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Symbolic AI 
• What happened during the AI winter? 
• Intelligence as manipulating symbols through 

rules and logical operations 
• Learning as search  

Cognitive Maps 
• From Stimulus-Response learning to Stimulus-

Stimulus learning 
• Constructing a mental representation of the 

environment 
• Neurological evidence for cognitive maps in the 

brain
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• Multiple periods of “boom” and “bust”… 
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• … so far

McCulloch & Pitts (1943) 
Perceptron
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• Skepticism about Perceptrons not 
being able to solve XOR problems led 
to the first AI winter

• It wouldn’t be until the deep learning 
revolution (~2006) that artificial neural 
networks would experience the same 
level of popularity

• But what happened in the 1980s when 
AI was more popular than ever? And 
why was there a 2nd AI winter?
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“A physical symbol system has the necessary and sufficient means for 
general intelligent action -  Allen Newell and Herbert Simon (1976)”
• Symbols can represent things in the world

• e.g., (Apple), (ChatGPT), (Charley), etc… 
• Relations can be i) predicates that describes a symbol or ii) verbs 

describing how symbols interact with other symbols
• i) red(Apple), unreliable(ChatGPT), instructor(Charley)
• ii) eat(Charley, Apple), generatePicture(ChatGPT, Apple)

• By populating a knowledge base with symbols and relations, we can 
use a program to find new propositions (inference)
• General Problem Solver (Simon, Shaw, & Newell, 1957) 
• Expert systems: popularized in the 1980s as the future of AI 
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Expert Systems
• The first truly successful forms of AI, widely applied in medicine, 

finance, and education 
• Expert knowledge is codified in the form of facts and logical rules 

by a knowledge engineer 
• If X then Y 
• If Socrates is a man, then Socrates is mortal 

• This forms the basis of an inference engine, which can apply 
known rules/facts to generates new facts (adding to the 
knowledge base) and resolve rule conflicts 

• Two modes for solving problems 
• Forward chaining: What happens next? 

• Apply rules and facts to arrive at logical conclusions about 
outcomes 

• Backwards chaining: Why did it happen? 
•  Starting from a desired outcome, figure out the set of 

antecedents that can aid in arriving at that outcome
8

Forward chaining

Backward chaining
not on the exam



Strengths and Limitations
Strengths 
• Knowledge is explicit rather than implicit (e.g., neural networks), allowing for interpretability 
• Applying rules can be very fast and solutions were generated in real-time 
• Rules offer rapid generalization, with a single instance 
• Decisions are interpretable by following logic 
• No hallucinations! 
Limitations 
• Cannot learn by itself!  
• Require knowledge engineers to codify rules, with high maintenance and development 

costs 
• Limited generalization to new situations, where existing rules don’t apply exactly  
• If-Then statements cannot capture all relationships without massive scaling problems

9



Symbolic vs. sub-symbolic AI

Symbolic AI 
• Symbols, rules, and structured representations 
• “Language of thought” (LoT) hypothesis (Fodor, 1975): 

concepts/knowledge represented by a language-like system 
• Compositionality: symbols and rules can be combined to 

produce new representations  
• Extracting symbolic representations and search over 

compositional hypothesis spaces is difficult 
10

Sub-symbolic AI 
• Representations encoded through connection weights 
• No explicit representation of concepts or knowledge, 

but distributed throughout the network 
• Efficiency: knowledge can be implicitly learned by 

capturing statistical patterns 
• Interpretation of representations and behavior is difficult



Symbolic vs. sub-symbolic AI
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+

• Neurosymbolic AI aims to combine symbolic and 
subsymbolic approaches to get the best of both worlds 

• Modern AI assistants (e.g., Siri, Google, Alexa) are 
essentially expert systems with ANN voice recognition 
and text-to-speech

Yi et al., (2018) 

• Current challenges:  
• Learning the knowledge base through data 
• Relating messy real-world data to neat (and 

limited) symbols/relations in a knowledge base

http://nsvqa.csail.mit.edu
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• Inspired by Hinton et al., (1995) 
• Wake: find the best program to 

solve the current task using a 
recognition model (neural network) 

 

• Sleep: Update  
• Abstraction: Grow library to find 

more compressible programs 
• Dreaming: Train recognition 

model by sampling programs 
that solved previous experienced 
tasks (replays) and by sampling 
tasks that can be solved by 
programs in the current library 
(fantasies) 

arg max
π

P(𝒟 |π)

P(π)

Wake-Sleep Algorithm
not on the exam

Dreamcoder (Ellis et al., 2020)
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• Test our predictions on human 
learners
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Learning as Search
• A big part of what makes symbolic AI difficult is search 

• Representing relations between all possible symbols creates a combinatorial 
explosion 

• There are (typically) no gradients for symbolic representations 
• Learning can thus be understood as a search problem 

• Finding which rules/programs capture data 
• Finding which hypotheses to test 

• One of the major contributions of symbolic AI research was developing search 
algorithms 
• A* 
• Montecarlo Tree Search

17



A* Heuristic Search
• One of the most popular methods for path-finding and search over 

graphs (Hart et al., 1968) 

• Expand the path by choosing candidate node   that minimizes 
cost function  

• Keep the current path short:  is the cost of the path so far 
from the start to   
• Costs can also represent complexity (i.e., the number of 

symbolic operations) 

• Move towards the goal:  is a heuristic that estimates the 
cost of the cheapest remaining path from  to the goal (often 
Euclidean distance) 
• The heuristic avoids calculating the actual remaining cost to the 

goal, which is very costly 
• More efficient than backwards induction, but intractable for any 

interesting program induction problems

n
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Heuristic: a problem-solving strategy or method that is not 
guaranteed to find the optimal solution, but is designed to 
find a satisfactory solution in a reasonable amount of time
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Backwards induction: determining a sequence of optimal 
choices by reasoning from the endpoint of a problem back to 
the beginning



Monte Carlo Tree Search

• A key mechanism in AlphaGo (Silver et 
al., 2016) and other modern RL 
algorithms 

• Select nodes for expansion (often 
using a heuristic based on reward + 
information gain) 

• Expand node and perform 
simulations 

• Backpropogate the value of the child 
to the parent node 
• This allows us to save a heuristic 

value for the parent node based on 
previous simulations over the children
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Information gain: The amount of information gained by an 
observation (i.e., expanding a node). Often approximated using 
count-based methods: 
  info gain  fewer visits ↑ ∝ ↓



Symbolic AI: Summary
• Symbols and relational rules are a powerful tool for describing the world 

• Capture rapid generalization and allow for compositional construction of new 
representations 

• Explicit formulation of relationships in the world that mirror our own Language of 
Thought and provides interpretable predictions 

• Learning is difficult and rules can sometimes be too rigid 
• Compositional hypothesis space leads to a combinatorial explosion of possible 

symbolic representations, where search can be very costly 
• Learning is often framed as a search problem, where heuristic solutions provide a 

valuable aid 
• Neurosymbolic AI might offer the best of both worlds by combining the fast learning 

of subsymbolic AI (i.e., neural networks) with the powerful abstractions of symbolic AI
20



5 minute break
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Cognitive Maps

Tolman (1948) Moser et al., (2008)



The story so far …
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Thorndike’s (1911) Law of Effect 
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Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments

25

https://www.youtube.com/watch?v=_qLs2K4UXXk


Edward Tolman (1886 - 1959)

26

• Raised by an adament Quaker mother


• Studied at MIT, Harvard, and Giessen 


• Inspired by Gestalt psychologists like Kurt Koffka and Kurt 
Lewin 


• Coined “Purposive Behaviorism”


• Behavior needs to be studied in the context of the purpose 
or goals of behavior 


• In contrast to other behaviorists at the time, Tolman believed 
in latent learning and the need to talk about hidden mental 
states in how we make decisions

Lewin, Tolman, & Hull



Tolman and Cognitive maps

27

• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning
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Tolman (1948): Different interpretations

• S-R school: learning consists of strenthening/weakening of S-R connections (like a telephone exchange)


• subgroup a) more frequent responses are strengthened (Law of Exercise)


• subgroup b) more rewarded responses are strengthened (Law of Effect)


• S-S school: in the course of learning, “a field map of the environment gets established”


• Sampling of stimuli is not passive, but active and selective during learning w.r.t. to a goal or purpose


• Stimuli are not just routed to associations, but used to construct some new map-like representation 
that captures the relational structure of the environment


• The nature of these map-like representations (strip-like vs. broad) have consequences for 
generalization

“All students agree as to the facts. They disagree, however on theory and explanation”
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Latent Learning

30

• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch
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Latent Learning
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• Replicates with more complex 
environment (Tolman & Honzik, 1930)


• Always reward better than no reward 

• Adding reward later produces the 
same dramatic drop in error

No reward

Always reward

Reward added

Tolman & Honzik (1930)
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Spence & Lipitt (1946)

• Y-maze with separate food   + 
water  rewards


• Rats exposed to maze while satiated 
(no hunger + no thirst)


• One group reintroduced when 
hungry goes left towards 


• Another group reintroduced when 
thirsty goes right towards 



Vicarious Trial and Error (VTE)
• Animal put on jumping stand, facing two doors (l vs. r) with different 

visual properties (e.g., horizontal vs. vertical stripes)


• One door is correct, the other incorrect


• location is randomly swapped but visual features are predictive


• If the animal jumps towards the correct door, it opens and reveals 
food on a platform behind… and if incorrect …. 


• Tolman (1939) added landing platforms infront of the doors


• When the choice was easy (black vs. white stimuli), the animals 
learned quicker and did more VTEing than for hard problems


• After learning had been established, VTEs went down


• Better learners also did more VTEing (Geier, LEvin & Tolman, 1941)
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Vicarious trial and error (VTE): hesitating, looking-back-and-forth behavior observed in rats 
when confronted with a choice
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https://www.youtube.com/watch?v=sijDOwaLaAo
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https://www.youtube.com/watch?v=sijDOwaLaAo


Vicarious Trial and Error (VTE)

34

• VTEs coincide with the start of learning, and fade away afterwards


• Not just passive association of stimuli, but active selecting and comparison of stimuli

Correct Alternative

Learning Curves VTE rate
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Spatial Orientation
• 3 trials of alley maze task, where H was a light shining from G-F 

• Afterwards, rats transferred to sun-burst maze 

• Initially tried the C-D move, but found it blocked 

• Returned to circle and prefered the radiating path in the same direction as the original food location

35

Alley Maze Sun-burst maze

Tolman, Ritchie, & Kalish (1946)
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Cognitive Maps shape generalization
• The nature of the maps we learn shape how we generalize


• “the narrower and more strip-like the original map, the less will it carry over successfully 
to the new problem; whereas, the wider and the more comprehensive it was, the more 
adequately it will serve in the new set-up”


• What conditions favor learning a narrow strip-map vs. a broad comprehensive map?


• narrow maps induced by : 
 
1) damaged brains 
 
2) impoverished environments 
 
3) overdose of repetition 
 
4) too strongly motivational/frustrating conditions

36



Maladaptive psychopathologies
• Regression to childlike behavior 
 
“take an example, the overprotected middle-aged woman […] who, after losing her husband, regressed […] into dressing 
in too youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring continuous 
care […]”


• Fixation on various addictive behaviors 
 
“If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original path is no 
longer correct”


• Displacement of agression towards outgroups


• “The individual comes no longer to distinguish the true locus of the cause of his frustration” 

• “The poor Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords” 

• “the southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie, 
[displace their frustration] onto a mere convenient outgroup 

• [physicists vs. humanities, psychologists vs. all other depts., university vs. secondary school, americans vs. russians]…  

• “nothing more than such irrational displacements of our aggressions onto outgroups”
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What is the solution?

“We must, in short, subject our children and 
ourselves … to the optimal conditions of 
moderate motivation and of an absence of 
unnecessary frustrations…. I cannot predict 
whether or not we will be able, or be allowed, to 
do this; but I can say that, only insofar as we are 
able and are allowed, have we cause for hope. 
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Csikszentmihalyi (1990)



Cognitive Maps in the Brain
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Place cells in the hippocampus represent location in an environment

40

Wilson Lab (MIT)John O’Keefe 
Nobel Prize in Physiology or Medicine 2014

https://www.youtube.com/watch?v=lfNVv0A8QvI
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Grid cells in the Entorhinal Cortex provide a coordinate system

41

Trajectory
Peaks

+ Peak

Hafting et al (Nature, 2005)

Edvard and Maj-Britt Moser 
Nobel Prize in Physiology or 
Medicine 2014

https://www.youtube.com/watch?v=i9GiLBXWAHI
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“Hippocampal Zoo”
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Whittington et al,. (2022) Behrens et al., (2018)
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Tools for navigation

43

• The Hippocampus represents spatial distance 
between landmarks (Morgan et al., 2011) nand 
between events (Nielson et al., 2015)


• The Entorhinal Cortex (EC) encodes the 
direction of travel (Doeller et al., 2015)


• Participants moved in a VR environment


• When direction aligned with one of the 3 
axes of their grid cells, we observe stronger 
BOLD activation in the EC


• These angles are remarkably robust, and are 
preserved (in the same environment) when 
participants return to the scanner days or 
weeks later
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Not just naïve distance, but based on the structure of the environment

• As in Tolman’s experiments, the 
brain represents distance in the 
environment based on the 
transition structure 

• Not just “as the crow flies” but a 
structure-informed distance metric

44

Machado et al. (ICLR 2018)

A = goal

Schapiro et al. (Hippocampus 2013)



Not just spatial, but also conceptual navigation

45

Constantinescu et al., (Nature 2016)

Abstract features Relational structure Social Hierarchies

Garvert et al., (eLife 2017) Park et al., (NatNeuro 2021)



Do we always need a representation of the environment?

An ant, viewed as a behaving system, 
is quite simple. The apparent 
complexity of its behavior over time is 
largely a reflection of the complexity of 
the environment in which it finds itself. I 
should like to explore this hypothesis 
with the word “man” substituted for 
“ant.”  
 
- Herbert Simon (1970)

46

Herbert Simon 
 
Grandfather of AI 
and proponent of  
Bounded Rationality



Cognitive Maps: Summary
• Learning is more than just a telephone switchboard of Stimulus-Response (S-R) associations 
• We learn a map-like representation of the environment, allowing us to rapidly generalize 

and plan efficiently 
• Tolman refers to this as S-S learning 

• Neural evidence for a cognitive map in the brain 
• Place cells in the Hippocampus encode location and distances 
• Grid cells in the Entorhinal Cortex provide a coordinate system and encode direction of 

travel 
• + a whole zoo of other specialized cells in the hippocampal-entorhinal system 

• Cognitive maps are sensitive to transition structure and used in abstract, conceptual 
contexts as well
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General principles
• Symbolic AI: Learning as infering rules and manipulating symbols 

• In contrast to subsymbolic AI (i.e., neural networks), which learn by updating associating weights 
• For symbolic AI, learning corresponds to search over hypotheses, but current solutions are 

intractable/inefficient in most interesting settings 
• How do people manage to learn symbolic rules/programs efficiently? 

• Cognitive maps: Learning as inferring a representation of the structure of the environment 
• Not just S-R relationships but also S-S latent learning 
• Do we always need a representation of the environment? 

• Both lines of research capture mechanisms for learning structure 
• Structure as the relationships between different symbolic concepts 
• Structure as the relationship between stimuli in the environment 

• Is there a common basis for both forms of learning? Or are they complementary systems?
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Next week: Introduction to Reinforcement Learning
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1


