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The story so far…
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Learning concepts and functions
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Today’s agenda
• Plato’s problem and the Poverty of the Stimulus argument  

(Chomsky, 1986) 
• Latent Semantic Analysis 

(Landauer & Dumais , 1997) 
• Word2vec 

(Mikolov et al,. 2013) 
• RNN and LSTM language models 
• LLMs
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“Meno” - Plato

And how will you enquire, Socrates, into that which you do not 
know? What will you put forth as the subject of enquiry? And 
if you find what you want, how will you ever know that this is 
the thing which you did not know?

8

Meno’s Paradox

Socrates Plato
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Meno’s Paradox

How can we learn what we don’t already know? How can we acquire new concepts?

Socrates Plato



Is (some) knowledge innate?
Plato’s theory of anamnesis 
• knowledge is in the soul from eternity  
• the soul is immortal and repeatedly incarnated 
• each time knowledge is forgotten in the trauma of birth 
• what one perceives to be learning, then, is the recovery 

of what one has forgotten 
Demonstrated by having a slave boy intuitively solving 
geometry problems he was not instructed in 
• (just goes to show what kinds of theories you need to 

develop to explain learning without an account of 
generalization!)
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Chomsky: Universal Grammar (UG)
• Plato’s problem (Chomsky, 1986): “How comes it that human beings, whose 

contacts with the world are brief and personal and limited, are nevertheless able to know 
as much as they do know?” 
• Language acquisition in children suggests they “attain infinitely more than they 

experience”  
• Poverty of the stimulus: it seems like there is a disparity between the amount of input 

(experience) and the output (acquired language) 
• Thus, there is a missing factor and that factor is Universal Grammar (UG): 

“the system of categories, mechanisms, and constraints that shared by all human 
languages and considered to be innate” 

• Output (language ability) > input (experience)  
• Therefore: language = input + UG

10



Criticisms of Universal Grammar
• Universality of grammatical structure across languages is overstated 

• Pirahã language lacks recursion, embedded clauses, quantifiers, and color terms 
(Everett, 2005), which are commonly taken to be universals 

• Similarity-based generalization explains how children generalize beyond observed evidence 
• Learning probabilistic patterns rather than hard and fast rules (Distributional hypothesis; 

McDonald & Ramscar, 2001) 
• Even without negative examples (explicit instruction of what is ungrammatical), prediction-

error learning based on failure of expectations serves as a form of implicit feedback 
(Ramscar & Yarlett, 2007) 

• Evolutionary argument 
• Convergence across languages is not due to some innate universal structure in our 

brains, but due to general processes/constraints of human cognition (Tomasello, 2008)
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Solving Plato’s Problem with Latent Semantic Analysis (LSA) 

• Latent semantic analysis (LSA) 
• Describe the similarity between words 

based on the similarity of contexts in which 
they occur 

• One of the first computational approaches to 
solving Plato’s problem 
• Focusing on semantic learning (i.e., the 

meaning of words) rather than grammar 
learning (the relational structure or syntax 
between words) 

• Specifically modeling “induction” (reasoning 
beyond the available evidence) in 
semantics

12

Landauer & Dumais (1997)



LSA algorithm
• Simple idea: Represent the meaning of words 

based on the company they keep 
• Input: a matrix (A) containing counts of which 

words occur in which contexts (i.e., texts) 
• Process: matrix factorization using singular value 

decomposition (SVD; see next slide) 
• Outputs: 

• Word vectors (B) and Context vectors (C)  
• Both are mapped to the same high-dimensional 

latent space (300 dims) 
• The distance between word vectors captures 

similarity, which can be used to generalize
13
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Singular Value Decomposition (SVD)
• SVD is a generalization of 

eigendecomposition (square matrix only) to 
any rectangular matrix 

• break down the description of  into a 
numer of components (i.e., basis 
functions) based on the outer product of 

 and  
• Components are weighted by the values in 

, which is a diagonal matrix (0s except 
for the diagonal) 

• No unique solution, but usually computed 
through iterative methods finding 
progressively better solutions until 
convergence 

• Using only the top K components, we get an 
efficient approximation

A

U V⊤

Σ
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Using word vectors to model 
semantic learning

• Local context of words predict long-range 
generalization by using the Cosine similarity 
between word vectors 

• Synonym test: predicting which words are 
synonyms based on cosine distance 
performed as well as foreign students testing 
at US colleges  

• Mode performance (y-axis) improves with 
more text (x-axis) and more training samples 
with the stem word (shapes) 
• Predicted learning rates comparable to 

late elementary/high school children 
(10-15 words per day)

15
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Word2Vec
• Using neural networks to learn word vectors at scale 

(Mikolov et al., 2013) 
• Two training methods that are inversely related to each 

other 
• Cumulative bag of words (CBOW): predicting the 

target word based on the context (neighboring words) 
• Skip-gram: predicting the context based on the 

target word 
• Iteratively move a context window through training 

text, and update network weights to minimize 
prediction loss 

• Same basic principle as LSA (local context), but richer 
geometric interpretations of word vectors based on the 
need to predict words
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Word2vec architecture

• One hot encoding of words 
• Word vectors are extracted from the 

weight matrix of the encoder

17



Word2vec results
• Both semantic and syntactic 

relationships 
• Similar relationships exist on the 

same hyperplane 
• Reasoning about analogies can 

be done through addition and 
subtraction 
 

  
• Try out a demo here:  

https://rare-technologies.com/
word2vec-tutorial/#bonus_app 

⃗king − ⃗man + ⃗woman ≈ ⃗queen

18
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Word2vec advantages and applications

19

• Scalable and cheap to train 
• entire English Wikipedia 

took 48 hrs on my laptop 
when I was a masters 
student in 2014 

• Geometric properties provide 
a host of applications 
• text classification 
• sentiment analysis 
• topic modeling

Wu, Skowron, & Petta (2014); my first poster presentation!
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, which is used to predict the output  
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for interpreting the input
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Long short-term memory (LSTMs)
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• LSTMs (Hochreiter & Schmidhuber, 1995) 
add additional modules that learn when to 
store long-term memories and when to forget 

• Key difference from RNNS: has both 
shorterm and longterm hidden states 
• Input gate: selects which new information 

(filter) gets stored in longterm memory 
(after multiplying with tanh activation)  

• Forget gate: selects which information to 
be forgotten by multiplying incoming 
longterm hidden state by a forget vector 

• Output gate: computes a new hidden 
state, which is used to generate the output

LSTM Gabriel Loye (2019)
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LSTM language models
• Generative model of language viewed as 

a sequence generation problem 
• predict the next word based on the 

previous word, with the hidden states 
carried over for the entire string 

• Use gradient descent with 
backpropogation through time to 
minimize prediction error 

• Vanishing gradient issue with RNNs is 
(mostly) avoided, since gates control the 
flow of information 

• Not only represents text, but can generate 
new text that is (mostly) coherent

22

Demo

https://trekhleb.dev/machine-learning-experiments/#/experiments/TextGenerationShakespeareRNN


LSTM language models
• Generative model of language viewed as 

a sequence generation problem 
• predict the next word based on the 

previous word, with the hidden states 
carried over for the entire string 

• Use gradient descent with 
backpropogation through time to 
minimize prediction error 

• Vanishing gradient issue with RNNs is 
(mostly) avoided, since gates control the 
flow of information 

• Not only represents text, but can generate 
new text that is (mostly) coherent

22

Demo

https://trekhleb.dev/machine-learning-experiments/#/experiments/TextGenerationShakespeareRNN


Interim summary
• Plato’s problem and poverty of the stimulus argument led people like Chomsky 

to believe that language learning is underdetermined (not enough data) 
• LSA showed how local contexts (which words occur in which texts) can enable 

generalization by learning latent word embeddings 
• Word2vec provides a neural-network implementation based on predicting 

neighboring words within a moving context window, where word vectors have 
interesting geometric properties for AI applications 

• RNNs and LSTMs use supervised learning to predict which word occurs next in 
a sequence, providing a method for generating text 
• LSTMS use a series of gates and dual hidden states (short vs. longterm) to 

avoid the vanishing gradient problem and capture long-term dependencies 
23



5 min break
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Large Language Models

• Definition: Large language models are advanced artificial intelligence 
systems designed to process and generate human-like language. 

• Key Components: These models typically consist of deep neural 
networks with millions or even billions of parameters, allowing them to 
learn and capture complex patterns in language data. 

• Training Process: Large language models are trained on massive 
amounts of text data from various sources, such as books, articles, 
and websites, using unsupervised learning techniques. 

• Natural Language Understanding: They excel at tasks like 
language understanding, text generation, sentiment analysis, 
language translation, summarization, and question answering.

25

Last real scientific paper 
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But really, what are LLMs?
• Self-attention mechanism used in massively hierarchical architecture of 

transformers networks 
• Context window prediction (similar to word2vec) 
• Various forms of training 

• Unsupervised text prediction 
• Supervised training on labeled data 
• Reinforcement learning from human feedback (RLHF) 

• The future of AI

26



How do LLMs learn
• Combination of multiple Machine Learning techniques 

1. Unsupervised pre-training: predict the next word in a sentence 
2. Supervised fine-tuning: predict hand-curated labels 
3. Reinforcement learning with human feedback: adapt policy based on human raters

27
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1. Unsupervised pre-training
• Next word prediction, with error used to update weights 
• Key concepts: 

• Attention Mechanism provides contextual 
guidance, by focusing on relevant parts of input for 
better output 
• e.g., “children” is associated with the activity 

“playing” and the location of the activity “garden” 
• Each word is processed with contextual guidance 

• Transformer Networks 
• Deep learning architecture, using attention 

mechanism to encode and decode text 
• LLMs are many transformer networks, stacked 

hierarchically 28



Self-Attention
• Self-attention captures relationships between different 

words/tokens in a sequence 

• Each input is mapped to uery, ey, and alue 
representations through fully connected            ANNs 
• Analogous to information retrieval (e.g., searching for 

videos on youtube): the search engine maps query 
(text in search bar) to keys (video title/description) 
associated with each candidate, and then presents 
us with a set of matches (values) 

• produces a score, which is then put through a 
softmax to weight the relative importance of each word 
for each other word (scaled by dimensionality ) 

• This is then multipled against alue representations to 
generate a contextualized representation of the text

Q K V

QK⊤

dk

V

29

Attention(Q, K, V) = softmax ( QK⊤

dk ) V⊤
Vaswani et al., (2017)



Multi-head attention

30Yasuto Tamura 2021

• Attention mechanism can be repeated 
across N attention heads in parallel 

• Each head has different linear mappings 
(Q,K,Vs), each computing attention (on 
different types of relationships) 

• Outputs of each head are merged together



Transformers
• Encoder-decoder architecture 

• Encoder represents the input 
• Decoder takes the target and 

the encoded representation to 
predict the output 

• Attention is used in 3 places 
• the input 
• the target 
• the relationship between 

target and input 
31



2. Supervised fine-tuning (SFT)

32

• Unsupervised pre-training uses cheap 
data, but is computationally demanding  
• Training ChatGPT3 ~ yearly energy 

consumption of 1,000 US households

• Supervised fine-tuning uses 
expensive data from human labels, 
but is computationally cheap, since 
dataset is smaller 
• Labeled data comes an army of 

Amazon Mechanical Turk workers 
• Provides demonstrations of 

desired outputs
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3. Reinforcement learning with human feedback (RLHF)
• Labeled outputs only go so far


• Too many possible prompts and 
situations


• RL is well-equipped to generalizing in novel 
settings


• [AlphaGo] more unique board states than 
atoms in the known universe!


• RL training not only instructs which outputs 
are correct, but teaches more general 
patterns via reward representations and 
behavioral policies


• Comparison data used to train reward 
model (which outputs are better)


• Prompt data used to train policy  
(how to select an output to generate)
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LLM Overview

Text 
e.g., internet data
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• Massive scale of next word prediction


• Sequentially refined via human data, to produce desired outputs 
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Chollet (2019)
AGI progress has stalled. 
New ideas are needed.
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ARC Challenge
• $1+ million public competition, evaluated on a 

private dataset


• 2024 winner: 53% performance;  
grand prize still unclaimed


• You could probably get 100% (arcprize.org/)

HUMAN

http://arcprize.org/
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ARC Challenge
• $1+ million public competition, evaluated on a 

private dataset


• 2024 winner: 53% performance;  
grand prize still unclaimed


• You could probably get 100% (arcprize.org/)

HUMAN

• Public/semi-private dataset evaluation 
results (exposed to commercial APIs and 
may have data leakage)

http://arcprize.org/


37

Towards AGI in 2025
• Two main ingredients are responsible for these latest 

improvements in the ARC challenge (Chollet et al., 2025)


• Deep learning-guided program synthesis 

• Learn compositional and domain-general task-solving 
programs, rather than brute-force search


• Programs are functions mapping inputs to outputs; but 
combinatorial explosion of potential functions makes 
search difficult


• Test-time training 

• Models are typically trained on a large dataset, and then 
weights are frozen on the test set


• Test-time training allows for the weights to change to 
adapt to the specific context of the task at test-time

Zhou, Nagy & Wu (2024)

Akyürek et al., (2024)



Breaking news
• New open-sourced model at orders of magnitude 

less cost 
• for training 
• and for inference  

• Yesterday, tech stocks 
crashed, particularly 
NVIDIA
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DeepSeek R1
• Rule-based RL 

• Skip SFT and RLHF 
• Do direct RL on the pretrained model to learn 

rules  
• Math/coding problems allow you to directly 

evaluate the correctness of answers 
• Sample a bunch of outputs and assign 

rewards, then learn the general rule 
• Data distillation to train smaller models 

• Use a larger model to train a simpler one using 
SFT 
• Training small open-sourced models using 

R1 as the SFT data source achieves 
comparable performance fo GPT-4o
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Text 
e.g., internet data

Unsupervised Pretraining

Pretrained 
LLM

Next word 
prediction

low quality

Problems 
(e.g., math/code)

Rules

Deepseek  
R1

Rule-based RL

Data distillation

Label 
prediction

Distilled  
model

Small open-
sourced model

Deepseek  
R1



Summary
• Vector space representations of semantics (word embeddings) are a powerful tool for modeling 

language, where (cosine) similarity between vectors provides a means for generalization 
• Semantic representations are (usually) learned via predicting which words come next and/or supervised 

labels provided by human trainers 
• Attention provides a powerful mechanism to contextualize semantic representations, using transformation 

of Query, Key, and Value matrices to encode relational structure  
• Adding RLHF and massively more parameters by hierarchically stacking transformer networks plays a 

large role in how we got chatGPT 
• But new methods from DeepSeek (rule-based RL and data distillation) are massively changing the 

playing field, with better performance at a fraction of the training costs 
• Although some shared principles (e.g., similarity, prediction, relational structure), the learning mechanisms 

and scale of training data is quite distinct from human learning 
• LLMs haven’t solved the poverty of the stimulus problem, since they have a glut of experience; ARC 

performance orders of magnitude more costly 
• Still an open question humans obtain “infinitely more than we experience”
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Next week
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General Principles + Exam Prep

Humans Machines • For next week’s tutorial, please 
prepare 2-3 candidate exam 
questions:
• Short answer question format
• You are incentivized to bring 

plausible questions that would be 
sufficiently challenging, thought 
provoking, and feasible

• Good questions will be included on 
the exam


