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Exam
• Combination of multiple choice and short answer questions 

• No complex calculations are needed 
• No need to memorize formulas or dates 
• Focus on understanding the main theoretical ideas and how they connect 

across fields 
• Bring pens/pencils 

• First taking: Friday, Feb 21st, 13:00 -15:00  
• Hörsaal 1, F119 (SAND 6/7) 

• Second taking: Friday April 11th, 12:00 –14:00 
• Ground floor lecture room, AI building (Maria-von-Linden-Str. 6)
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Revisiting our original questions
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What are the guiding principles of human and machine learning? 

How have these two fields informed one another? 

Which mechanisms of learning are shared across fields? 

Where have we seen convergence?



Foundations of Biological Learning
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A brief timeline of early research on biological learning
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Thorndike (1911)

Pavlov (1927)

Skinner (1938)

Tolman (1948)



Thorndike’s Laws 
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Cat Puzzle Box Time to escape

Actions associated with 
satisfaction are strengthened, 
while those associated with 
discomfort become weakened 

Law of Effect

Law of Exercise
Any response to a stimulus will be 

strengthened proportional to how often 
it has been associated in the past



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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https://www.youtube.com/watch?v=_qLs2K4UXXk


Rescorla-Wagner
Rescorla-Wagner model  
(Bush & Mosteller, 1951; Rescorla & Wagner, 1972)

Predicted 
outcome

Observed 
outcome

Learning 
rate

δ

{ Reward prediction 
error (RPE)

The delta-rule of learning: 
• Learning occurs only when events violate expectations 

( )

• The magnitude of the error corresponds to how much we 

update our beliefs

δ ≠ 0

̂rt = ∑
i

CSt
iwi

Reward 
expectation

CS i on 
trial t

Associative 
strength or 

weight

wi ← wi + η(rt − ̂rt)
Reward prediction Weight update

CS1
w1 r

CS2

Conditioned stimuli Unconditioned 
stimuli

w2

RW Model

• Reward prediction is the sum of CS 

stimuli x weights

• Weights are updated via the delta-rule

for  where :i CSi = 1



Tolman and Cognitive maps
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• Learning is not just a telephone switchboard connecting incoming sensory 
signals to outgoing responses (S-R Learning)


• Rather, “latent learning” establishes something like a “field map of the 
environment” gets etablished (S-S learning)

Stimulus-Response (S-R) Learning Stimulus-Stimulus (S-S) Learning



Latent Learning
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• Blodgett (1929) Maze navigation task 

• Group 1 [Control]: one trial a day with food in the 
goal box at the end


• Group 2 [Late food] No food in the maze for 
days 1-6, then food provided at the end on day 7


• Group 3 [Early food] … food added on day 3


• Learning curves dropped dramatically when food 
was added


• This suggests latent learning prior to reward 


• “They had been building up a ‘map’” 


• Once the reward was added, they could use the 
map rather than starting from scratch
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Place cells in the hippocampus represent location in an environment

11

Wilson Lab (MIT)John O’Keefe 
Nobel Prize in Physiology or Medicine 2014

https://www.youtube.com/watch?v=lfNVv0A8QvI
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Grid cells in the Entorhinal Cortex provide a coordinate system
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Trajectory
Peaks

+ Peak

Hafting et al (Nature, 2005)

Edvard and Maj-Britt Moser 
Nobel Prize in Physiology or 
Medicine 2014

https://www.youtube.com/watch?v=i9GiLBXWAHI


Grid cells in the Entorhinal Cortex provide a coordinate system

12

Trajectory
Peaks

+ Peak

Hafting et al (Nature, 2005)

Edvard and Maj-Britt Moser 
Nobel Prize in Physiology or 
Medicine 2014

https://www.youtube.com/watch?v=i9GiLBXWAHI


Grid cells in the Entorhinal Cortex provide a coordinate system

12

Trajectory
Peaks

+ Peak

Hafting et al (Nature, 2005)

Edvard and Maj-Britt Moser 
Nobel Prize in Physiology or 
Medicine 2014

https://www.youtube.com/watch?v=i9GiLBXWAHI


13

Origins of Artificial Learning



Timeline of Artificial Neural Networks
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AI Winter

Timeline of Artificial Neural Networks

14

McCulloch & Pitts 
(1943) Perceptron

Rosenblatt (1958) Perceptron

Minsky & Parpert (1969)

First deep network (Ivakhnenko & Lapa 1965)

Convnets for MNIST (LeCun et al., 1989)

ReLU & Dropout (Krizhevsky, 
Sutskever, & Hinton, 2012)

Deep Learning 
revolution



McCulloch & Pitts (1943)
• First computational model of a neuron 

• The dendritic inputs  
provide the input signal 

• The cell body processes the signal 
 

  

• If the sum of the inputs is greater or 
equal to some threshold , then the 
axon produces the output

{x1, …, xn}

f(x) = {1 if∑ xi ≥ θ
0 else

θ

15

Dendrites

Cell body 
f(x)

Axon

x1

x2

xn ∈ {0,1}

…
y ∈ {0,1}

Warren McCulloch Walter Pitts



Rosenblatt’s Perceptron
• Added a learning rule, allowing it 

to learn any binary classification 
problem with linear seperability


• Very similar to McCulloch & Pitts’, 
but with some key differences:


• A bias term is added 


• Weights  aren’t only 
 but can be any real 

number


• Weights (and bias) are updated 
based on error

b

wi
∈ {−1,1}
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b

Error
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not on the exam



Limitations of linear separability
• The perceptron can learn any linearly 

separable problem 
• But not all problems are lineary 

separable 
• Even a single mislabeled data point in the 

data will throw the algorithm into chaos 
• Enter the XOR problem and Minsky & 

Parpert (1969) critique 
• Argument: because a single neuron is 

unable to solve XOR, larger networks 
will also have similar problems 

• Therefore, the research program 
should be dropped

17

Adrian Rosebrock 
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Multilayer Perceptrons
• MLPs are feedforward networks with 

(multiple) hidden layers, where we apply 
the same activation function at each layer 
• A single hidden layer allows us to solve 

XOR  
• More generally, MLPs can learn any abitrary 

decision boundary by adding more hidden 
layers 

• Training via gradient descent and 
backpropogation

18



The 1st AI winter and the rise of symbolic AI

19

• Skepticism about Perceptrons not 
being able to solve XOR problems 
led to AI winter I 

• Afterwards, was a hopeful revival 
of interest based on “expert 
systems” using symbolic AI 

• Limitations of expert systems 
caused AI winter II, which ended 
with modern advances in pattern 
recognition and deep neural 
networks (i.e., machine learning)



Symbolic AI
• Physical Symbol System hypothesis:  

“A physical symbol system has the necessary and sufficient 
means for general intelligent action -  Allen Newell and 
Herbert Simon (1976)”

20

Herbert Simon  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Symbolic vs. sub-symbolic AI

Symbolic AI 
• Symbols and relations represent things in the world, and 

reasoning is just the manipulation of these entities 
• Compositionality: symbols and rules can be combined to 

produce new representations  
• “Language of thought” (LoT) hypothesis (Fodor, 1975): 

concepts/knowledge represented by a language-like system 
• Extracting symbolic representations and search over 

compositional hypothesis spaces is difficult 
21

Sub-symbolic AI 
• Representations distributed across connection 

weights, but the weights themselves don’t explicitly 
represent anything 

• Efficiency: knowledge can be implicitly learned by 
capturing statistical patterns 

• Interpretation of representations and behavior is difficult



Neurosymbolic AI

22

+

• Neurosymbolic AI aims to 
combine symbolic and 
subsymbolic approaches to get 
the best of both worlds 

• Modern AI assistants (e.g., Siri, 
Google, Alexa) are essentially 
expert systems with ANN voice 
recognition and text-to-speech
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A common framework of learning?

Early biological research Early AI research
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Reinforcement 
Learning
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Reinforcement 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Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward
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Reinforcement 
Learning

Pavlovian (classical) 
conditioning

Learn which environmental cues predict reward

Operant (instrumental) 
conditioning

Learn which actions predict reward

Neuro-dynamic programing 
Bertsekas & Tsitsiklis (1996)

Stochastic approximations to dynamic programing problems 



Reinforcement Learning 
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1

Sutton and Barto (2018 [1998])

The Agent:


• Iteratively selects actions  based on a policy 


• Receives feedback from the environment in 
terms of new states  and rewards 


• Updates internal representations


• value  or 


• model of the environment


• reward function 


• transitions 


The Environment:


• governs the transition between states 


• provides rewards 

at π

st+1 R(at, st)

Q(s, a) V(s)

R

T(s′￼|s)

st → st+1

R(at, st)



Delta-rule of learning
Belief-updates are proportional to the 
magnitude of the reward predition error (RPE)
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2-Armed Bandit Problem
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2-Armed Bandit Problem
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A B

s
A B

Single state problem



Q-Learning (Watkins, 1989)
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Q-Learning (Watkins, 1989)
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Qt+1(a) ← Qt(a) + η [r − Qt(a)]
learning rate Predicted 

reward
Observed 
reward

δ

{
Reward prediction error (RPE)

The delta-rule of learning: 

• Learning occurs only when events violate expectations ( )

• The magnitude of the error corresponds to how much we update our beliefs

δ ≠ 0

A B

t=1 0 0 A 5 5

t=2 4.5 0 B 12 12

t=3 4.5 10.8 B 4 -6.8

t=4 4.5 4.68 A 8 3.5

Q(A) Q(B) r δ

assume η = .9

Exercise 1: Compute Q-values

a

Value learning
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Model-free
S-R learning

Model-based

x
x

xximage credit Alyssa Dayan  
(from Dolan & Dayan, 2013)
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• Model-based methods can as well…
• DYNA (Model & Value-based)
• World Models (Model & Policy-based)
• Dreamer (Model & Actor-Critic)

Advances in RL
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Value-based 
methods

Policy-based 
methods

Actor-
Critic

Model-based 
methods

Deep Q-learning Policy gradient

The model can be used to simulate experiences for 
updating the value/policy


These simulations are computationally costly, but 
supplement direct RL, leading to faster learning and greater 
flexibility



5 minute break
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Social learning
Learning is not only from environmental 
feedback, but also from social sources 
 
Imitation via observational learning, where 
social learning strategies (SLS)  define 
various who, what, when 
 
Theory of mind (ToM) involves inferring hidden 
mental states from observable behavior 
 
Various Bayesian formalisms of ToM, but typically 
intractable and a key limitation of current AI

32

Bandura (1961)

Wu, Vélez, & Cushman (2022)

Alex Witt



Compression

Lossless compression is without loss of 
information

33

R

optimal lossless code

≈ H(X)

raw data

|X |

The optimal lossless code is based on 
assigning the shortest codes to the most frequent 
inputs: source coding theorem

compression

rate 
(resource cost)

00000000000
00000000001
00000000011

00001001101

11111111111

101010

111111111…

00
001
010

c
frequency

possible 
inputs

Even greater compression is possible by allowing 
for distortions: lossy compression

Compression decreases the resources  
required to store data

R

codes

David Nagy



Learning concepts
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• Concepts are mental representations of categories in the world (classification problem) 

• Classical view used rules to describe the necessary and sufficient conditions for category membership 

• More psychological approaches used similarity, compared to a learned prototypes or past exemplars 

• Bayesian concept learning is a hybrid approach, that uses distributions over rules, and recreating patterns 
consistent with similarity-based approaches

Wu, Meder & Schulz (AnnRevPsych 2025) 



Learning functions
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• Functions are mental representations of relationships in the world (regression problem) 

• Early rule-based theories assumed humans learn functions by picking specific class of functions and 
then optimizing the weights (as in linear or parametric regression) 

• Similarity-based methods used ANNs to encode the generic principle that similar inputs produce 
similar outputs 

• Hybrid approaches using GP regression offer a Bayesian framework, combining kernel similarity and 
rule-like compositionality of kernels
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Converging theories? 
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Modern Machine Learning
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Supervised vs. unsupervised learning
• Classification problems*: classify data 

points into one of n different categories 
• Supervised learning:  

• Training data provides category 
labels 

• Classifiers usually try to learn a 
decision-boundary 

• Unsupervised learning: 
• Training data lacks category labels 
• Classifiers usually try to learn clusters 
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Supervised learning
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• Two general classes:


• Discriminitive directly map features to class labels, often by learning 
a decision-boundary (rule-like)


• Generative approaches learn the probability distribution of the data 
(similarity-like)


• Example problem: Spam detector


• Data 


• each  are the features of an email  
(e.g., length, date, sender, content, etc…) 


• each  is the label (1 if spam, 0 otherwise)


• Discrimitive models identify the boundaries that separate spam from 
non-spam


• Generative models learn the distributions of spam and non-spam emails

𝒟 = {X, y}
x ∈ X

y ∈ y

 
  scalar 
 constant 

a
A

  vector 
 Matrix

a
A

Notation:
  set 𝒜
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Chomsky: Universal Grammar (UG)
• Plato’s problem (Chomsky, 1986): “How comes it that human beings, whose 

contacts with the world are brief and personal and limited, are nevertheless able to know 
as much as they do know?” 
• Language acquisition in children suggests they “attain infinitely more than they 

experience”  
• Poverty of the stimulus: it seems like there is a disparity between the amount of input 

(experience) and the output (acquired language) 
• Thus, there is a missing factor and that factor is Universal Grammar (UG): 

“the system of categories, mechanisms, and constraints that shared by all human 
languages and considered to be innate” 

• Output (language ability) > input (experience)  
• Therefore: language = input + UG
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Solving Plato’s Problem with Latent Semantic Analysis (LSA) 

• Latent semantic analysis (LSA) 
• Describe the similarity between words 

based on the similarity of contexts in which 
they occur 

• One of the first computational approaches to 
solving Plato’s problem 
• Focusing on semantic learning (i.e., the 

meaning of words) rather than grammar 
learning (the relational structure or syntax 
between words) 

• Specifically modeling “induction” (reasoning 
beyond the available evidence) in 
semantics
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Word2vec, RNNs, and LSTMs

43

context window
RNNs

LSTMs



How do LLMs learn
• Combination of multiple Machine Learning techniques 

1. Unsupervised pre-training: predict the next word in a sentence 
2. Supervised fine-tuning: predict hand-curated labels 
3. Reinforcement learning with human feedback: adapt policy based on human raters
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Text 
e.g., internet data

1. Unsupervised Pretraining 2. Supervised Finetuning 3. Reinforcement Learning with Human Feedback

Pretrained 
LLM

Next word 
prediction

Demonstration 
data

Label 
prediction

SFT 
model

Comparison 
data

Orderings Reinforcement 
Learning

Prompts

low quality high quality

Reward 
model

Final  
model



General Principles
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Final tutorial
• For tomorrow’s tutorial, please prepare 2-3 candidate exam questions:

• Short answer question format

• You are incentivized to bring plausible questions that would be 

sufficiently challenging, thought provoking, and feasible

• Good questions will be included on the exam

• We will go over these questions and you can ask me anything else about 

questions you still have about the exam or about anything else you like
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Google doc

https://docs.google.com/document/d/1mIoKtckQ5LUScVvSEoE1s_pyIZKE5lOqxCQ-qX4xnk8/edit?usp=sharing

