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Organization
• To allow time for people to travel between classes 

• Lectures: 12:15 - 13:45 on Tuesdays 
• Tutorials: 16:15 - 17:30 on Wednesday 

• Anyone not yet registered? 
• Send me an email today with your student number  

charley.wu@uni-tuebingen.de 
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Lesson plan
1. Behavioralism 

• Understanding intelligence through 
behavior 

2. Connectionism 
• Understanding intelligence through 

artificial neural networks
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Behaviorism
• [noun Psychology.] An approach to understanding the behavior of humans and 

animals that emerged in the early 1900s


• Generally tries to focus on outward observable behavior rather than hidden 
inner mental states


• One of the earliest programs to empirically study biological intelligence and 
learning
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ResponseBlack BoxStimulus

Mental states?



Varieties of Behaviorism
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John B. Watson B.F. Skinner

Methodological 
Behaviorism

Radical 
Behaviorism

• Thoughts and feelings exist, but 
cannot be the target of scientific 
study


• Only public events can be 
objectively observed and studied 
scientifically


• Internal processes are also the 
target of scientific study


• But they are fully controlled by 
environmental variables just as 
environmental variables control 
behavior



A brief timeline of early research on learning
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Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)



Thorndike’s (1911) Law of Effect 

7

Puzzle Box



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box

Time to escape



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box

Time to escape



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box

Time to escape

“Actions associated with 
satisfaction are strengthened, 
while those associated with 
discomfort become weakened” 

Law of Effect



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box

Time to escape

meow
scratch
hiss
…
lever

strength

“Actions associated with 
satisfaction are strengthened, 
while those associated with 
discomfort become weakened” 

Law of Effect



Thorndike’s (1911) Law of Effect 

7

Cat

Puzzle Box

Time to escape

meow
scratch
hiss
…
lever

strength

meow
scratch
hiss
…
lever

satisfaction

“Actions associated with 
satisfaction are strengthened, 
while those associated with 
discomfort become weakened” 

Law of Effect



Learning as Trial and Error
What are the benefits? What are the limitations?
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Learning as Trial and Error
What are the benefits? What are the limitations?
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Benefits: 
• Errors decrease over time 
• Openess to trying new solutions 
• Basis for all modern reinforcement learning (RL) 

Allen, Smith & Tenenbaum (PNAS 2020)

Limitations: 
• Dangerous when some errors are fatal 
• Lacks creativity and generalizastion of past 
solutions 

• No formalism between behavior and 
outcome….



Thorndike’s (1911)  
Law of Exercise 
• In addition to the repeating 

successful actions, we also repeat 
actions that we performed in the past 

• Learning as habit formation 
• e.g., morning routine, commute to 

university, studying/exercise 
routine, etc… 

• Behavior is reinforced through 
frequent connections of stimulus and 
response

9



Any response to a stimulus will 
be strengthened proportional 
to how often it has been 
associated in the past

Law of Exercise
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performed in the past (regardless of 
outcome)

• Learn a “cached policy” 
(Cushman & Morris, 2015; Daw et al., 2005; Gershman, 
2020)

• Law of Effect: Choose actions on the basis 
of what has worked in the past

• Learn a “cached value” that can be used 
to select actions  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto 
et al., 2019)

Law of Effect

Value 
Update

Value

Cached Value

Key ideas: Two Pathways for Learning



Pavlov’s Dog: Classical conditioning
• Pavlov (1849-1936) approached 

learning from a different angle, 
focusing on automatic responses


1. The dog naturally salivates when 
presented with food  
(unconditioned stimulus; US)


2. No initial response to a bell 
(conditioned stimulus; CS)


3. When the dog is trained to associate 
a bell with the delivery of food… 


4. … it learns to anticipate food when a 
bell rings and begins to salivate

11

Ivan Pavlov



Key ideas: Classical conditioning
Pavlovian responses are driven by predictions about 
expected outcomes 

Learning is driven by reward predictions and (as we will 
see) shaped by prediction error 

Cues compete for shared credit in predicting reward 
outcomes

12



Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi wi ← wi + η(rt − ̂rt)

Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned 
stimuli

w2



Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi wi ← wi + η(rt − ̂rt)

Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned 
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS 

stimuli x weights

• [right] Weights are updated via the delta-rule



Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength or 

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned 
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS 

stimuli x weights

• [right] Weights are updated via the delta-rule



Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted 
outcome

Observed 
outcome

Learning 
rate

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength or 

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned 
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS 

stimuli x weights

• [right] Weights are updated via the delta-rule



Rescorla-Wagner
Rescorla-Wagner model  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( )
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Implications: Cue competition
If multiple stimuli cues predict an outcome, they will 
share credit 

Overshadowing: 
• If sound and light are both associated with 

reward, then presenting individual cues will 
result in weaker responses 

Blocking 
• If light is first associated with reward, and then 

later both light and sound, there will be less 
associating of sound with reward than if sound 
were conditioned alone

14
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Reward learning as refining an internal representation of the world

• Internal hypotheses about how sensory data  were 
generated 

• The parameters  are unknown and must be estimated to 
maximize the likelihood of the data  
• This is known as maximum likelihood estimation (MLE): 

 

• Under certain assumptions1, RW implements a MLE through 
gradient descent 

• Thus, RW learning is similar to how neural networks learn

𝒟

w
P(𝒟 |w)

ŵ = arg max
w

P(𝒟 |w)
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Gradient descent

Δŵi ∝ − ∇wi
ℒ(w) = CSi(r − ̂r)ℒ(w) = − log P(𝒟 |w)

CS r
w

Loss function Gradient update
not on the exam

1 linear Gaussian assumptions



The story so far …
Thorndike’s cats 
• Law of effect 
• Law of exercise 

Pavlov’s dog 
• Classical conditioning, where automatic response of 

US (salivation when given food) becomes associated 
with arbitrary CS (bell) 

• Prediction error drives learning 
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Skinner’s pigeons 
• Operant conditioning

: repeat successful actions
: repeat past actions, regardless of outcome



Operant Conditioning
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Skinner (1938)

• Building off of Thorndike’s Law of Effect, operant 
conditioning studies how rewards shape the 
animal’s behavior


• Operant conditioning describes the active 
selection of actions in response to rewards/
punishments


• rather than only their passive association with 
stimuli (like in classical conditioning under 
Pavlov)


• This allows us to describe how animals learn to 
perform actions (conditioned on stimuli) that are 
predictive of reward

https://www.youtube.com/watch?v=_qLs2K4UXXk
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Operant conditioning in action
• Both rewards and 

punishments can be 
used to encourage 
desired behaviors 

• Rewards/punishments 
can be either added or 
delayed, with different 
implications

18
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Behavioral Shaping
• Learning is slow when the space of possible 

actions is very large 
• Shaping is a technique pioneered by Skinner 

to train a target behavior by rewarding 
successive approximations  
• adding rewards for smaller, intermediate 

steps to encourage exploration towards the 
target behavior 

1. Reinforce any response that resembles 
the desired behavior 

2. Iteratively reinforce responses that more 
selectively resemble the target behavior, 
and remove reinforcement from previously 
reinforced responses (causing extinction)

19
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Dark side of Behavioralism
• Walden Two (1948) describes a Utopia, where 

behavioral engineering is used to shape a perfect 
society 
• From childhood, citizens are crafted through rewards 

and punishment into the ideal citizens and to value 
benefit for the common good 

• Rejection of free will, and has been criticized as 
creating a “perfectly efficient anthill” 

• Is intelligence just learning to acquire reward and 
avoiding punishment?

20
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https://www.youtube.com/watch?v=qP1hJLepOhw
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https://www.youtube.com/watch?v=qP1hJLepOhw


Summary so far
• Behavioralism tries to understand intelligence and learning by bracketing out 

unobservable mental phenomena. How far can we get with this approach? 
• Thorndike’s Laws describes two pathways for learning 

• Law of effect: Learning to repeat successful actions via trial and error learning 
• Law of exercise: Learning to repeat past actions (regardless of outcome) 

• Pavlovian (Classical) Conditioning describes the association between stimuli and 
rewards based on predictions of reward 
• Rescorla Wagner (RW) model formalizes this theory based on reward prediction error 

(RPE) updating, which can be related to rational principles of maximum likelihood 
estimation and gradient descent 

• Operant conditioning relates stimuli-reward associations to the active shaping of 
behavior, to acquire rewards and avoid punishment

22



5 minute break
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Neural networks
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• Neurons are specialized cells that transmit information 
through electrical impulses 
• Roughly speaking, the dendrites receive information, 

which is processed in the cell body, and then 
propogated through the axon and synapses with other 
neurons 

• Human perception, reasoning, emotions, actions, memory, 
and much more are governed by neural activity 

• Whereas behaviorists focused on outward behavior, 
neuroscientists have been peering into black box for 
centuries in order to understand how neural activity gives 
rise to intelligence 

• More recently (mid 1900s), artificial neural networks have 
been developed as computational tool for solving problems

Rosenblatt’s Perceptron Mark I



Timeline of Artificial Neural Networks
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Timeline of Artificial Neural Networks

25

McCulloch & Pitts 
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

ReLU & Dropout (Krizhevsky, 
Sutskever, & Hinton, 2012)

Deep Learning 
revolution



McCulloch & Pitts (1943)
• First computational model of a neuron 

• The dendritic inputs  
provide the input signal 

• The cell body processes the signal 
 

  

• If the sum of the inputs is greater or 
equal to some threshold , then the 
axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

θ

26

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts
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NAND

Neuron fires when x1 is on AND x2 
not on

McCulloch & Pitts (1943)
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NOT function

Neuron fires if no inputs are on

? ?



• First computational model of a neuron 

• The dendritic inputs  provide 
the input signal 

• Excitatory             

• Inhibitory               
• The cell body processes the signal 

 

  

• If the sum of the inputs x weights is greater 
or equal to some threshold , then the axon 
produces the output

{x1, …, xn}

w = 1
w = − 1

f(x) = {1 if∑ wixi ≥ θ
0 else

θ

McCulloch & Pitts (1943)
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McCulloch & Pitts (1943)
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Rosenblatt’s Perceptron
• Added a learning rule, allowing it to learn 

any binary classification problem with linear 
seperability


• Very similar to McCulloch & Pitts’, but with 
some key differences:


• A bias term  is added, effectively 
replacing 


• 


• Weights  aren’t only  but 
can be any real number


• Weights (and bias) are updated based on 
error

b
θ

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

wi ∈ {−1,1}

31

b
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Perceptron learning rule
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Perceptron learning rule
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(weight, wingspan) Owl=0 vs. Albatross=1

w

σ(w⊤x + b)

w = w + error × xj

Pablo Caceres 

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else



Perceptron learning rule
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Perceptron learning rule

33

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Guaranteed to converge if data is linearly separable



Limitations of linear separability
• The perceptron can learn any linearly 

separable problem 
• But not all problems are lineary 

separable 
• Even a single mislabeled data point in the 

data will throw the algorithm into chaos 
• Enter the XOR problem and Minsky & 

Parpert (1969) critique 
• Argument: because a single neuron is 

unable to solve XOR, larger networks 
will also have similar problems 

• Therefore, the research program 
should be dropped

34
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Addressing Minsky & Parpert’s critiques
• Changing the learning rule 

• ADALINE adds robustness to training noise 
• Adding more layers 

• While single neurons can only compute some logical predicates, 
networks of these neurons can compute any possible boolean function 
(Rosenblatt, 1962) 

• Multilayer Perceptron can solve XOR 
• Changing the activation function 

• Beyond hard thresholds

35



Adaptive Linear Element (ADALINE) 
• Weight updates based on a loss function 

rather than the (binary) classification error 
• This uses the activation prior to the sigmoid 

step, allowing us to compute gradients 
• We can use the Delta rule to minimize loss, 

which is equivalent to stochastic gradient 
descent for least-squares regression 

ADALINE is more robust to training noise:

36

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE

b

Improving the Learning Rule
Widrow & Hoff, 1960

not on the exam
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Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and  when:h1 h2 y



Multilayer Perceptron
• MLPs are feedforward networks with multiple 

hidden layers, where we apply the same 
activation function at each layer 

•  

•  
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

• Rosenblatt introduced an MLP with 3 layers in 
1962, but only the final layer had learning 
connections 

• First deep learning MLP by Ivakhenko & Lapa 
(1965), with stochastic gradient descent added in 
1967 by Shun’ichi Amari

Historical note
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Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know 

how to implement it*

38
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• Goal: update weights/bias to minimize the loss  
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• Since MLPs are composed of recursive functions at 
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The AI winter
• Minsky & Papert’s (1969) critique of Perceptrons being unable 

to solve XOR problems was taken as a fundamental limitation


• Funding and interest in AI research dried up


• In 1971 Frank Rosenblatt died in a trajic boating accident


• It wouldn’t be until the 1980s when people like John Hopfield 
and David Rumelhart would revive interest



Connectionism: Summary

40

• Perceptrons can learn a number of logical operations, but fail at 
problems that are not linearly separable (e.g, XOR) 

• Rosenblatt’s learning rule is guaranteed to converge (for linearly 
separable problems), but is brittle with noisy training data 
• ADALINE offers a more robust learning rule, which is equivalent to 

stochastic gradient descent  
• Multilayer Perceptrons are capable of solving XOR and other non-

linearly separable problems 
• Backpropogation is necessary for learning in MLPs, by passing the 

gradient across multiple layers using the chain rule



General Principles
• Incrementally improve predictions by reducing error 

• The unit of learning is the magnitude of the prediction error (Delta-rule) 
• Rescorla-Wagner model and ADALINE  
• But more generally, stochastic gradient descent, backpropogation, and all modern 

RL use this principle 
• Incremental learning is not always guaranteed to succeed 

• Behavioral shaping can help guide learning towards desired outcomes 
• Single layer perceptrons are limited in which types of problems they can solve 

• Adding more layers helps, but it took a long time to develop learning rules 
• Gradient descent can get stuck in local optima 

• What other principles have you picked up?
41



Next week we will look at what happened during the AI winter and explore the 
limits of stimulus-response learning

42

Symbolic AI 
• What happened during the AI winter? 
• Intelligence as manipulating symbols through 

rules and logical operations 
• Learning as search  

Cognitive Maps 
• From Stimulus-Response learning to Stimulus-

Stimulus learning 
• Constructing a mental representation of the 

environment 
• Neurological evidence for cognitive maps in the 

brain


