General Principles of
Human and Machine
Learning

Lecture 1: Introduction

Dr. Charley Wu
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Overview

® (Organization
® Contact information and office hours
® |ntroductions
® (Course organization
® (Grading
® Schedule

® \\\hat is learmning’



Course & Contact Info

Instructor
Dr. Charley Wu (charley.wu@uni-tuebingen.de)

Office hours by appointment (email)

Teaching Assistants

Hangi Zhou (hangi.zhou@uni-tuebingen.de)
Turan Orujlu (turan.orujlu@tuebingen.mpg.de)
Alexandra Witt (alexandra.witt@gmx.net)

General information

Lectures: Tuesdays 12:15 - 13:45 @ Seminar Room
4332, Psychology Faculty (Alte Frauenklinik),
SchleichstraBe 4

- - ‘.?“ ) i

Tutorials: Wednesdays 16:15 - 17:30 @ 3rd Floor Meeting | Lo e e ‘.p,,-i,o,s'op,,yj, v
Room, Al building, Maria-von-Linden-Str. 6 PN Wil


mailto:charley.wu@uni-tuebingen.de
mailto:hanqi.zhou@uni-tuebingen.de
mailto:turan.orujlu@tuebingen.mpg.de
mailto:alexandra.witt@gmx.net

Course organization

Lectures

 Read assigned paper

 Show up to class, participate in discussion, and take notes
Tutorials

 Combination of hands-on exercises, (paper) discussions, programing
challenges, and pop-quizzes (see Grading on next slide)

o Student responsibilities:

» Keep up with material (complete assigned readings, re-visit lecture slides,
visit office hours, ask TAS)

 Show up and participate



Grading

® 20% of grade| Best 3 out of 4 pop-quizzes

® [hey are designed to make sure you are following the material and are relatively
easy marks

® [f yOU a
24 Nrs

® [fyou N

‘e unable to attend any tutorials, please email me and the assigned
N advance (or as early as possible)

A

ave well-documented apnsences, we may consider make-up quizzes or
alternative solutions

® [80% of grade| Final exam
® [entative dates: Feb 21 (13:00-15:00) and April 11 (12:00-14:00)
® Questions will be a combination of multiple choice and short answer guestions




Discussion about tutorial scheduling

Some people have written me saying that the tutorial overlaps with other

required courses

Alternative options given to me (location would still T
® rday 8:00-10:00
® rday 10:00-18:00

Should we keep the current slot or switch’?

B

D, but likely SAN




Introductions

e \\Vhat is your name”?

e \\Vhat do you stuay”/

e \\Vhat do you hope to learn from this course”

° |

Sonus| Name each of the people prior 1o you




Night sky for most of Earth’s history
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Al breakthroughs
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Sutton & Barton (1998)

Agent
state reward

action
R,

roughs S« ‘*’

Environment ]«1
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Al breakthroughs
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Adversarial examples

100% Guacamole

Adversarial noise

90% Tabby Cat
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Al limitations

~ar

90% Tabby Cat Adversarial noise

Hallucinations

When did France gift Lithuania Vilnius TV tower?

France gifted Lithuania the Vilnius TV tower in 1980.

What prompted the French government to provide the gift?

The French government provided the gift as a gesture of friendship and

solidarity with the Lithuanian people, who had recently declared
independence from the Soviet Union)

100% Guacamole

| (o=

11



AI IimitatiOnS eal—world problems
. FULL SELF-DRIVING

~ WILL BE HERE

Adversarial examples

90% Tabby Cat Adversarial noise 100% Guacamole

Hallucinations

When did France gift Lithuania Vilnius TV tower?

(o=

France gifted Lithuania the Vilnius TV tower in 1980.
What prompted the French government to provide the gift?
The French government provided the gift as a gesture of friendship and

solidarity with the Lithuanian people, who had recently declared
independence from the Soviet Union)

¥
P o o LN
Controlled by humans

11



Course in a nutshell




Course overview

VWhat are the quiding principles of human and machine learming?
How have these two fielas informed one another?
\Which mechanisms of learming are shared across fields?

Where have we seen convergence?

13



Syllabus

Date Lecture Readings

Week 1: Oct 15: Introduction Spicer & Sanborn (2019). What does the mind learn?
Week 2: Oct 22: Origins of biological and artificial learning 1] Behaviorism [2] What is a perceptron? (Blog post)
Week 3: Oct 29: Symbolic Al and Cognitive maps 1] Garnelo & Shanahan (2019) [2] Boorman et al., 2019
Week 4: Nov 5: Introduction to RL Sutton & Barton (Ch. 1 & 2)

Week 5: Nov 12: Advances in RL Neftci & Averbeck (2019)

Week 6: Nov 19: Social learning Witt et al., (2024)

Week 7: Nov 26: Compression and resource constraints Nagy, Orban & Wu (under review)

Week 8: Dec 3: Concepts and Categories Murphy (2023)

Week 9: Dec 10: Supervised and Unsupervised learning Bishop (Ch. 4)

Week 10: Jan 14: Function learning Wu, Meder, & Schulz (2024)

Week 11: Jan 21: Language and semantics Kamath et al., (2024)

Week 12: Jan 28: No Lecture

Week 13: Feb 4: General Principles Gershman (2023)

14


http://wrap.warwick.ac.uk/114642/1/WRAP-what-mind-learn-comparison-human-machine-learning-representations-Sanborn-2019.pdf
https://plato.stanford.edu/entries/behaviorism/
https://towardsdatascience.com/perceptrons-logical-functions-and-the-xor-problem-37ca5025790a
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://www.sciencedirect.com/science/article/abs/pii/S2352154621000395
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.nature.com/articles/s42256-019-0025-4
https://charleywu.github.io/downloads/witt2024humans.pdf
https://nobaproject.com/modules/categories-and-concepts
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://charleywu.github.io/downloads/wu2024unifying.pdf
https://link.springer.com/content/pdf/10.1007/978-3-031-65647-7_1.pdf
https://gershmanlab.com/pubs/NeuroAI_critique.pdf

Origins of Biological and Artificial Learning

Behavioralism

e Understanding intelligence through behavior
® [rial and error leaming
® (Classical and operant conditioning

® Rescorla-VWagner model as proto-RL

AN . ‘ ’,//rood Tray
-y b - ‘

~ P
INustration. Skinner box as adapted for the pigeon.

Connectionism

® nde
neura

® Porcept
descent,

rstanding intelligence through artificia

ne
ons, logical operators, gradient

WOIKS

output,

and backpropagation

10



Symbolic Al and Cognitive Maps

Symbolic Al SYMBOLIC Al
e \/\\nat happened during the Al winter”

Knowledge Inference
base engine
. . Question Answer
ules and logical operations

® |nteligence as manipulating symiools through —

® | caming as search

Cognitive Maps

e From Stimulus-Response leaming to Stimulus- ; ’“‘1
Stimulus learming B mt
e (Constructing a mental representation of the [ f |
. t e W :
environment [ W’FJ
o e
® Neurological evidence for cognitive maps in the 1 ) E}jm
orain e o




Introduction to RL

Action

E
! —————
514

Sutton & Barto (1998)
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Introduction to RL

Action

E
;
: Ot

Sutton & Barto (1998)
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Advances in RL

Classic model-based RL World-model RL

Policy/value functions Minecraft Diamond

12 - A @
planning update
direct RL simulated 2 g- »DreamerV3
update experience & ; T
_ / real 1 9 —_— . - —
g soarch B First,.Diamond
mode o |
earing |control — Max from Scratch

0 - Mean
Model 10K 100K 1M 10M 100M
Environment Steps

Sutton (1991) Hafner et al., (2024)

~ - )
Environment
N——
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Advances in RL

Classic model-based RL World-model RL

Policy/value functions Minecraft Diamond

12 - A @
planning update
direct RL simulated 2 g- »DreamerV3
update experience & ; T
_ / real 1 9 —_— . - —
g soarch B First,.Diamond
mode o |
earing |control — Max from Scratch

0 - Mean
Model 10K 100K 1M 10M 100M
Environment Steps

Sutton (1991) Hafner et al., (2024)
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Social Learning




proportion of correct responses

Social Learning

Physica

°‘f

3
|

0.40 —

o <
o N
o o

Herrmann et al., (Science 2007)

human chimpanzee granguian
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proportion of correct responses

Social Learning

Physical

1.00 —

0.80 —
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Herrmann et al., (Science 2007) 1,00 — —_—
T 0.80 —
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human chimpanzee grangutan human chimpanzee orangutan
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proportion of correct responses

Levels of social learning Decision-making hierarchy

Social Learning i -

”

Value inference

- = | Vvalue

Social
observations ™ l
N Policy imitation

.,
N e o > Action

Wu et al., (2022)
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proportion of correct responses

Social Learning

1.00 —

0.80 —

0.60 —

0.40 —|

proportion of correct respeonses

human chimpanzee granguian human

chimpanzee

orangutan

Levels of social learning Decision-making hierarchy

Model-based
inference _. — —b Belief Reward
-~
”

\ /

Value inference

§88 (e

Social
observations " l
N Policy imitation

.,
N e > Action

Wu et al., (2022)

Witt et al., (PNAS 2024)
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Com pression Which is the Monopoly Man?

® Biological intelligence has limited
‘esources

® [\lemory, energy, time horizon,
mMotivation, etc. ..

® Artificial agents have very different
imitations

® However, compression offers a
common framework for how to both try
{0 minimize distortion given maximum
rate of Information

® However, we see different patterms of
distortions and downstream effects on
learning

20
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Compression

® Biological intelligence has limited
‘esources

\Viemory, energy, time horizon,
mMotivation, etc. ..

® Arl
[Ingll

clal agents have very different
ations

® However, compression offers a

CO
(0

rate of

® However, we see different pat
distortions and downstream &

leamir

ﬁthﬁ

hﬁlr\

M
N

O

oN framework for Now -
imize distortion given maximum

formation

O both try

erns of

Tects on

memaory

reconstruction

Nagy et al., (under review)
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Compression

® Biological intelligence has limited

‘ESOUIrCes

® [\lemory, energy, time horizon,

motivation, etc. ..

® Artificial agents have very diffe
imitations

® However, compression offers

rent

d

common framework for how to both try

{0 minimize distortion given maximum

rate of INformation

® However, we see different patterms of

distortions and downstream &
learning

Tects on

memaory reconstruction

Nagy et al., (under review)

distortion

rate
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Concepts and Categories (Generalization 1)

Classification task

Previous Experiences

Sandwich!

Flatness

Rule-based

X Sandwich

O Not sandwich
? Query

— Rule

Bread Enclosure

Flatness

Similarity-based

X Sandwich
O Not sandwich
? Query ",X
<> Similarity
‘w”"‘:o' X .
A
A
-------------- -: ? :'.'.'.'.-.-.-.--................} X
07 S 44 e X
“‘“‘ ::: v.
() e 0
3
()

Hybrid
X Sandwich i L
? Query L
— Hypothesis X lee||h100d
X
2 ?
£ ' . G
CU ] -
L
0

Bread Enclosure

Bread Enclosure

Wu et al., (AnnRevPsych in press) 2



Concepts and Categories (Generalization 1)

Classification task
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Concepts and Categories (Generalization 1)

Classification task Rule-based Similarity-based Hybrid
Previ = _ X Sandwich X Sandwich § Sandwich
revious Experiences - O Not sandwich ? Query .
SandW|Ch' g gll(j;rsyandwmh X ? Query — Hypothesis X L|kel|h100d
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Wu et al., (AnnRevPsych in press) 2



Supervised and Unsupervised Learning
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Function Learning (Generalization 2)

Regression task

Previous Experiences

Spiciness Enjoyment

& D) *Hxkxk

Enjoyment

Spiciness Xx

23



Function Learning (Generalization 2)

Value approximation

Regression task ,
in RL

v, (87)

Previous Experiences

Spiciness Enjoyment

Enjoyment

Spiciness Xx

Silver et al., (2016)
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Function Learning (Generalization 2)

Regression task Value approximation Plays an important role In
in RL human RL
v, (8)

Previous Experiences

<

¢ Humans (5-55 yrs)
— Stochastic optimization

Spiciness Enjoyment

Reward

0.9
0.8
0.7
0.6
0.5

B(logscale)
o

Enjoyment
L X X
Directed exploration

0.1 0.3 1.0 3.0
Generalization A(logscale)

Spiciness X

Silver et al., (2016) Giron et al., (NHB 2023)
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Language and Semantics

Vector Space Semantics

Large Language Models

ChatGPT

A
woman . :
lrl -\O-- I
man g slower 0. 4 /N
\ father 4‘ <low Examples Capabilities Limitations
ueen on
cat klng q bOY 'Explain quantum computing in Remembers what user said May occasionally generate
simple terms" earlier in the conversation incarrect information
dog mother
cats daughter fast 'Got any creative ideas for a2 10 Allows user to provide follow- May occasionally produce
F year old's birthday?" up corrections harmful instructions or biased
rance content
dogs |
England 'Onger "How do | make an HTTP Trained to decline inappropriate
he fastest reguest in Javascript?" requests Limited knowledge of world and
. IOng events after 2021
Paris Italy \ she
London
himself
longest
Rome herself
2tGP T s optimized for dialogue. Our goal is
>
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General Principles




What is learning?

Split into groups of 2-4 and
come up with some definitions



Marr’s Levels of Analysis (1982)

Algorithmic

Implementation
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N3

Flight
Flapping

Feathers
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N3

Flight
Flapping

Feathers

Marr’s Levels of Analysis (1982)

What is the goal of the system?
How does it behave?

reward

action
A

5., | Environment

Algorithmic

Which representations
and computations?

Implementation

How is the system realized?
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Marr’s Levels of Analysis (1982)

Flight Computational ot

What is the goal of the system?
How does it behave?

reward action

A,

Environment

Initialize (Q{s.a) arbitrarily
Repeat (for each episode):

Initialize s
AI .t h . Repeat (for each step of episode):
g oritnmic Choose @ from s using policy derived from Q (e.g., e-greedy)
Take action a, observe r, &'

Qls.al « Qls.a) n‘r Fomax, Q(s", a’) Q[s.u)|
!
8 — &

Which representations MgV

Flapping

] until s is terminal
and computations?

Feathers Implementation

How is the system realized?
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reward action

A,

Environment

Initialize (Q{s.a) arbitrarily
Repeat (for each episode):

Initialize s
AI .t h . Repeat (for each step of episode):
g O rl m IC Choose a from s using policy derived from @Q (e.g.. s-greedy)
Take action a. observe r, &'

Qls.al « Qls.a) (1‘1' Fomax, Q(s", a’) Q[x.u”
!
8 — &

Which representations MgV

Flapping

] until s is terminal
and computations?

Feathers Implementation

How is the system realized?
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Categorize each definition of
“learning” using Marr’s levels



In the same groups, come up with some
answers for each arrow

How can machines inform
our understanding of
human learning?

How can human learning
Inform the development
of machine learning?



See you next week

 Don’t forget to finish your assigned reading before the tutorial tomorrow

e Spicer & Sanborn (2019)

* The tutorial is in the Al Building (3rd floor seminar room)

* Next week, we look at the the origins of research on biological and artificial
learning
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http://wrap.warwick.ac.uk/114642/1/WRAP-what-mind-learn-comparison-human-machine-learning-representations-Sanborn-2019.pdf

