General Principles of
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Exam

® Combination of multiple choice and short answer guestions
® \O complex calculations are needed @
® N0 need to memorize formulas or dates

® -OCUS ONn unaderstanding the main theoretical Ideas and how they CONNECt
ACross flelds R Bl e 1

® Bring pens/pencils

® st taking: Friday, Fep 21st, 13:00 -15:00
® Horsaal 1, F119 (SAND 6/7)

e Second taking: Friday April 11th, 12:00 —14:00 =%
® (Ground floor lecture room, Al building (Maria-von-Linden-Str. ©)




Revisiting our original questions

VWhat are the quiding principles of human and machine learming?
How have these two fielas informed one another?
\Which mechanisms of learming are shared across fields?

Where have we seen convergence?
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A brief timeline of early research on biological learning

Pavlov (1927) _ | Tolman (1948)

s Skinner (1938)

Thorndike (1911)




Thorndike’s Laws

Law of Exercise

Any response to a stimulus will be
strengthened proportional to how often
it has been associated in the past

me to escape

g 600 Law of Effect

& 500

g 400 Actions associated with R
& 300 satisfaction are strengthened,
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§ 100 discomfort become weakened
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Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eamning as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk
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Rescorla-Wagner model
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972) CS»

Learning  Observed Predicted

Revvtartq LSion - Associative rate outcome  outcome
At el str\f/r;%trl;tor v Reward prediction
0 error (RPE)
RW Model The delta-rule of learning:
 Reward prediction is the sum of CS * Learning occurs only when events violate expectations
stimuli x weights (© # 0)

* The magnitude of the error corresponds to how much we

 Weights are updated via the delta-rule update our beliefs



Tolman and Cognitive maps

* | earning is not just a telephone switchboard connecting incoming sensory
sighals to outgoing responses (S-R Learning)

» Rather, “latent learning” establishes something like a “field map of the
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning




Latent Learning

* Blodgett (1929) Maze navigation task

* Group 1 [Control]: one trial a day with food in the
goal box at the end

 Group 2 [Late food] No food in the maze for
days 1-6, then food provided at the end on day 7

Group |
w— v Group I

o

 Group 3 [Early food] ... food added on day 3

N
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e |earning curves dropped dramatically when food
was added

~
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* This suggests latent learning prior to reward

=

* “They had been building up a ‘map’”

(lower is better)

o
tn

* Once the reward was added, they could use the
map rather than starting from scratch

Error Score
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Place cells In the

Place Cell

©,

(O’keefe & Nadel 1978)

ongoing

John O’Keefe
Nobel Prize in Physiology or Medicine 2014

represent location in an environment
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https://www.youtube.com/watch?v=lfNVv0A8QvI
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https://www.youtube.com/watch?v=i9GiLBXWAHI
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Grid cells in the provide a coordinate system

P -—

D Trajectory
® Peaks

o/

ticl  t2c1  t2c2 = + Peak

Edvard and Maj-Britt Moser
Nobel Prize in Physiology or

Medicine 2014 Hafting et al (Nature, 2005)
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https://www.youtube.com/watch?v=i9GiLBXWAHI

Origins of Artificial Learning




Timeline of Artificial Neural Networks
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Timeline of Artificial Neural Networks
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Timeline of Artificial Neural Networks
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McCulloch & Pitts (1943)

® irst computational model of a neuron

e The dendritic inputs {Xq, ..., X, }
provide the Input signal

® [ne cell body processes the signa

fx) = {1 £y x>0

0 else

® [f the sum of the Inputs Is greater or

equal to some threshold @, then the
axon produces the output

Dendrites

Cell body
J(X)

AXon
-y € {0,1}

15



Rosenblatt’s Perceptron o,

 Added a learning rule, allowing it
to learn any binary classification
problem with linear seperability

I out(t)

* Very similar to McCulloch & Pitts’,
but with some key differences:

Algorithm 1: Perceptron Learning Algorithm

" . b Input: Training examples {x;, y; }™ ,.
° A bIaS term IS added [nitialize w and & randomly.

while noi1 converged do

not on the exam
# # # Loop through the examples.

 Weights w. aren’t only for j = 1,m do
l # # # Compare the true label and the prediction.
1,1} b b | har i
E { 2 } Ut Can e any rea ### 1f the model wrongly predicts the class. we update the weights and bias.
number if error /= 0 then

### Update the weights.
W =W+

#i## Update the bias.

* Weights (and bias) are updated | | S
based on error | Test for convergence

Output: Set of weights w and bias b for the perceptron.

16
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Limitations of linear separability

AND OR XOR

® [Nhe perceptron can learn any linearly Gy b v A
separable problem @

e BSut not all problems are lineary
separable

® -\/en a single mislabeled data point in the g g "
data will throw the algorithm into chaos

o nter the XOR problem and Minsky &

Mislabeled point

Parpert (1969) critique
. . ¢
® Argument: because a single neuron Is o !
Jnable to solve XOR, larger networks — £]s ° ¢. N X
will also have similar problems ,
ty
® [herefore, the research program 5]

S

Nould e aropped

17
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Multilayer Perceptrons

® \/ Ps are feedforward networks with

(multiple) hidden layers, where we apply
the same activation function at each layer

® A single hidden layer allows us to solve

XOR

® \ore generally, ML
decision boundary
avers

-s can leam any abitrary
oy adding more hidden

® [raining via gradient descent ano

packpropogation

I out(t)

r ° "
(D

wo(t) = 6

Hidden Layer Output

Layer
Input #1 — /
Input #2 — %‘%"‘

18



The 1st Al winter and the rise of symbolic Al

® Skepticism about Perceptrons not
oeing able to solve XOR problems
ed to Al winter |

® Afterwarc

Popularity

Explosive
Growth

S, was a hopetul revival

of INteres
systems’

® | Mmitation

caused Al winter Il which ended
WIth modern agvances in patterm
recognition and deep neura

Networks

L pased on ‘expert New Hopes
using symbolic Al '

Inflated

S Of expert systems Hype

i Al winter Il

| !
Birth iAl winter | '
| | a

(.e., machine leaming) 1950 1956 1974 1980 1987 1993 Time

19



Symbolic Al

e Physical Symbol System hypothesis:
"A physical symbol system has the necessary and sufficient
means for general intelligent action - Allen Newell and
Herbert Simon (1976)”

Herbert Simon
& Allen Newell

20
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Symbolic vs. sub-symbolic Al

/ apple \ apple
origin structure kind O'_S.O— ' | N -0.1_2
/ N \ — A2 o T
apple tree body stem fruit | ) ) ) J
shape  size color taste 1'”' 3'21218 432 089 13@ ‘3.45
/ I [\ \ / B o + —
round hand red green apple ) ' ) ) )

Symbolic Al Sub-symbolic Al
e Symbols and relations represent things in the world, and ® Representations distributed across connection
reasoning is just the manipulation of these entities weights, but the weights themselves don't explicitly

® Compositionality: symbo
produce new representa

s and rules can be combined to
oNS

® ‘| anguage of though

" (LoT) hypothesis (Fodor, 1975):

represent anything

—fficiency: knowledge can be implicitly learned by

. turing statistical patterns
concepts/knowledge represented by a language-like system Captuning stats P

e Extracting symbolic representations and search over ® |nterpretation of representations and behavior is difficult

compositional hypothesis spaces Is difficult

21



Neurosymbolic Al

® Neurosympolic Al aims to
compine symmoolic and

supsymbolic a
the best of bot

Oproac

Nes 10 get

N WOrIC

S

® \odem Al assistants (e.g., Sin,
Google, Alexa) are essentially
expert systems with ANN voice
recognition and text-to-speecn

Input
(perceiving
the world)

Human guestion
(natural language
question)

Knowledge
base
Symbolic
query

Inference
engine

Answer

22



A common framework of learning?

Early biological research Early Al research

Minsky & Parpert [19€9|

| -? Rocenblatt (105€) Percaptron
--------------------------- Al Winter
Thorndike (1911) e — Skinner (1938) == 11
- Rt LL:"‘
. MecCulloch R Pitts

e T Tt (1943) Perceptron



Reinforcement
Learning

An Introduction
cond edition

Reinforcement
Learning

24



Pavlovian (classical)
conditioning

Learn which environmental cues predict reward

Reinforcement
Learning

i d S. Sution and Sindrew G Barto

Reinforcement
Learning

24



Pavlovian (classical)
conditioning

\\\h\\\ ‘% . %
3 — 3

Learn which environmental cues predict reward

Reinforcement
Learnlng

1irew

Relnforcement
Learning

Operant (instrumental)
conditioning

> I

Learn which actions predict reward
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Pavlovian (classical)

conditioning
\u‘h\“ ‘% % \

Learn which environmental cues predict reward

Neuro-

Reinforcement \\
Learnlng 1\,\?

Operant (instrumental)

condltlonlng
/ 4
/

Reinforcement
Learning Learn WhICh actions predict reward

|

dynamic programing

Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems

24



Reinforcement Learning

The Agent:

« lteratively selects actions a, based on a policy &

e Receives feedback from the environment in
terms of new states s, ; and rewards R(a,, s,)

 Updates internal representations

 value Q(s,a) or V(s)

>

Reward Action

e model of the environment State

e reward function R

e transitions 7(s’| s) . §<R(aza 5,)
_ Environment
The Environment: W

e governs the transition between states S, = S0

» provides rewards R(a,, s,) Sutton and Barto (2018 [1998])

25
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2-Armed Bandit Problem
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2-Armed Bandit Problem

Single state problem

AWB



Q-Learning (Watkins, 1989)

Value learning
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Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
I I
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reward reward

_
0

Reward prediction error (RPE)

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs
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Q-Learning (Watkins, 1989)

Value learning

0,41(@) < Ofa)+ 1 |r—0[a)]
7

learning rate Observed  Predicted
reward reward

_
0

Reward prediction error (RPE)

The delta-rule of learning:
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Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]

(_ —
Qi y1(a) Qt(ﬁ 1 [’” Qt(a)] Q) OB) | a | r | &
| I I t=1| 0 0 A | 5
learning rate Observed  Predicted
reward reward =2 B | 12
)
5 t=3 B 4
Reward prediction error (RPE)
t=4 A | 8

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs



Q-Learning (Watkins, 1989) e 1 Compute Qrvalues

| =9
Value learning E assume 7]

) < a) + [r — a ]
Q@ = Q@ L1l = Q@] g o 1 4
I I t=1| O 0 A | 5| 5

learning rate Observed Predicted
reward reward 0| 4= 5 5 | 10| 10
—

S t=3| 45 | 108 | B | 4 | -6.8

Reward prediction error (RPE)
t=4| 45 | 468 | A | 8 | 35

The delta-rule of learning:

» Learning occurs only when events violate expectations (0 # ()
 The magnitude of the error corresponds to how much we update our beliefs
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Model-free
S-R learning

Model-based

S-S learning

Tolman (1948)
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Model-free
S-R learning

Model-based

S-S learning
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Model-free
S-R learning

Model-based

S-S learning

Image credit Alyssa Dayan
(from Dolan & Dayan, 2013)
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Advances in RL

® Nodern model-free methods can be categorized as
Value-based, Policy-based, or Actor-Critic
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® Nodern model-free methods can be categorized as methods

Value-based, Policy-based, or Actor-Critic
Deep Q-learning Policy gradient

® \odel-based methods can as well. ..
e DYNA (Model & Value-based) |
o \Norld Models (Model & Policy-based)
® Dreamer (Model & Actor-Critic)

Minecraft Diamond

1

K 100K 1M 10M 100M
Environmen t Steps

—
o
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Social learning =%,
Alex Witt

_eaming Is not only from environmental
feediback, but also from social sources

Imitation via observational leamning, where
social learning strategies (SLS) define
various whno, what, when

Theory of mind (ToMV) involves inferring hidden
mental states rom observaple behavior

Various Bayesian formalisms of [oM, but typically
Ntractable and a key limitation of current Al

Bandura (1961)

Wu, Vélez, & Cushman (2022)

Levels of social learning Decision-making hierarchy

Model-based
inference _.. — ‘b[ Belief ](Reward]
-

- N 7

Value inference

Social
observations * 1
N Policy imitation

.
“‘~_—v[ActionJ

OpenToM Benchmark (Xu et al., 2024)

Q: What is Sam’s attitude toward’s Amy’s action?

~

Llama2 GPT Turbo

Accuracy (F1)
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Compression

David Nagy
Compression decreases the resources R

required to store data

Lossless compression is without |0ss of
information

[he optimal lossless code is based on
assigning the shortest codes to the most frequent
nputs: source coding theorem

—\ven greater compression Is possiple by allowing
for distortions: lossy compression

optimal lossless code raw data

: compression
4—
! R
~ H(X) | X | rate
(resource cost)
possible
frequency nputs codes

Bl 00000000000 — 00
B 00000000001 =—» (001
B 00000000011 ——» 010

B 00001001101 — 101010

o111 —— 111111111
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Learning concepts

b Rule-based

a Classification task

Previous Experiences

Concept Learning

/

\ Sandwich?

Sandwich!

1

Qo

Flatness

e

X Sandwich

O Not sandwich
? Query

— Rule

Bread Enclosure

c Similarity-based

Flathess

X Sandwich

O Not sandwich

? Query .
<> Similarity T

Bread Enclosure

Wu, Meder & Schulz (AnnRevPsych 2025)

d

Flatness

Hybrid

X Sandwich
? Query

— Hypothesis

?

Likelihood
1

Bread Enclosure

Concepts are mental representations of categories in the world (classification problem)

Classical view used rules to describe the necessary and sufficient conditions for category membership

NMore psychological approaches used similarity, compared to a learned prototypes or past exemplars

Sayesian concept

consistent with sir

eaming i1s a hybrid approacn, that uses distributions over rules, and recreating patterns

larity-pased approaches
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Learning functions

Wu, Meder & Schulz (AnnRevPsych 2025)

Hybrid

® Observation ? Query ?
— Hypothesis :

— Expectation
Uncertainty

® Functions are mental representations of relationships in the world (regression problem)
® [arly rule-based theories assumed humans learmn functions by picking specific class of functions and
then optimizing the weights (as in linear or parametric regression)
e Similarity-based methods used ANNs to encode the generic principle that similar inputs produce
similar outputs
® Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and
rule-like compositionality of kernels
e Regression task f Rule-based g Similarity-based h
O) Spiciness Enjoyment ® Observation ? ® Observation "
- — Linear prediction — Prediction -
E ; Polynomial prediction <> Similarity
E - ? Query ) o~ ? Query -
() o) o o
— & = &
- ) ) )
O (5 T (5
O
C
D)
L

Spiciness

Spiciness

Spiciness
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Converging theories?

a Classification task

O)
S Previous Experiences
=
qv
)
—
e
Q.
D
O
C
O
O
e Regression task
O) Spiciness
=
-
| -
qv
D
—
C
O
e
O
C
>
LL

Sandwich!

t1
,

\ Sandwich?
)4‘/

-

Enjoyment

b

Flatness

f

Enjoyment

Rule-based C

X Sandwich

O Not sandwich
? Query

— Rule

Flatness

Bread Enclosure

Rule-based

® Observation
= Linear prediction

= Polynomial prediction
? Query

9

Enjoyment

Spiciness

Wu, Meder & Schulz (AnnRevPsych 2025)

Similarity-based d
X Sandwich
O Not sandwich
? Query
<+> Similarity
7))
N
.......... D
O . T
’’’’’ .:: 7 E
Y
0" /0
':.
0
Bread Enclosure
Similarity-based h
® (Observation n
= Prediction .
<> Similarity ;
? Query
t=
()
-
>
9
C
LL]

Spiciness

Hybrid
X Sandwich i L
? Query .
— Hypothesis X lee||h100d
X
?
X X

Bread Enclosure

Hybrid

® Observation ? Query
— Hypothesis

— Expectation
Uncertainty

?

Spiciness 26



Modern Machine Learning

f

MACHINE LEARNING

.

4 D

SUPERVISED

5

CLASSIFICATION

LEARNING

Develop predictive
model based on both
input and output data

. J

& ™
UNSUPERVISED

data based only

.

\

J

LEARNING
Group and interpret ﬁ

REGRESSION

on input data

CLUSTERING
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Supervised vs. unsupervised learning

® (lassification problems™: classify data
poINts INto one of N different categories

® Supervised leaning:

® [rar
fslels

Ng data provides category
S

® (Classifiers usually try to leam a
decision-pboundary

e Unsupervised leaming:

® [raining data lacks category labels

® (Classifiers usually try to leam clusters

Variable 1

Variable 1

Supervised

Variable 2

Variable 1

Variable 1

Unsupervised

Variable 2




Supervised learning

Two general classes:

* Discriminitive directly map features to class labels, often by learning
a decision-boundary (rule-like)

* Generative approaches learn the probability distribution of the data
(similarity-like)

Example problem: Spam detector

» Data U = {X,y}

e« each X € X are the features of an email
(e.g., length, date, sender, content, etc...)

 eachy € y is the label (1 if spam, O otherwise) Mai

Discrimitive models identify the boundaries that separate spam from
non-spam

Generative models learn the distributions of spam and non-spam emails

< — - Spam Detector |

Notation:

a scalar a vector of set
A constant A Matrix

Discriminative Generative
« © ® O
*
‘.o @ o.‘
° ‘@ O O
. O
®e .0 @ @ ® O
O .O ' ® ¢ .Q O
® o* o @ o O

< y

S "
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Variable 1

Variable 1

Overview of methods

Supervised

Variable 2

Variable 1

Variable 1

Unsupervised
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Variable 1

Variable 1

Overview of methods

Supervised

Variable 2

MLPs D
Iscriminative
+ © o
Decision trees _.\° °,
and random "N D,
forests L AN
SVMs

Variable 1

Variable 1

Unsupervised

Variable 2




Variable 1

Variable 1

Overview of methods

Supervised

Variable 2

M LPS Discriminative

« © o
Decision trees _.\° °,
and random _“o% |
forests * %" o
SVMs

Generative

m .

Naive Bayes .

o, ©O4

w o
)
- "
f )\ -
o |/ ) . .
- ~_/ p—
@ \' '/ B
L\-_/ l/’ “-.’ ‘-.._/'
A N -
@ o o
= "

Variable 1
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Unsupervised

Variable 2




Variable 1

Variable 1

Overview of methods

Supervised

Variable 2

MLPs

Discriminative
« O ®
Decision trees . °,
and random - g .
f ore S.t S O ':‘;_;[’f'_;: C':_; “‘ C')O
SVMs
Generative

Nalve Bayes

k-Means

GMMs

Variable 1

Variable 1

Unsupervised
Oo% o
Oo
OoOo
O o o
e O o

©O O ¢
O
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Variable 1

Variable 1

Overview of methods

Supervised

Variable 2

M LPS Discriminative

. © s
Decision trees _,.° °,
and random "% [ .
forests * %o
SVMs

Generative

Nalve Bayes

Which cognitive theories have

similar mechanisms?

Unsupervised
©_0
O o
k-Means ® o
% OOOO
O
5 O o
> o O O -
©O O ¢
GMMs ©
20q) . %0
(".Q‘\\
2 ,""\\\.,/”
3 O 0 .
S| 0® ' o©
'@ ' O
1 ®@ O o

Variable 2




Chomsky: Universal Grammar (UG)

e Plato’s problem (Chomsky, 1980): "How comes it that human beings, whose

contacts with the world are brief and personal and limited, are nevertneless able to know
as much as they do know"?”

® | anguage acquisition in children suggests they “attain infinitely more than they
experience’

® Poverty of the stimulus: it seems like there is a disparity between the amount of input
([experience) and the output (acquired language)

® [hus, there Is a missing factor and that factor is Universal Grammar (UG):
‘the system of cateqories, mechanisms, and constraints that shared by all human
lanquages and considered to be innate’

e Output (language ability) > input (experience)
® [herefore: language = input + UG
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Landauer & Dumais (1997)

Solving Plato’s Problem with Latent Semantic Analysis (LSA)

o Latent semantic analysis (LSA) A Text sample (context)
| - wora/ 1. [.|.|-]-|-|-]-|-]- |- .130,000
® [escribe the similanty between words 1 x| X[ X x| X[ x| - ]~ [xIxIX[x] x| x
nased on the similarity of contexts in which - X|XXX]x|x]. |- X[ x]x[xx] X
hey occur .
o Ong ot the first computational approaches to . T o <
solving Plato’'s problem 60,000 |x|x{x|x|x|x].|. . [x[x]x|x{x| x
® —ocusing on semantic leaming (i.e., the I
: daClOr
meaning of words) rather than grammar B (dimension) Racti
; 1! Word/ |1].].[./300 C (dimension)
eamning (the relational structure or syntax 1 TS SamoTel TILT.[.[300
between words) . T ARAE 1 ZBRRE:
" . ” C , : : sliels | | 2
e Specifically modeling “induction” (reasoning . INARE . Zl [z
beyonoll the availapble evidence) in | S Tttt i
semantics 60,000 |y]. y
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context window

contextword

contextword targetword

i like natural

royal

king female queen
royal
man female
A
Woman

: - T Man
Queen |

"M King

Semantic
Relationship

language processing

i|like natural language |processing

| like| naturallanguage processing

i like natural

woman

Big

language processing

A
' Biggest
"'.17
% Smallest
.".1 =
Small |~
>
Syntactic
Relationship

Word2vec, RNNs, and LSTMs

RNNs

(W1 | .




How do LLMs learn

e Combination of multiple Machine Leaming technigues
1. Unsupervised pre-training: predict the next word in a sentence
2. Supervised fine-tuning: predict hand-curated labels
3. Reinforcement learning \with human tfeedback: adapt policy based on human raters

1. Unsupervised Pretraining 2. Supervised Finetuning 3. Reinforcement Learning with Human Feedback
low quality

high quality
Text Demonstration Con:jp?rison Prompts
e.g., internet data data ata
Next word * l l
Label Orderings Reinforcement

prediction
‘ prediction * Learning
Pretrained SFT Reward Final
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General Principles




Final tutonal

* For tomorrow’s tutorial, please prepare 2-3 candidate exam questions:
* Short answer question format
* You are incentivized to bring plausible questions that would be
sufficiently challenging, thought provoking, and feasible
» Good questions will be included on the exam
* We will go over these gquestions and you can ask me anything else about

guestions you still have about the exam or about anything else you like

C

Goog

le do
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