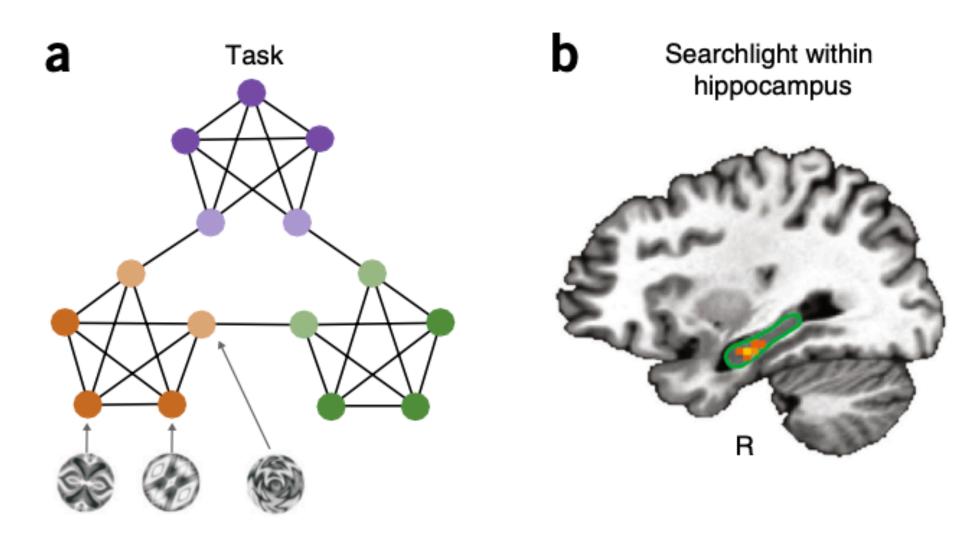


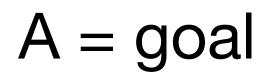
Doeller et al., (*Nature*, 2015)

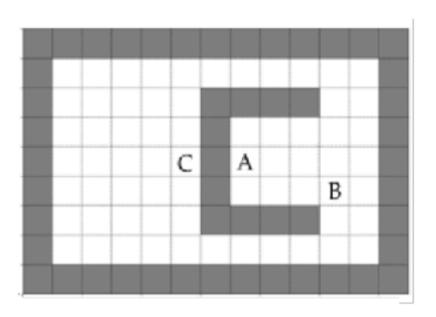
Running direction (degrees)

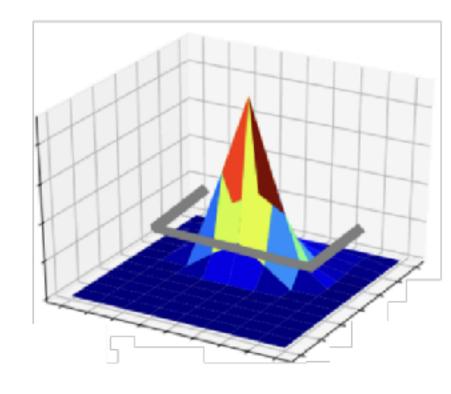
Not just naïve distance, but based on the structure of the environment

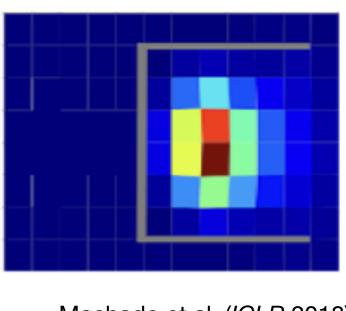
- As in Tolman's experiments, the brain represents distance in the environment based on the transition structure
- Not just "as the crow flies" but a structure-informed distance metric



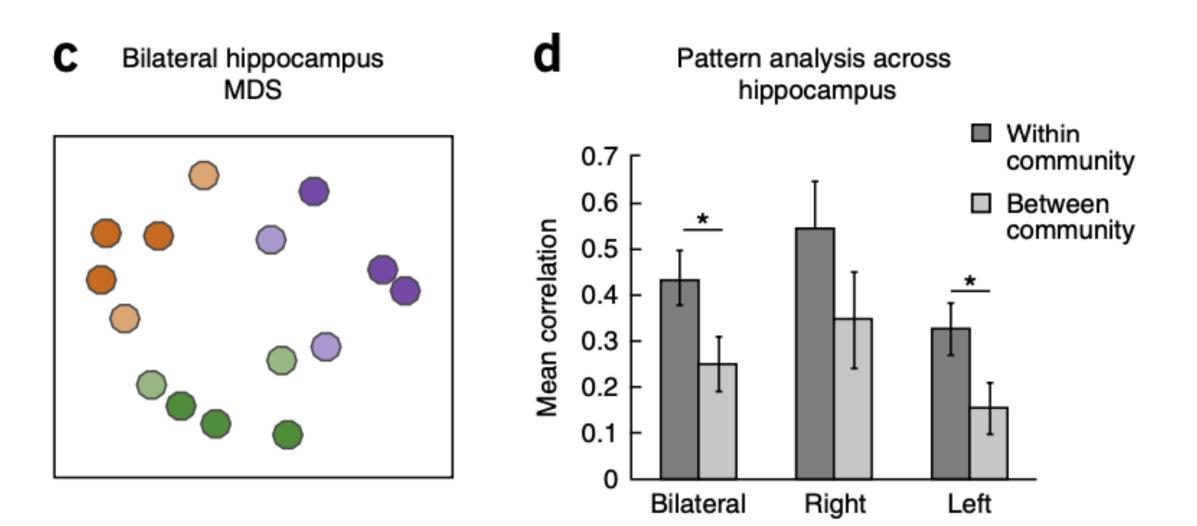








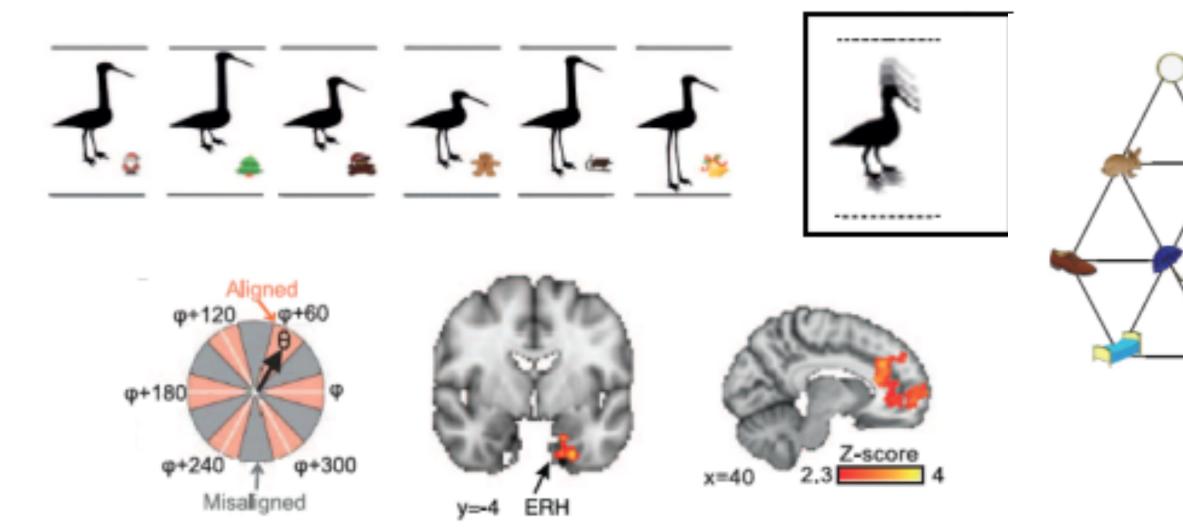
Machado et al. (ICLR 2018)



Schapiro et al. (Hippocampus 2013)

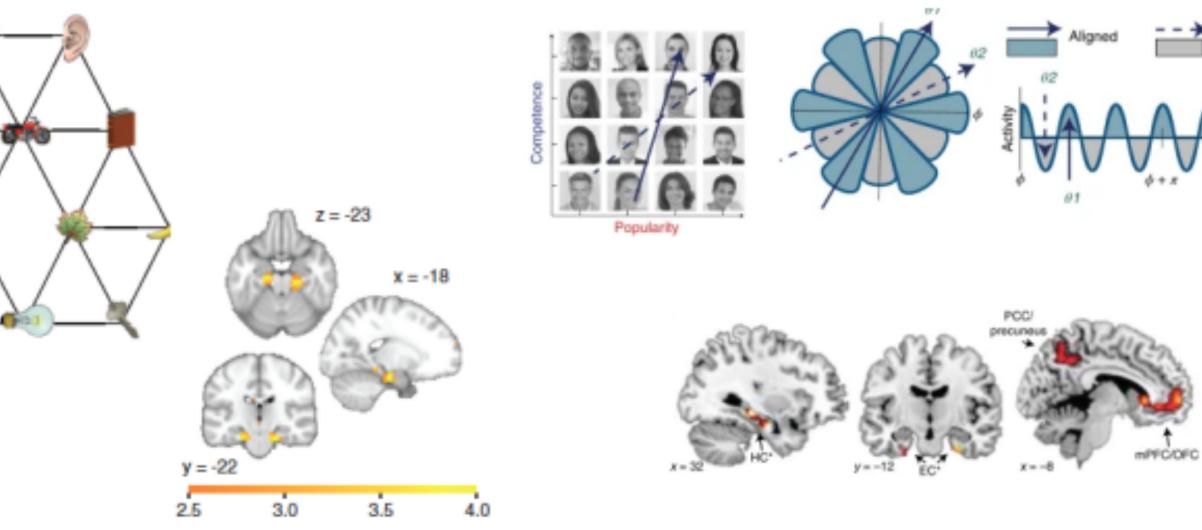
Not just spatial, but also conceptual navigation

Abstract features



Constantinescu et al., (*Nature* 2016)

Social Hierarchies Relational structure



Garvert et al., (*eLife* 2017)

Park et al., (*NatNeuro* 2021)

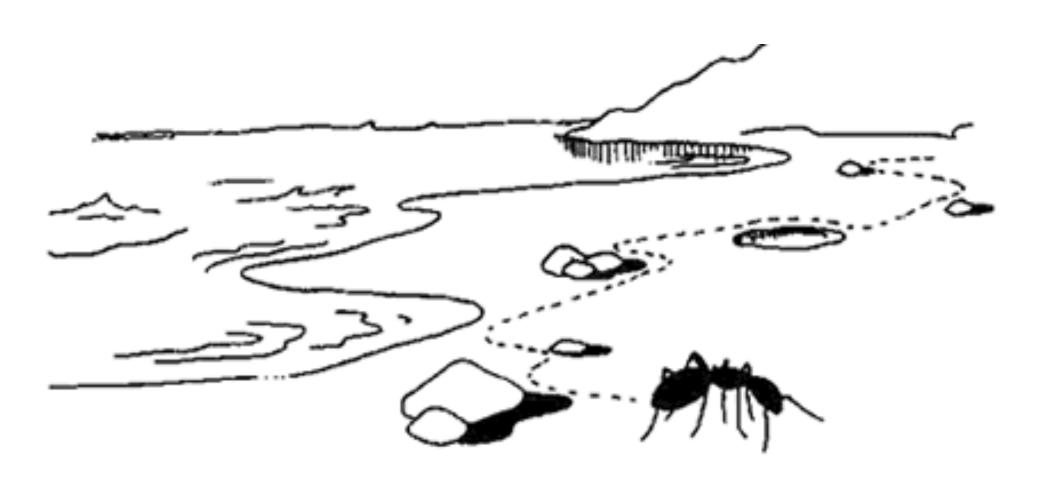
Do we always need a representation of the environment?

An ant, viewed as a behaving system, is quite simple. The apparent complexity of its behavior over time is largely a reflection of the complexity of the environment in which it finds itself. I should like to explore this hypothesis with the word "man" substituted for "ant."

- Herbert Simon (1970)

Herbert Simon

Grandfather of Al and proponent of **Bounded Rationality**



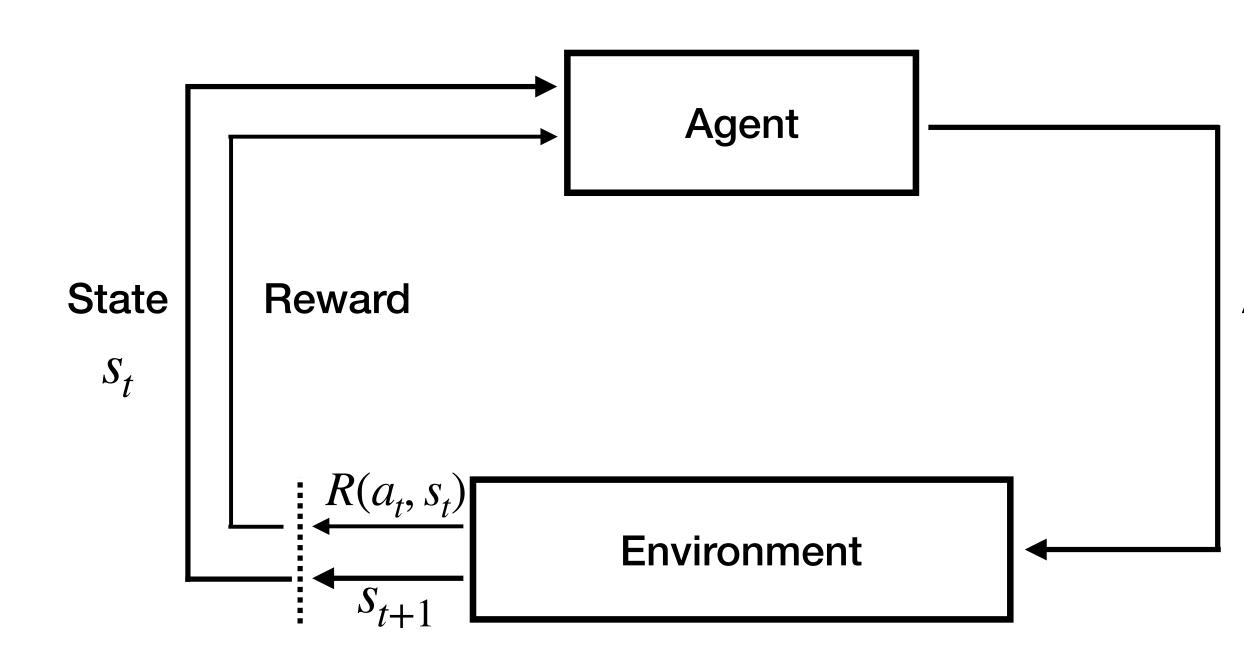
Cognitive Maps: Summary

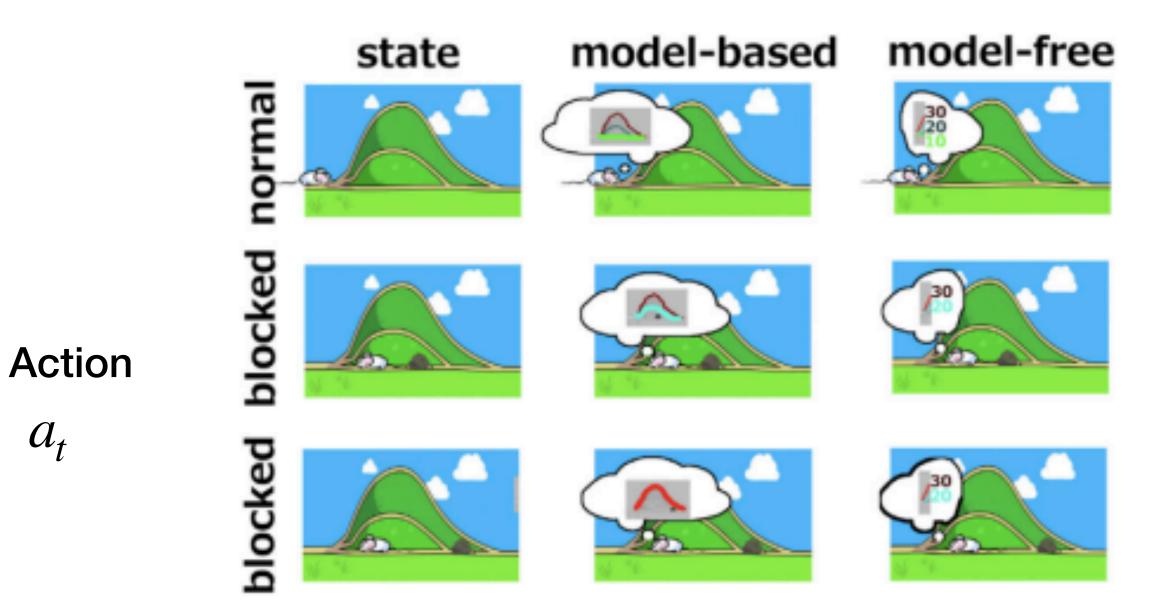
- Learning is more than just a telephone switchboard of Stimulus-Response (S-R) associations • We learn a map-like representation of the environment, allowing us to rapidly generalize
- and plan efficiently
 - Tolman refers to this as S-S learning
- Neural evidence for a cognitive map in the brain
 - Place cells in the Hippocampus encode location and distances
 - Grid cells in the Entorhinal Cortex provide a coordinate system and encode direction of travel
 - + a whole zoo of other specialized cells in the hippocampal-entorhinal system
- Cognitive maps are sensitive to transition structure and used in abstract, conceptual contexts as well

General principles

- Symbolic AI: Learning as infering rules and manipulating symbols
 - In contrast to subsymbolic AI (i.e., neural networks), which learn by updating associating weights
 - For symbolic AI, learning corresponds to search over hypotheses, but current solutions are intractable/inefficient in most interesting settings
 - How do people manage to learn symbolic rules/programs efficiently?
- Cognitive maps: Learning as inferring a representation of the structure of the environment
 - Not just S-R relationships but also S-S latent learning
 - Do we always need a representation of the environment?
- Both lines of research capture mechanisms for learning structure
 - Structure as the relationships between different symbolic concepts
 - Structure as the relationship between stimuli in the environment
- Is there a common basis for both forms of learning? Or are they complementary systems?

Next week: Introduction to Reinforcement Learning





Model-based and model-free decision making in a cartoon of a maze invented by Tolman and Honzik (1930)

