
Dr. Charley Wu

General Principles of
Human and Machine

Learning

Lecture 2: Origins of biological and artificial learning

https://hmc-lab.com/GPHML.html

https://hmc-lab.com/GPHML.html

Organization
• To allow time for people to travel between classes

• Lectures: 12:15 - 13:45 on Tuesdays
• Tutorials: 16:15 - 17:30 on Wednesday

• Anyone not yet registered?
• Send me an email today with your student number

charley.wu@uni-tuebingen.de

2

mailto:charley.wu@uni-tuebingen.de

Lesson plan
1. Behavioralism

• Understanding intelligence through
behavior

2. Connectionism
• Understanding intelligence through

artificial neural networks

3

Behaviorism
• [noun Psychology.] An approach to understanding the behavior of humans and

animals that emerged in the early 1900s

• Generally tries to focus on outward observable behavior rather than hidden
inner mental states

• One of the earliest programs to empirically study biological intelligence and
learning

4

ResponseBlack BoxStimulus

Mental states?

Varieties of Behaviorism

5

John B. Watson B.F. Skinner

Methodological
Behaviorism

Radical
Behaviorism

• Thoughts and feelings exist, but
cannot be the target of scientific
study

• Only public events can be
objectively observed and studied
scientifically

• Internal processes are also the
target of scientific study

• But they are fully controlled by
environmental variables just as
environmental variables control
behavior

A brief timeline of early research on learning

6

Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)

Thorndike’s (1911) Law of Effect

7

Puzzle Box

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Time to escape

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Time to escape

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Time to escape

“Actions associated with
satisfaction are strengthened,
while those associated with
discomfort become weakened”

Law of Effect

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Time to escape

meow
scratch
hiss
…
lever

strength

“Actions associated with
satisfaction are strengthened,
while those associated with
discomfort become weakened”

Law of Effect

Thorndike’s (1911) Law of Effect

7

Cat

Puzzle Box

Time to escape

meow
scratch
hiss
…
lever

strength

meow
scratch
hiss
…
lever

satisfaction

“Actions associated with
satisfaction are strengthened,
while those associated with
discomfort become weakened”

Law of Effect

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:
• Errors decrease over time
• Openess to trying new solutions
• Basis for all modern reinforcement learning (RL)

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:
• Errors decrease over time
• Openess to trying new solutions
• Basis for all modern reinforcement learning (RL)

Allen, Smith & Tenenbaum (PNAS 2020)

Learning as Trial and Error
What are the benefits? What are the limitations?

8

Benefits:
• Errors decrease over time
• Openess to trying new solutions
• Basis for all modern reinforcement learning (RL)

Allen, Smith & Tenenbaum (PNAS 2020)

Limitations:
• Dangerous when some errors are fatal
• Lacks creativity and generalizastion of past
solutions

• No formalism between behavior and
outcome….

Thorndike’s (1911)
Law of Exercise
• In addition to the repeating

successful actions, we also repeat
actions that we performed in the past

• Learning as habit formation
• e.g., morning routine, commute to

university, studying/exercise
routine, etc…

• Behavior is reinforced through
frequent connections of stimulus and
response

9

Any response to a stimulus will
be strengthened proportional
to how often it has been
associated in the past

Law of Exercise

Thorndike’s (1911)
Law of Exercise
• In addition to the repeating

successful actions, we also repeat
actions that we performed in the past

• Learning as habit formation
• e.g., morning routine, commute to

university, studying/exercise
routine, etc…

• Behavior is reinforced through
frequent connections of stimulus and
response

9

10

Law of Effect & Law of Exercise

Key ideas: Two Pathways for Learning

10

Action

LearningDecision-Making

Law of Exercise

Cached
Policy

Outcome

Law of Effect & Law of Exercise

• Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

Key ideas: Two Pathways for Learning

10

Action

LearningDecision-Making

Law of Exercise

Cached
Policy

Outcome

Law of Effect & Law of Exercise

• Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

• Learn a “cached policy” 
(Cushman & Morris, 2015; Daw et al., 2005; Gershman,
2020)

Key ideas: Two Pathways for Learning

10

Action

LearningDecision-Making

Law of Exercise

Cached
Policy

Outcome

Law of Effect & Law of Exercise

• Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

• Learn a “cached policy” 
(Cushman & Morris, 2015; Daw et al., 2005; Gershman,
2020)

• Law of Effect: Choose actions on the basis
of what has worked in the past

Law of Effect

Value
Update

Value

Cached Value

Key ideas: Two Pathways for Learning

10

Action

LearningDecision-Making

Law of Exercise

Cached
Policy

Outcome

Law of Effect & Law of Exercise

• Law of Exercise: Repeat actions
performed in the past (regardless of
outcome)

• Learn a “cached policy” 
(Cushman & Morris, 2015; Daw et al., 2005; Gershman,
2020)

• Law of Effect: Choose actions on the basis
of what has worked in the past

• Learn a “cached value” that can be used
to select actions  
(Botvinick & Weinstein, 2014; Keramati et al., 2016; Maisto
et al., 2019)

Law of Effect

Value
Update

Value

Cached Value

Key ideas: Two Pathways for Learning

Pavlov’s Dog: Classical conditioning
• Pavlov (1849-1936) approached

learning from a different angle,
focusing on automatic responses

1. The dog naturally salivates when
presented with food  
(unconditioned stimulus; US)

2. No initial response to a bell
(conditioned stimulus; CS)

3. When the dog is trained to associate
a bell with the delivery of food…

4. … it learns to anticipate food when a
bell rings and begins to salivate

11

Ivan Pavlov

Key ideas: Classical conditioning
Pavlovian responses are driven by predictions about
expected outcomes

Learning is driven by reward predictions and (as we will
see) shaped by prediction error

Cues compete for shared credit in predicting reward
outcomes

12

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi wi ← wi + η(rt − ̂rt)

Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi wi ← wi + η(rt − ̂rt)

Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS

stimuli x weights

• [right] Weights are updated via the delta-rule

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

̂rt = ∑
i

CSt
iwi

Reward
expectation

CS i on
trial t

Associative
strength or

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS

stimuli x weights

• [right] Weights are updated via the delta-rule

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted
outcome

Observed
outcome

Learning
rate

̂rt = ∑
i

CSt
iwi

Reward
expectation

CS i on
trial t

Associative
strength or

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS

stimuli x weights

• [right] Weights are updated via the delta-rule

Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted
outcome

Observed
outcome

Learning
rate

δ

{ Reward prediction
error (RPE)

The delta-rule of learning:
• Learning occurs only when events violate expectations

()

• The magnitude of the error corresponds to how much we

update our beliefs

δ ≠ 0

̂rt = ∑
i

CSt
iwi

Reward
expectation

CS i on
trial t

Associative
strength or

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned
stimuli

w2

RW Model

• [left] Reward expectations are the sum of CS

stimuli x weights

• [right] Weights are updated via the delta-rule

Implications: Cue competition
If multiple stimuli cues predict an outcome, they will
share credit

Overshadowing:
• If sound and light are both associated with

reward, then presenting individual cues will
result in weaker responses

Blocking
• If light is first associated with reward, and then

later both light and sound, there will be less
associating of sound with reward than if sound
were conditioned alone

14

? ?Overshadowing

Reward learning as refining an internal representation of the world

• Internal hypotheses about how sensory data were
generated

• The parameters are unknown and must be estimated to
maximize the likelihood of the data
• This is known as maximum likelihood estimation (MLE):

• Under certain assumptions1, RW implements a MLE through
gradient descent

• Thus, RW learning is similar to how neural networks learn

𝒟

w
P(𝒟 |w)

ŵ = arg max
w

P(𝒟 |w)

15

Gradient descent

Δŵi ∝ − ∇wi
ℒ(w) = CSi(r − ̂r)ℒ(w) = − log P(𝒟 |w)

CS r
w

Loss function Gradient update
not on the exam

1 linear Gaussian assumptions

The story so far …
Thorndike’s cats
• Law of effect
• Law of exercise

Pavlov’s dog
• Classical conditioning, where automatic response of

US (salivation when given food) becomes associated
with arbitrary CS (bell)

• Prediction error drives learning

16

The story so far …
Thorndike’s cats
• Law of effect
• Law of exercise

Pavlov’s dog
• Classical conditioning, where automatic response of

US (salivation when given food) becomes associated
with arbitrary CS (bell)

• Prediction error drives learning

16

: repeat successful actions

The story so far …
Thorndike’s cats
• Law of effect
• Law of exercise

Pavlov’s dog
• Classical conditioning, where automatic response of

US (salivation when given food) becomes associated
with arbitrary CS (bell)

• Prediction error drives learning

16

: repeat successful actions
: repeat past actions, regardless of outcome

The story so far …
Thorndike’s cats
• Law of effect
• Law of exercise

Pavlov’s dog
• Classical conditioning, where automatic response of

US (salivation when given food) becomes associated
with arbitrary CS (bell)

• Prediction error drives learning

16

Skinner’s pigeons
• Operant conditioning

: repeat successful actions
: repeat past actions, regardless of outcome

Operant Conditioning

17

Skinner (1938)

• Building off of Thorndike’s Law of Effect, operant
conditioning studies how rewards shape the
animal’s behavior

• Operant conditioning describes the active
selection of actions in response to rewards/
punishments

• rather than only their passive association with
stimuli (like in classical conditioning under
Pavlov)

• This allows us to describe how animals learn to
perform actions (conditioned on stimuli) that are
predictive of reward

https://www.youtube.com/watch?v=_qLs2K4UXXk

Operant Conditioning

17

Skinner (1938)

• Building off of Thorndike’s Law of Effect, operant
conditioning studies how rewards shape the
animal’s behavior

• Operant conditioning describes the active
selection of actions in response to rewards/
punishments

• rather than only their passive association with
stimuli (like in classical conditioning under
Pavlov)

• This allows us to describe how animals learn to
perform actions (conditioned on stimuli) that are
predictive of reward

https://www.youtube.com/watch?v=_qLs2K4UXXk

Operant conditioning in action
• Both rewards and

punishments can be
used to encourage
desired behaviors

• Rewards/punishments
can be either added or
delayed, with different
implications

18

CC Lili Chin

Behavioral Shaping
• Learning is slow when the space of possible

actions is very large
• Shaping is a technique pioneered by Skinner

to train a target behavior by rewarding
successive approximations
• adding rewards for smaller, intermediate

steps to encourage exploration towards the
target behavior

1. Reinforce any response that resembles
the desired behavior

2. Iteratively reinforce responses that more
selectively resemble the target behavior,
and remove reinforcement from previously
reinforced responses (causing extinction)

19

https://www.youtube.com/watch?v=TInv-RQCvrg

Behavioral Shaping
• Learning is slow when the space of possible

actions is very large
• Shaping is a technique pioneered by Skinner

to train a target behavior by rewarding
successive approximations
• adding rewards for smaller, intermediate

steps to encourage exploration towards the
target behavior

1. Reinforce any response that resembles
the desired behavior

2. Iteratively reinforce responses that more
selectively resemble the target behavior,
and remove reinforcement from previously
reinforced responses (causing extinction)

19

https://www.youtube.com/watch?v=TInv-RQCvrg

Dark side of Behavioralism
• Walden Two (1948) describes a Utopia, where

behavioral engineering is used to shape a perfect
society
• From childhood, citizens are crafted through rewards

and punishment into the ideal citizens and to value
benefit for the common good

• Rejection of free will, and has been criticized as
creating a “perfectly efficient anthill”

• Is intelligence just learning to acquire reward and
avoiding punishment?

20

21

https://www.youtube.com/watch?v=qP1hJLepOhw

21

https://www.youtube.com/watch?v=qP1hJLepOhw

Summary so far
• Behavioralism tries to understand intelligence and learning by bracketing out

unobservable mental phenomena. How far can we get with this approach?
• Thorndike’s Laws describes two pathways for learning

• Law of effect: Learning to repeat successful actions via trial and error learning
• Law of exercise: Learning to repeat past actions (regardless of outcome)

• Pavlovian (Classical) Conditioning describes the association between stimuli and
rewards based on predictions of reward
• Rescorla Wagner (RW) model formalizes this theory based on reward prediction error

(RPE) updating, which can be related to rational principles of maximum likelihood
estimation and gradient descent

• Operant conditioning relates stimuli-reward associations to the active shaping of
behavior, to acquire rewards and avoid punishment

22

5 minute break

23

Neural networks

24

• Neurons are specialized cells that transmit information
through electrical impulses
• Roughly speaking, the dendrites receive information,

which is processed in the cell body, and then
propogated through the axon and synapses with other
neurons

• Human perception, reasoning, emotions, actions, memory,
and much more are governed by neural activity

• Whereas behaviorists focused on outward behavior,
neuroscientists have been peering into black box for
centuries in order to understand how neural activity gives
rise to intelligence

• More recently (mid 1900s), artificial neural networks have
been developed as computational tool for solving problems

Rosenblatt’s Perceptron Mark I

Timeline of Artificial Neural Networks

25

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

AI Winter

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

AI Winter

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

AI Winter

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

AI Winter

Timeline of Artificial Neural Networks

25

McCulloch & Pitts
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

ReLU & Dropout (Krizhevsky,
Sutskever, & Hinton, 2012)

Deep Learning
revolution

McCulloch & Pitts (1943)
• First computational model of a neuron

• The dendritic inputs
provide the input signal

• The cell body processes the signal

• If the sum of the inputs is greater or
equal to some threshold , then the
axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

θ

26

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts

McCulloch & Pitts (1943)

27

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

McCulloch & Pitts (1943)

27

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

3

McCulloch & Pitts (1943)

27

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

McCulloch & Pitts (1943)

27

θ =

x1

x2

AND function

y ∈ {0,1}

x3

f(x)

f(x) = {1 if∑ xi ≥ θ
0 else

All inputs need to be on for the
neuron to fire

3

OR function

Neuron fires if any input is on

θ =

x1

x2 y ∈ {0,1}

x3

f(x)

1

NAND

Neuron fires when x1 is on AND x2
not on

McCulloch & Pitts (1943)

28

NOT function

Neuron fires if no inputs are on

? ?

• First computational model of a neuron

• The dendritic inputs provide
the input signal

• Excitatory

• Inhibitory
• The cell body processes the signal

• If the sum of the inputs x weights is greater
or equal to some threshold , then the axon
produces the output

{x1, …, xn}

w = 1
w = − 1

f(x) = {1 if∑ wixi ≥ θ
0 else

θ

McCulloch & Pitts (1943)

29

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts

McCulloch & Pitts (1943)

30

f(x) = {1 if∑ wixi ≥ θ
0 else

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

wi ∈ {1, − 1}

McCulloch & Pitts (1943)

30

f(x) = {1 if∑ wixi ≥ θ
0 else

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {1, − 1}

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

wi ∈ {1, − 1}

McCulloch & Pitts (1943)

30

f(x) = {1 if∑ wixi ≥ θ
0 else

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {1, − 1}

θ =

x1

x2

NAND

y ∈ {0,1}
f(x)

Neuron fires when x1 is on AND x2
not on

wi ∈ {1, − 1}

McCulloch & Pitts (1943)

30

f(x) = {1 if∑ wixi ≥ θ
0 else

1

NOT function

Neuron fires if no inputs are on

θ =
x1 y ∈ {0,1}

f(x)

0

w1 = − 1

wi ∈ {1, − 1}

w1 = 1

w2 = − 1

Rosenblatt’s Perceptron
• Added a learning rule, allowing it to learn

any binary classification problem with linear
seperability

• Very similar to McCulloch & Pitts’, but with
some key differences:

• A bias term is added, effectively
replacing

•

• Weights aren’t only but
can be any real number

• Weights (and bias) are updated based on
error

b
θ

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

wi ∈ {−1,1}

31

b

Rosenblatt’s Perceptron
• Added a learning rule, allowing it to learn

any binary classification problem with linear
seperability

• Very similar to McCulloch & Pitts’, but with
some key differences:

• A bias term is added, effectively
replacing

•

• Weights aren’t only but
can be any real number

• Weights (and bias) are updated based on
error

b
θ

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

wi ∈ {−1,1}

31

b

Error

Error

Perceptron learning rule

32

Pablo Caceres

Perceptron learning rule

32

(weight, wingspan)

Pablo Caceres

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

Pablo Caceres

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

w

Pablo Caceres

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

w

Pablo Caceres

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

w

σ(w⊤x + b)

Pablo Caceres

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

w

σ(w⊤x + b)

Pablo Caceres

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

Perceptron learning rule

32

(weight, wingspan) Owl=0 vs. Albatross=1

w

σ(w⊤x + b)

w = w + error × xj

Pablo Caceres

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

Perceptron learning rule

33

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Perceptron learning rule

33

(weight, wingspan) Owl=0 vs. Albatross=1

σ(w⊤x + b) = {1 if w⊤x + b > 0
0 else

w

σ(w⊤x + b)

Guaranteed to converge if data is linearly separable

Limitations of linear separability
• The perceptron can learn any linearly

separable problem
• But not all problems are lineary

separable
• Even a single mislabeled data point in the

data will throw the algorithm into chaos
• Enter the XOR problem and Minsky &

Parpert (1969) critique
• Argument: because a single neuron is

unable to solve XOR, larger networks
will also have similar problems

• Therefore, the research program
should be dropped

34

Adrian Rosebrock

Limitations of linear separability
• The perceptron can learn any linearly

separable problem
• But not all problems are lineary

separable
• Even a single mislabeled data point in the

data will throw the algorithm into chaos
• Enter the XOR problem and Minsky &

Parpert (1969) critique
• Argument: because a single neuron is

unable to solve XOR, larger networks
will also have similar problems

• Therefore, the research program
should be dropped

34

Adrian Rosebrock

Addressing Minsky & Parpert’s critiques
• Changing the learning rule

• ADALINE adds robustness to training noise
• Adding more layers

• While single neurons can only compute some logical predicates,
networks of these neurons can compute any possible boolean function
(Rosenblatt, 1962)

• Multilayer Perceptron can solve XOR
• Changing the activation function

• Beyond hard thresholds

35

Adaptive Linear Element (ADALINE)
• Weight updates based on a loss function

rather than the (binary) classification error
• This uses the activation prior to the sigmoid

step, allowing us to compute gradients
• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

36

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE

b

Improving the Learning Rule
Widrow & Hoff, 1960

not on the exam

Adaptive Linear Element (ADALINE)
• Weight updates based on a loss function

rather than the (binary) classification error
• This uses the activation prior to the sigmoid

step, allowing us to compute gradients
• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

36

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b

Improving the Learning Rule
Widrow & Hoff, 1960

not on the exam

Adaptive Linear Element (ADALINE)
• Weight updates based on a loss function

rather than the (binary) classification error
• This uses the activation prior to the sigmoid

step, allowing us to compute gradients
• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

36

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b
Error

Improving the Learning Rule
Widrow & Hoff, 1960

not on the exam

Adaptive Linear Element (ADALINE)
• Weight updates based on a loss function

rather than the (binary) classification error
• This uses the activation prior to the sigmoid

step, allowing us to compute gradients
• We can use the Delta rule to minimize loss,

which is equivalent to stochastic gradient
descent for least-squares regression

ADALINE is more robust to training noise:

36

MSE
ℒ(w, b) =

1
2

m

∑
i=1

((w⊤xi + b) − yi)2

w ← w + αΔw b ← b + αΔb

Δw = −
∂ℒ
∂w

=
m

∑
i=1

((w⊤xi + b) − yi) xi

Weight update Bias update

Δb = −
∂ℒ
∂b

=
m

∑
i=1

(w⊤xi + b) − yi

ADALINE
Error

b
Error

Improving the Learning Rule
Widrow & Hoff, 1960

not on the exam

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

What are , , and when:h1 h2 y

Multilayer Perceptron
• MLPs are feedforward networks with multiple

hidden layers, where we apply the same
activation function at each layer

•

•
• A single hidden layer allows us to solve XOR

h(1) = σ(w⊤x + b)
h(i+1) = σ(w⊤h(i) + b)

37

x1 x2 h1 h2 y

0 0
1 1

1 0

0 1

σ(−.5) = 0 σ(−1.5) = 0 σ(−.5) = 0

σ(1.5) = 1 σ(.5) = 1 σ(−.5) = 0

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

σ(.5) = 1 σ(−.5) = 0 σ(.5) = 1

1 1 1 1

-0.5 -1.5

1 -1

-0.5

• Rosenblatt introduced an MLP with 3 layers in
1962, but only the final layer had learning
connections

• First deep learning MLP by Ivakhenko & Lapa
(1965), with stochastic gradient descent added in
1967 by Shun’ichi Amari

Historical note
What are , , and when:h1 h2 y

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*

38

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*

38* his perceptrons had discrete outputs, thus no derivatives

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*
• Goal: update weights/bias to minimize the loss

• direction of update is known as the gradient

38* his perceptrons had discrete outputs, thus no derivatives

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*
• Goal: update weights/bias to minimize the loss

• direction of update is known as the gradient

38* his perceptrons had discrete outputs, thus no derivatives

w ← w − α
∂ℒ
∂w

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*
• Goal: update weights/bias to minimize the loss

• direction of update is known as the gradient
• Since MLPs are composed of recursive functions at

each layer, we can apply the chain rule (Leibniz, 1676)
to compute the gradient layer by layer, moving
backwards through the network:

•

• We use the error to first update the weights, and
then update weights w.r.t. how they change

∂ℒ
∂u

=
∂ℒ
∂v

∂v
∂u

v
u v

38

u

v

* his perceptrons had discrete outputs, thus no derivatives

w ← w − α
∂ℒ
∂w

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

Backpropagation
• Introduced by Rosenblatt (1962), but he didn’t know

how to implement it*
• Goal: update weights/bias to minimize the loss

• direction of update is known as the gradient
• Since MLPs are composed of recursive functions at

each layer, we can apply the chain rule (Leibniz, 1676)
to compute the gradient layer by layer, moving
backwards through the network:

•

• We use the error to first update the weights, and
then update weights w.r.t. how they change

∂ℒ
∂u

=
∂ℒ
∂v

∂v
∂u

v
u v

• For further reading, see Grosse & Ba (CSC421)
38

u

v

* his perceptrons had discrete outputs, thus no derivatives

w ← w − α
∂ℒ
∂w

ℒ =
1
2

m

∑
i=1

(yi − ̂yi)2

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec04.pdf

39

The AI winter
• Minsky & Papert’s (1969) critique of Perceptrons being unable

to solve XOR problems was taken as a fundamental limitation

• Funding and interest in AI research dried up

• In 1971 Frank Rosenblatt died in a trajic boating accident

• It wouldn’t be until the 1980s when people like John Hopfield
and David Rumelhart would revive interest

Connectionism: Summary

40

• Perceptrons can learn a number of logical operations, but fail at
problems that are not linearly separable (e.g, XOR)

• Rosenblatt’s learning rule is guaranteed to converge (for linearly
separable problems), but is brittle with noisy training data
• ADALINE offers a more robust learning rule, which is equivalent to

stochastic gradient descent
• Multilayer Perceptrons are capable of solving XOR and other non-

linearly separable problems
• Backpropogation is necessary for learning in MLPs, by passing the

gradient across multiple layers using the chain rule

General Principles
• Incrementally improve predictions by reducing error

• The unit of learning is the magnitude of the prediction error (Delta-rule)
• Rescorla-Wagner model and ADALINE
• But more generally, stochastic gradient descent, backpropogation, and all modern

RL use this principle
• Incremental learning is not always guaranteed to succeed

• Behavioral shaping can help guide learning towards desired outcomes
• Single layer perceptrons are limited in which types of problems they can solve

• Adding more layers helps, but it took a long time to develop learning rules
• Gradient descent can get stuck in local optima

• What other principles have you picked up?
41

Next week we will look at what happened during the AI winter and explore the
limits of stimulus-response learning

42

Symbolic AI
• What happened during the AI winter?
• Intelligence as manipulating symbols through

rules and logical operations
• Learning as search

Cognitive Maps
• From Stimulus-Response learning to Stimulus-

Stimulus learning
• Constructing a mental representation of the

environment
• Neurological evidence for cognitive maps in the

brain

