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Organization

® [0 allow time for people to travel between classes
® | cctures: 12:15 - 13:45 on Tuesdays
® [ytorals: 16:15 - 1/7:30 on Wednesday

® Anyone Nnot yet registered”

® Send me an emall today with your student number
charley.wu@uni-tuebingen.de



mailto:charley.wu@uni-tuebingen.de

Lesson plan

1. Behavioralism

e Understanding intelligence through
benavior

2. Connectionism

® Jnderstanding intelligence through
artificial neural networks

output,




Behaviorism

* [noun Psychology.] An approach to understanding the behavior of humans and
animals that emerged In the early 1900s

* (Generally tries to focus on outward observable behavior rather than hidden
Inner mental states

* One of the earliest programs to empirically study biological intelligence and
learning

Mental states?

— EERed = | Response




Varieties of Behaviorism

John B. Watson B.F. Skinner

Methodological -— Radical
Behaviorism Behaviorism

 Thoughts and feelings exist, but * |Internal processes are also the

cannot be the target of scientific target of scientific study

study

 But they are fully controlled by

* Only public events can be environmental variables just as

objectively observed and studied environmental variables control

scientifically behavior



A brief timeline of early research on learning

Pavlov (1927) , | Tolman (19438)

ol Skinner (1938)

Thorndike (1911)

evodn
Plae of mase
Uit T-AJle y
Fio. t
(Fromg el o chanye My
nrmarsoe adif Publ Piychal,



Thorndike’s (1911) Law of Effect
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Thorndike’s (1911) Law of Effect
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Law of Effect

“Actions associlated with
satisfaction are strengtheneq,
while those associated with
discomfort become weakened”
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Learning as Trial and Error

What are the benefits? \What are the Iimitations”
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Learning as Trial and Error

What are the benefits? \What are the Iimitations”

Benefits:

—1rOrs decrease over tme

® Openess to trying new solutions
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Allen, Smith & Tenenbaum (PNAS 2020)

Learning as Trial and Error [ A THE
What are the benefits? \What are the Iimitations” _
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Benefits:

® [110rs decrease over time

® Openess to trying new solutions

® Basis for all modem reinforcement leaming (RL)
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Attempts
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Limitations:
e [ )angerous when some errors are fatal

o | acks creativity and generalizastion of past
solutions

e N\O Tormalism between behavior and
outcome....




Thorndike’s (1911)
Law of Exercise

® [N addition to the repeating

successtiul actions, we also repeat
actions that we performed in the past

® | carning as habit formation

® c.g., moming routine, commute to

dniversity, s

udying/exercise

routine, etc. ..

® Schavior Is reinforced through

respoNse

frequent connections of stimulus and
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Law of Exercise

Any response to a stimulus will
be strengthened proportional
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associated in the past
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Key ideas: Two Pathways for Learning

Law of Effect & Law of Exercise
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Key ideas: Two Pathways for Learning

Law of Effect & Law of Exercise

 Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

y - Cached
 Learn a “cached policy Policy
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Key ideas: Two Pathways for Learning

Law of Effect & Law of Exercise Cached Value
 Law of Exercise: Repeat actions ® \vaue
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(Cushman & Morris, 2015; Daw et al., 2005; Gershman,

2020
) ‘
e Law of Effect: Choose actions on the basis Law of Exeroise\-v

of what has worked in the past
- Decision-Making

10



Key ideas: Two Pathways for Learning

Law of Effect & Law of Exercise

 Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

 Learn a “cached policy”
(Cushman & Morris, 2015; Daw et al., 2005; Gershman,
2020)

e Law of Effect: Choose actions on the basis
of what has worked in the past

e | earn a “cached value” that can be used

to select actions
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto
et al., 2019)

Cached Value
‘ Value
Law of Effect
Cached
Policy

‘
Law of Exercise\'v

- Decision-Making

10



* Pavlov (1849-1936) approached
learning from a different angle,
focusing on automatic responses

1. The dog naturally salivates when
presented with food
(unconditioned stimulus; US)

2. No initial response to a bell
(conditioned stimulus; CS)

3. When the dog is trained to associate
a bell with the delivery of food...

4. ... It learns to anticipate food when a
bell rings and begins to salivate

11



Key ideas: Classical conditioning

Pavioviar
EXPECTEC

L eaming Is driven by reward predictions and (as we will

responses are driven by predictions about
outcomes

see) shaped by prediction error

Cues compete for shared credit in predicting reward

OULCOIMES

12



Conditioned stimuli Unconditioned

Rescorla-Wagner @
9 o

A—

Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Reward prediction Weight update
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Conditioned stimuli Unconditioned
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RW Model

» [left] Reward expectations are the sum of CS
stimuli x weights

* [right] Weights are updated via the delta-rule
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Conditioned stimuli Unconditioned

Rescorla-Wagner @
9 o

Rescorla-Wagner model ___—
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) C>o ‘ W

2
Reward prediction Weight update

1

Learning  Observed Predicted

A t »
rtZZCSiWi W < w; +n(r, — 1)
1 N

Reward CSion Associative

expectation tialt  strength or rate outcome outcome N
weight e Reward prediction
0 error (RPE)
RW Model The delta-rule of learning:
. [left] Reward expectations are the sum of CS * Learning occurs only when events violate expectations
stimuli x weights (0 # 0)
» [right] Weights are updated via the delta-rule * The magnitude of the error corresponds to how much we

update our beliefs



Implications: Cue competition

T multiple stimuli cues predict an outcome, they will

share credrt

Overshadowing:.

e [ sound and light are both associated with
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N Weaker responses

esult

Blocking

® [f [ight Is first associated wit
ater both light and sour

associating of

SO

were conaitio

UMM

eSO

d

d, there w

A Wi
one

N reward t

N reward, and then

| be less

nan It sound

Overshadowing

_ //;.':_‘ N _ /;.':_‘ =
v ReH B>

J

g7y
|
1) -

14



Reward learning as refining an internal representation of the world

e Internal hypotheses about how sensory data & were

generated

® [Nne paramr

eters w are unknow

maximize t

® [his s known as maximum likelihood estimation (MLE):

ne likelihood of the ©

w = argmax P(Z |w)

® Under certain assumptions?,

gradient descent

ata P(Y | w)

SVW implements a ML

N and Mmust be estimated to

= through

® [hus, RV leaming is similar to how neural Networks learn

Loss function
Z(w) =—1log P(D|w)

1 linear Gaussian assumptions

Gradient update
A\;\\/i X — leg(W) — CSi(l" — I/;)

not on the exam

Cos

t

\\(h )

Gradient descent
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The story

soO far ...

Thorndike’s cats

® | AW Of effect
® | AW Of exercise

Pavlov’s dog

® (lassical condi

JS (salivation w

oning, wnere au

nen given food)

with arbitrary CS (oell)
® Prediction error arives leaming

tomatic response of

DECOMES assoclated
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The story

soO far ...

Thorndike’s cats
e | aw of effect: repeat successiul actions

e | aw of exercise: repeat past actions, regardless of outcome

Pavlov’s dog
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oning, wnere au

nen given food)

with arbitrary CS (oell)
® Prediction error arives leaming

tomatic response of
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The story so far ...

Thorndike’s cats
e | aw of effect: repeat successiul actions

e | aw of exercise: repeat past actions, regardless of outcome

Pavlov’s dog

e (Classical conditioning, where automatic response of Nh\\\
US (salivation when given food) becomes associated &= ¢ B
with arbitrary CS (ell) e

e Prediction error drives learming s 1o

i T rne

Skinner’s pigeons LA | b

® Operant conditioning P12

T —
Tllustration. Skinner box as adapted for the pigeon. 16




Operant C()nditi()ning Skinner (1938)

* Building off of Thorndike’s Law of Effect, operant « . T oo
conditioning studies how rewards shape the N
animal’s behavior o d‘“‘“/m
» Operant conditioning describes the active —EJ T
selection of actions in response to rewards/ mmi%
punishments et |
* rather than only their passive association with '
stimuli (like in classical conditioning under *
Pavilov) 3

b/
 This allows us to describe how animals learn to il
perform actions (conditioned on stimuli) that are
predictive of reward



https://www.youtube.com/watch?v=_qLs2K4UXXk
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Operant conditioning in action

POSITIVE REINFORCEMENT
ADDING GOOD STUFF TO
INCREASE A BEHAVIOR

POSITIVE PUNISHMENT
ADDING BAD STUFF TO
DECREASE A BEHAVIOR

® Soth rewards ano
punishments can be

I .
‘

0 D NO/ No more pulling! Give
i YES ' s B J . leash correction and
TES ore loose-leas PR .
Used to encourage | @& ey : VN (s =l vhenbo ol
' . B i keep walking forward 5
desired behaviors § L rems: o &
] ]
® Rewards/punishments| ! :
. B J
Can be elther added Or d NEGATIVE PUNISHMENT i NEGATIVE REINFORCEMENT
, , DELAYING GOOD STUFF TO DELAYING BAD STUFF TO
de‘ayed Wl'th d |ﬁe r'e I’Tt - DECREASE A BEHAVIOR - INCREASE A BEHAVIOR
)
! ' ! No more pulling! S)bp e B
mplications irgiromam e N~ T —
leash is loose. ' WATCH OUT.} sco/c?'ing until he pulls
g~—/ again.

d\%

CC Lili Chin
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Behavioral Shaping

® | caming Is slow when the space of possible
actions Is very large

e Shaping is a technigue pioneered by Skinner
to train a target behavior by rewarding
successive approximations

® odding rewards for smaller, intermediate
steps to encourage exploration towards the

target behavior

1. Reinforce any response that resembles
the desired behavior

2. lteratively reinforce responses that more
selectively resemble the target benavior,
and remove reinforcement from previously
reinforced responses (causing extinction)



https://www.youtube.com/watch?v=TInv-RQCvrg
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Dark side of Behavioralism

® \\alden Two (1948) describes a Utopia, where
behavioral engineering is used 1o shape a perfect
soclety

® -rom childhood, citizens are crafted through rewards
and punishment into the ideal citizens and to value
pbenefit for the common gooo

® Rejection of free will, and has been criticized as
creating a “pertectly efficient antnill”

® [s intelligence just learning to acquire reward and
avoiding punishment”






https://www.youtube.com/watch?v=qP1hJLepOhw
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Summary so far

® Behavioralism tries to understand intelllgence and leaming by bracketing out
Unobservable mental phenomena. How far can we get with this approach’?

® Thorndike’s Laws describes two pathways for leaming
® | aw Of effect: Leaming to repeat successful actions via trial and error learming
® | aw Of exercise: Leaming to repeat past actions (regardless of outcome)

® Pavlovian (Classical) Conditioning describes the association between stimuli and
rewards based on predictions of reward

® Rescorla \Wagner (RW) model formalizes this theory based on reward prediction eror
(RPE) updating, which can be related to rational principles of maximum likelihood
estimation and gradient descent

® Operant conditioning relates stimuli-reward associations to the active shaping of
behavior, to acquire rewards and avold punishment

22
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Neural networks

® Neurons are specialized cells that transmit information

through electrical impulses

® Roughly speaking, the dendrites recelve Information,
which I1s processed In the cell body, and then
poropogated through the axon and synapses with other

NEUrons

® Human perception, reasoning, emaotions, actions, memory,

® \/\\hereas behaviorists focused on ou
neuroscientists have been peering i

and much more are governed by neural activity

ward behavior,
0 black box for

centuries in order to understand how neural activity gives

rise to Intelligence

e \ore recently (mid 1900s), art

Deen developed as computati

mficial neura
onal tool 1o

- SO

e

WOrkS have

ving problems

Dendrite

Cellbody )

Nucleus

FD

f Myelin sheath
Schwann cel

Node of Ranvier}
Axon

¢ WSS TP @ ¢ APV TRt - -y

\osenblatt’s Perceptron Mark |

| Axon Terminal
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Timeline of Artificial Neural Networks
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Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Marvin L. Minsky
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Al Winter
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TWnr

(1943) Perceptron
First deep network (lvakhnenko & Lapa 1965)



Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Marvin L. Minsky
Seymour A. Papert

Timeline of Artificial Neural Networks

Convnets for MNIST (LeCun et al., 1989)

10 oulpul unils

fully connectac
~ 300 links

layer H3

3C nidden units fully connected

~ 8000 links

layer H2
12 x 16=182

hidcen units

H2.1 ~ 40,000 links

1 frem 12 xernels
B e TR

layer H1
12 x 64 = 768
hiddan units

~20,000 links
from 12 kernels
5x5

256 inpul unts

Al Winter

ot < Second N~
o o hidder eaer K
:' T .. L
: 15 hdder
McCulloch & Pitts ‘;‘

(1943) Perceptron

a, ..... :
N N
‘s v
Pl Wt T,
i e
. A Y
P y \,. #,/ .
‘_ :"«. -~ - \*_ " _.’.- ''''
4 . ~ _,.-'
ot I T O tlager

L¥ toe it

1 urd h dder
19er

-
. ’
"
K

TWnr

First deep network (lvakhnenko & Lapa 1965)

25



Timeline of Artificial Neural Networks

Minsky & Parpert (1969)

Expanded Edition

Rosenblatt (1958) Perceptron

Perceptrons

Deep Learning

revolution
A

Convnets for MNIST (LeCun et al., 1989)

10 oulpul unils

7\ fully connectac
~ 300 links

layer H3 |
30 nidden units fully conrected

~ 8000 links

layer H2
12 x 16=182

hidcen units

H2.1 ~ 40,000 links

1 frem 12 xernels
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layer H1
12 x 64 = 768
hiddan units

~20,000 links
from 12 kernels
5x5

256 Inpul units
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McCulloch & Pitts (1943)

® irst computational model of a neuron

e The dendritic inputs {Xq, ..., X, }
provide the Input signal

® [ne cell body processes the signa

fx) = {1 £y x>0

0 else

® [f the sum of the Inputs Is greater or

equal to some threshold @, then the
axon produces the output

Dendrites

Cell body
J(X)

AXon
-y € {0,1}

26



fx) = {1 if > x. >0

0 else

McCulloch & Pitts (1943)

AND function

xl\

XD - — vy € {0,1}
X /

3

All inputs need to be on for the
neuron to fire
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McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on
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McCulloch & Pitts (1943)

AND function

All inputs need to be on for the
neuron to fire

X1 \
0 — X (5 R
X3 / X /

OR function

-1

1 if)y x>0
0 else

—y € 10,1}

Neuron fires if any input is on
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McCulloch & Pitts (1943)

NOT function

Neuron fires if no inputs are on

NAND

Neuron fires when X1 I1s on AND Xxo
NOt on
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McCulloch & Pitts (1943)

® rst computational model of a neuron

e The dendritic inputs { Xy, ..., X, } provide

the Input signa

® bxcitatory — w =1

e nhibitory —o w = —1

® [he cell body processes the signal

fx) = {1 Y wx, > 6

0 else
® [f the sum of the Inputs X weigr

{S Is greater

or equal to some threshold @, 1
oroduces the output

nen the axon

Dendrites

Warren McCulloch Walter Pitts

Cell body
J(X)

AXon
-y € {0,1}
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fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function

X — y € {0,1}
w,e {1, -1}

Neuron fires if no inputs are on



fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function
w=—1
A1 0 — vy € {0,1}
w,e {1, -1}

Neuron fires if no inputs are on



fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
X
w=—1
x| : . ye {0,1) — y € 10,1}
X2
w, € {1, =1} w, € {1,—1}
Neuron fires If no inputs are on Neuron fires when x1 is on AND x>

NOot on
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fx) = {1 ity wx > 6

McCulloch & Pitts (1943) 0 else
NOT function NAND
xy W=1
\
w=—1
X, : . ye {01} W, = — 1 — y € {0,1}
X5 /
w, € {1, -1} w; € {l,—1}
Neuron fires if no inputs are on Neuron fires when X+ is on AND X»

NOot on
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Rosenblatt’s Perceptron

* Added a learning rule, allowing it to learn

any binary classification problem with linear
seperability

* Very similar to McCulloch & Pitts’, but with
some key differences:

A bias term b is added, effectively
replacing @

- T
0 else

» Weights w aren’tonly € {—1,1} but
can be any real number

* Weights (and bias) are updated based on
error

out(t)

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ ,.
[nitialize w and b randomly.
while nor converged do

# # # Loop through the examples.
for ; — 1, mdo

# # # Compare the true label and the prediction.
error Yi - O\W : X+ b)

### If the model wrongly predicts the class, we update the weights and bias.
if error != 0 then
### Update the weights.

W =W+ error x x;

#i## Update the bias.

| b= b4 ervor

.

Test for convergence

Output: Set of weights w and bias b for the perceptron.

31



Rosenblatt’s Perceptron

* Added a learning rule, allowing it to learn

any binary classification problem with linear
seperability

* Very similar to McCulloch & Pitts’, but with
some key differences:

A bias term b is added, effectively
replacing @

- T
0 else

» Weights w aren’tonly € {—1,1} but
can be any real number

* Weights (and bias) are updated based on
error

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;.y; }/ ,.
[nitialize w and & randomly.
while nor converged do

# # # Loop through the examples.
for ; — 1, mdo

# # # Compare the true label and the prediction.
error Yi - O\W : X+ )

### If the model wrongly predicts the class, we update the weights and bias.
if error !'= 0 then
##4 Update the weights.

W =W €Erroi ~dy

### Update the bias.

| b= b4 ervor

.

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ . r(P

Initialize w and b randomly. @ @
while not converged do @ @

# # # Loop through the examples.

o
for ) = 1, mdo %’)'
# # # Compare the true label and the prediction. — weight

error = y; - G(VVIXJ 4+ b)

### 1t the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

### Update the weights.
W=W-<error X &;

### Update the bias.

. b=0b+ error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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Algorithm 1: Perceptron Learning Algorithm
@ Input: Traiming examples {x,.y,}jtl. (weight, wingspan) f}b

Initialize w and b randomly. @ @
while not converged do @ @
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®
B,

# # # Compare the true label and the prediction.
error = y; - a(w? X; + h)

weight
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if error '= 0 then

### Update the weights.
W =W+ €rror X I;

### Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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Algorithm 1: Perceptron Learning Algorithm
Input: Training examples {X;, ¥} |. (weight, wingspan) Owl=0 vs. Albatross1 9

A -
@ Initialize w and b randomly. M / @ @
while not converged do @ @

# # # Loop through the examples.
for ) = 1, mdo

®
B,

# # # Compare the true label and the prediction.
error = y; - ol w X;+b)

weight

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

### Update the weights.
W =W €error x I;

### Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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Algorithm 1: Perceptron Learning Algorithm

— . e=
Input: Training examples {x;. .’/z}:il- (weight, wingspan) OwlI=0 vs. Albatross=1 AT

Intialize w and b randomly. M / @ @
while not converged do @ @

@ # # # Loop through the examples.
for ) = 1, mdo

®
B,

# # # Compare the true label and the prediction.

error = y; - ol w X; + b

weight

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

### Update the weights.
W =W €error x I;

### Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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‘,\lgori'hm l: l’cr(‘cptrnn L(‘arning Algorithm .....................................................

Input: Training examples {X;, ¥} |. (weight, wingspan) Owl=0 vs. Albatross=1 7

Initialize w and b randomly. M / @ @
while not converged do 1 if WTX +bH>0 @ @

T —
@ # # # Loop through the examples. G(W X+b ) —

for ) = 1, mdo / 0 else

# # # Compare the true label and the prediction.
error = y; - a(w’ X;+b)

?
B,

weight

##+# 1f the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

### Update the weights.
W =W €rror X I;

### Update the bias.

b=0b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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Input: Training examples {X;, ¥} |. (weight, wingspan) Owl=0 vs. Albatross=1 7

Initialize w and b randomly. M / @ @
while not converged do 1 if WTX +bH>0 @ @

.
| o(W' X+ D) =
# # # Loop through the examples. | —
for ) = 1. mdo / 0 else ‘%g
# # # Compare the true label and the prediction. weight
@ error = y; - a(w’ X;j+b) —

##+# 1f the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

### Update the weights.
W =W €rror X I;

### Update the bias.

b=0b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.
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‘Alg()ri'hm l: l)crccptr')n [Jeaming ‘Algorithm .............................. xﬂ.. ................
Input: Training examples {X;. i} ;. (weight, wingspan) ~ Owl=0 vs. Albatross=" =

Initialize w and b randomly. M / @ @
while not converged do 1 if WTX +h>0 @ @

T —
# # # Loop through the examples. o(W X+ D) =

for ) = 1, mdo / 0 else

# # # Compare the true label and the prediction.

error = iy; - a(w’ X;j+b) —

®
B,

weight

##+# It the model wrongly predicts the class, we update the weights and bias.
if error '= 0 then

@ ### Update the weights.

W =W <4+ €error x I ;

### Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.




Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {X;, ¥} |. (weight, wingspan)

while not converged do

# # # Loop through the examples. o(w'x

for j = 1, mdo /

# # # Compare the true label and the prediction.
error = uy; - a(w’ X;+b)

if error '= 0 then

### Update the weights.
W =W €error x I;

### Update the bias.

b=b4 error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

Owl=0 vs. Albatross=1

Initialize w and b randomly. M /

b)

:{1 if wx+b>0
0 else

##+# It the model wrongly predicts the class, we update the weights and bias.

wingspan

weight



Perceptron learning rule

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {X;, ¥} . (weight, wingspan)

while not converged do

# # # Loop through the examples. o(w'x

for ) = 1. mdo /‘

# # # Compare the true label and the prediction.
error = y; - nlw’ X; + b
if error = 0 then

### Update the weights.

W =W+ €error x xI;

### Update the bias.

. b=0b+ error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

Owl=0 vs. Albatross=1

Initialize w and b randomly. M /

b)

:{1 if wx+b>0
0 else

##+# 1f the model wrongly predicts the class, we update the weights and bias.

wingspan

Tl T
- R
_..a.(.\.vTX+b)
¥y g
weight

Guaranteed to converge if data is linearly separable




Limitations of linear separability

AND OR XOR

Adrian Rosebrock

® [Nne perceptron can leam any linearly
separable problem ®

® Sut not all problems are lineary . AN
separable

® \/en a single mislabeled data point In the
data will throw the algorithm into chaos X x x

e nter the XOR problem and Minsky &
Darpe’t (1 969) Critique Mislabeled point

® Argument: because a single neuron IS
unable to solve XOR, larger networks g
will also have similar problems e faldee <

® [herefore, the research program
should be dropped AL
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Addressing Minsky & Parpert’s critiques

® Changing the leaming rule

o ADALINE adds robustness to training noise

® AJdINg More layers
® \/\/nile single neurons can only com

ouUte some logica

Nnetworks of these neurons can cor
(Rosenblatt, 1962)

o \ultilayer Perceptron can solve XOR

® Changing the activation function
® Beyond nard thresnolds

Npute any PossIo

oredicates,
e boolean tunction
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Improving the Learning Rule

Adaptive

® \/\lc|
rath

Linear Element (ADALINE)

ght updates based on a loss function
er than the (binary) classification error

S

® \/\lc

whnich

NIS uses the activation
ep, alowing us to compute gradients

can use the Delta rule to minimize loss,
S equivalent to stochastic gradient

descent for least-squares regression

ADALINE Is more robust to training noise:

Epoch n® 1

orior to the sigmoid

Widrow & Hoff, 1960

ADALINE

out(t)

l

MSE

1
ZL(W,b) = 5 Z ((WTXi + b) — yl-)z
i=1

Weight update Bias update
W — W+ aAw b« b+ alb
0L 0L
Aw = — Ab = —
oW ob

= ((WTXi + b) — }’i) X;
i=1

not on the exam

=) (W'x;+b)—y,
=1
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Multilayer Perceptron

e A single hidden layer allows us to solve XOR

ML

- s g

Nigdden
aC

e feedforward netwo

aye

'S, Where we app

o 'V = g(w'x + b)
e ™D = 5(wTh® + p)

KS with multiple

v the same

vation function at each layer

input layer

hidden layer 1 hidden layer 2

37



Multilayer Perceptron

e A single hidden layer allows us to solve XOR

ML

- s g

Nidden
activation function at each layer

e feedforward netwo

aye

'S, Where we app

o 'V = g(w'x + b)
e ™D = 5(wTh® + p)

KS with multiple

v the same

input layer

hidden layer 1 hidden layer 2

37



Multilayer Perceptron IS
e \ILPs are feedforward networks with multiple aanty o

| hidden layer 1 hidden layer 2
Nidden layers, where we apply the same
activation function at each layer
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o D = (w'h" + b)
e A single hidden layer allows us to solve XOR
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e h'V) = g(w'x + b)
o D = (w'h" + b)
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What are /1,,h,, and y when:
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Multilayer Perceptron

e \ILPs are feedforward networks with multiple
Nidden layers, where we apply the same
activation function at each layer

o 'V = g(w'x + b)
o D = (w'h" + b)
e A single hidden layer allows us to solve XOR

Historical note

® Rosenblatt introduced an MLP with 3 layers In

1962, but only the final layer had learning
connections

® irst deep leaming MLP by Ilvakhenko & Lapa

(1965), with stochastic gradient descent added in
1967 by Shun'ichi Amar

input layer

hidden layer 1 hidden layer 2

oS O
2 _Or—w—»O

What are /1,,h,, and y when:

X1 X2 h1 h2 y

0 0 |[06(=.5)=0]|a(-1.5)= o(—.5) =
1 1 |o(15)=1| o(5=1 o(—.5) =
1 0 o(.5) =1 o(—.5) = o(.5) =1
0 | 1 |o(5=1| 6(=5=0| o(5=1
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Backpropagation
ntroduced by Rosenblatt (1962), but he didn't know
Now to Implement it

Forward propagation of the input signals
>

:‘:'--- 7 7 :\.‘:n:’_":— ’ N
T INT
o oA -
< '\-% & __---"'ﬁ
e s .
¢ \O/ output layer

hidden layer 1 hidden layer 2

<
Backpropagation of the error

input layer

38
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Backpropagation
ntroduced by Rosenblatt (1962), but he didn't know
Now to Implement it

" his perceptrons had discrete outputs, thus no derivatives

Forward propagation of the input signals
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Forward propagation of the input signals

Backpropagation AR

e Introduced by Rosenblatt (1962), but he didn’t know QEXLNEE )
how to implement it* (OENRES cidiadiin
: : D | layer
e Goal: update weights/bias to minimize the loss R it iy
® direction of update is known as the gradient Backpropagation of the error

" his perceptrons had discrete outputs, thus no derivatives
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Forward propagation of the input signals

Backpropagation >
® |ntroduced by Rosenblatt (1962), but he didn't know Oﬁ,

now to implement it* 8 =
e Goal: update weights/bias to minimize the loss T Ry R s

<

® direction of update is known as the gradient Backpropagation of the error

® Since MLPs are composed of recursive functions at
each layer, we can apply the chain rule (Leibniz, 16706)
to compute the gradient layer by layer, moving

Dackwards through the network:

0L B 0L ov
o —

du dv du

e \\le use the error to first update the v weights, and
then update u weights w.r.t. how they change v

" his perceptrons had discrete outputs, thus no derivatives 38
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Forward propagation of the input signals

Backpropagation S

7~
XS 1?/.:,,'.;
® [ntroduced by Rosenblatt (1962), but he didnt know O%
now to implement it* (N
: : Co input layer
e Goal: update weights/bias to minimize the loss R TR N Y
® direction of update is known as the gradient Backpropagation of the error

® Since MLPs are composed of recursive functions at
each layer, we can apply the chain rule (Leibniz, 16706)
to compute the gradient layer by layer, moving

Dackwards through the network:

0L B 0L ov
o —

du dv du

e \\le use the error to first update the v weights, and
then update u weights w.r.t. how they change v

e [or further reading, see Grosse & Ba (CSC427)

\ 7

" his perceptrons had discrete outputs, thus no derivatives 38


https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

The Al winter

 Minsky & Papert’s (1969) critique of Perceptrons being unable
to solve XOR problems was taken as a fundamental limitation

 Funding and interest in Al research dried up
* |In 1971 Frank Rosenblatt died in a trajic boating accident

e |t wouldn’t be until the 1980s when people like John Hopfield
and David Rumelhart would revive interest
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Connectionism: Summary

® Perceptrons can learmn a number of logical operations, but fail at
oroblems that are not linearly separable (e.g, XOR)

® Rosenblatt’s lcaming rule is guaranteed to converge (for linearly
separable problems), but is brittle with noisy training data

o ADALINE offers a more robust leaming rule, which is equivalent to
stochastic gradient descent

e Multilayer Perceptrons arc capable of solving XOR and other non-
inearly separaple proplems

e Backpropogation is necessary for learning in MLPs, by passing the
gradient across multiple layers using the chain rule
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General Principles

® |ncrementally Improve predictions by reducing error

® [he unit of leamning is the magnitude of the prediction error (Delta-rule)
® Rescorla-VWagner model and ADALINE

® BSut more generally, stochastic gradient descent, backpropogation, and all modem
KL use this principle

® |ncremental learning Is Not always guaranteed to succeeo

® Schavioral shaping can nelp guide leaming towards desired outcomes
® Single layer perceptrons are limited in which types of problems they can solve
® Adding more layers helps, but it took a long time to develop leaming rules
® (Gradient descent can get stuck in local optima
e \\\hat other principles have you picked up”



Next week we will look at what happened during the Al winter and explore the
limits of stimulus-response learning

SYMBOLIC Al

Symbolic Al
e \/\\hat happened during the Al winter”

Knowledge Inference
: base engine
® |ntelligence as manipulating symmbols through BLIBEET Answer

—
ules and logical operations

® [ caming as searcn

Cognitive Maps

e From Stimulus-Response leaming to Stimulus- ; ’“‘1
Stimulus learming B M‘L
e (Constructing a mental representation of the [ i |
, e 1} !
environment [ W’FJ
i _*......1. - ’ J' "*.‘a.ﬂ 4.....D00R
® Neurological evidence for cognitive maps in the 1 ) -

prain o o



