General Principles of Human
and Machine Learning

Tutorial 3: Introduction to RL

RL Framework

e In RL, problems can be described

using the MDP formality
o MDP is a4-tuple (S, A, P, R)
m S: state space
m A: action space
m P: state transition probability
° P(St+1=St+1|St=St’At=at)
m R: state transition returns
° R(St’st+1) =N
o Markov Decision Process because of the
Markov property
m P(S,,[S,.-.S,,A) = P(S,,IS,A)

Andrey Markov

Tutorial Questions

Devise three example tasks of your own that fit into the reinforcement learning
framework, identifying for each its states, actions, and rewards. Make the three
examples as different from each other as possible. The framework is abstract and
flexible and can be applied in many different ways. Stretch its limits in some way in
at least one of your examples.

Example 1: Chess

e S: board position of the pieces
e S, ={Black rook: a8, Black knight:
b8,, White rook: h1}

Example 1: Chess

e A: all the legal moves (whites)
given the current board

configuration

o For example, on the board to the right:
m White pawn: e2 —e4

Example 1: Chess

e P: the probability of each board configuration given

player’s move and the current configuration.
o For example, on the board to the right:
[Given White pawn: e2 —e4

° Black pawn: e7 —e5

° But could have also played:
o Black pawn: d7 —d5
o Black pawn: e7 —e6
o Black knight: b8 —c6
o Etc

° P(S1 = {Black rook: a8, Black knight: b8,, Black
pawn: e5,White pawn: €6, ..., White rook: h1} | S0
= {Black rook: a8, Black knight: b8,, White rook:
h1}, A, = White pawn: e2 —e4) € [0,1]

e Note that the Markov property is preserved:

o Previous board configurations don’t affect the transitions:

[All the necessary information is incorporated into
the current board configuration

Example 1: Chess

e R:
o Endgame:
m Win: +1

a b = d4 € ¥ g b

= N WA, OO N @

Example 1: Chess

R:

o Endgame:

1
+
£
=

|

1
1
"
n
(@)
-
|

Example 1: Chess

o R:
o Endgame:
m Win: +1
m Loss: -1

m Draw: 0

Example 1: Chess

o R:
o Endgame:
m Win: +1
m Loss: -1
m Draw: 0

o Otherwise:
m |f a move doesn'’t lead to an
endgame situation: 0
e This is a major problem in
RL called sparsity of reward
e |t leads to the credit
assignment problem

Example 2: OpenAl Gym (Humanoid Standup)

e S: The state space consists of
positional values of different body
parts of the Humanoid, followed by
the velocities of those individual
parts (their derivatives) with all the
positions ordered before all the

velocities.
1: z-coordinate of the torso (centre)
2: x-orientation of the torso (centre)

(@)

O
o ...
o 45: angular velocity of the angle
between left upper arm and
left_lower_arm

Example 2: OpenAl Gym (Humanoid Standup)

e A: The agent take a 17-element
vector for actions representing the
numerical torques applied at the
hinge joints.

o 0: Torque applied on the hinge in the
y-coordinate of the abdomen

o 1: Torque applied on the hinge in the
z-coordinate of the abdomen

o 16: Torque applied on the rotor between
the left upper arm and left lower arm

Example 2: OpenAl Gym (Humanoid Standup)

e P: the probability of the next
positional values of different body
parts given their velocities and

applied torques at the joints
o The environment is inherently noisy
which makes the transitions
non-deterministic

Example 2: OpenAl Gym (Humanoid Standup)

e R:areward for moving upward

o Technically there are other rewards as
well, but it’s irrelevant for our purposes

https://www.youtube.com/shorts/K-pzg5nw7us

https://www.youtube.com/shorts/K-pzg5nw7us

Example 3: Portfolio management (Finance)

e S: Number of each stock in the

portfolio and their current value
o Full Stock FB (Number: 100, Price:
235.79)
o Full Stock AMZN (Number: 50, 112.18)

(@)

Single stock selection behaviour

Portfolio Value (Test Set) Utities: 50, 001, 1, 6. 10, (1.3). 10,001
13500 = —— Agent Portfoho Value

R N Equi-weighted Portfolo Value
—— Secured Portfolio Value
12500 w Full Stock XOM Portfolo Value
ol Stock CVX Portfolo Valve
12000 Full Stock MRX Portfolio Value
11500 Full Stock SLB Portfolio Value
Stock MMM Portfolio Value
11000
10500
0000 Portfolio
woo{ I Value

° 0 100 150 20

Agent Portfolio Value

o Equi-wesghted Portfolio Value
Secured Portfono Vaiue
14000 ~— Full Stock FB Portiolo Vaiue
—— Ful Stock ANZN Portfolio Value
13000 — Full Stock MSFT Partfolio Vakue
Full Stock AAPL Portiolio Value
12000 Fuil Stock T Portfelio Value
Full Stock VZ Portolo Vawe
1000] W Full Stock CNCSA Portfoko Value
—— Full Stock 1BM Portfclio Value
Sy Ful Stock CRM Portfolio Value
Full Stock INTC Peetfolio Value
000

Portfolio weights (end of validation set) episode 5

Money OM o MRY KB MMM
Portfolio weights (end of validation set) episode 2

0%

04

03

02

a1

0 —

Money f8 AMZNMSFTASPL T VZ CMCSAIBM CRM INTC

Example 3: Portfolio management (Finance)

Portfolio weights (end of validation set) episode 5

. . Single stock selection behaviour
e A: Buy #stocks available in the .

market, Sell #stocks in your
portfolio:
o Sell Full Stock FB (Number: 10)

Money DM VX MAX S8

o Buy Full Stock BABA (Number: 20)
112.18)

Portfolio weights (end of validation set) episode 2

o efc

g 8 % € 2§

Money f8 AMZNMSFTASPL T VZ CMCSAIBM CRM INTC

Example 3: Portfolio management (Finance)

Single stock selection behaviour

Portfolio weights (end of validation set) episode 5

e P: the probability of the next time
step values of the stocks in the
market and the number of stocks

Portfolio
Value

the agent has in the portfolio
o The values are inherently stochastic

because they depend on market forces
that aren’t fully predictable by the agent

Example 3: Portfolio management (Finance)

R: the change in portfolio valuation

Single stock selection behaviour

Portfolio Value (Test Set) Utlities: 50, 0.01, 1, 6, 10, (1, 3), 10, 0.01
Do e R A R 2 A2 %

12500
12000
11500
11000

10500

%500

15000

14000

13000

100 150

20 50

100 150

Agent Portfoko Value
Equi-weighted Portfoko Value
Secured Portfolio Vakue
Full Stock XOM Pertfolio Value
Full Stock CVX Portfolio Value
Full Stock MRX Partfolio Value
Full Stock SLB Portfokio Value
Stock MMM Portfobo Value

Portfolio
Value

Agent Portfolio Value
Equi-weighted Portfolio Value
red Portfolio Value

Full Stock FB Portiolo Vaiue
Full Stock AMZN Portfolio Value
Full Stock MSFT Portfolio Value
Full Stock AAPL Portiolio Valie
Fuil Stock T Portfolio Value

Full Stock VZ Portfolio Vale
Full Stock CMCSA Portfolo Value
Full Stock 1BM Portfokio Value
Full Stock CRM Portfolio Value
Full Stock INTC Pertfolio Value

Portfolio weights (end of validation set) episode 5

Money OM o MRY KB MMM
Portfolio weights (end of validation set) episode 2

0%

04

03

02

a1

0 —

Money f8 AMZNMSFTASPL T VZ CMCSAIBM CRM INTC

Exercise 2: Sample actions from policy

Tutorial Questions . E a;szumge:

T =025
Describe/program a 2, 3 or 4-armed ﬂ+3 ﬂ"'Qﬂ
bandit, where each option has a
different reward distribution Q(A) Q(B) & F
e Programmers: describe each =1 0 0

bandit based on a Gaussian

distribution, with its own mean and
variance

e If not a programmer: describe the

rewards of each bandit based on =

coin flips or dice rolls
o E.g., Rolling a D6 + 2, flipping a coin: =
heads = 1, tails = 3, etc...

Tutorial Questions

Describe/program a 2, 3 or 4-armed
bandit, where each option has a
different reward distribution

Python R
import numpy as np K = 2 #number of options
import pandas as pd meanVec <- runif(n=K, min = -10, max = 10)

Parameters

K = 2 # number of options

meanVec = np.random.uniform(-10, 10, K) #
Payoff means, sampled from uniform
distribution between -16 and 10

sigmaVec = np.ones(K) # Variability of
payoffs (standard deviation), set to 1 for
all options

Bandit generator function
def bandit_generator(k):

k can be an integer or a List of
integers representing arms to pull

payoff =
np.random.normal(loc=meanVec[k],
scale=sigmaVec[k], size=len(k) if
hasattr(k, '__len__"') else 1)

return payoff

)&

Generate 25 random actions
action_sequence =
np.random.choice(range(K), size=25,

replace=True)

Generate payoffs
payoffs =
bandit_generator(action_sequence)

Create a dataframe of the actions and
payoffs

df = pd.DataFrame({ 'action':
action_sequence, 'payoff': payoffs})

print (df)

#Payoff means, which we sample from uniform
distribution between -10 to 10

sigmavec <- rep(1l, K) #Variability of payoffs
(as a standard deviation), which we assume 1is
the same for all options and is set to 1.

banditGenerator <- function(k) {#k is an
integer or a lLength kR vector of integers,
selecting one of the 1:K arms of the bandit
payoff <- rnorm(n = length(k), mean =
meanVec[k], sd = sigmaVec|k])
return (payoff)
}

generate 25 random actions
actionSequence <- sample(1:K, size = 25,
replace = TRUE)

generate payoffs

payoffs <- banditGenerator (actionSequence)

create a dataframe of the actions and payoffs

df <- data.frame(action - actionSequence,

payoff = payoffs)

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,41(a@) < Ofa) +1 [r = Q(a)]
| t=1| 0 o |A
Policy temperature

N @@
P(a) x exp(Q(a)/7) - Z,.eip@,(ai)/r) t=2

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

N @@
P(a) x exp(Q(a)/7) - Z,.eip@,(ai)/r) t=2

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

N @@
P(a) x exp(Q(a)/7) - Z,.eip@,(ai)/r) t=2

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

N @@
P(a) x exp(Qfa)/7) - Z,.eip@,(ai)/r) t=2| 36

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

N @@
P(a) x exp(Qfa)/7) - Z,.eip@,(ai)/r) t=2| 36 0

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

\ exp(Qy(a)/7)
P(a) x exp(Q[(a)/T) “Sopowis t2| 36 | 0 |A

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
| t=1| O o (A |4
Policy temperature

\ exp(Qa)/7)
P(a) « exp(Q(a)/7) —sooss 5 36 0 A |

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 =3

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— D2 =3 7.56

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— D2 =3 7.56 0

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 =3 7.56 0 A

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 =3 7.56 0 A 5

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 t=3| 7.56 0 A 5 -2.56

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 t=3| 7.56 0 A 5 -2.56

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

1 t=4| 5256

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ+3 ﬁ"’ﬁ ’
Value learning Q(A) Q(B) a r)
0,1(a) <« Ofa) + 1 [r — Qfa)]
t=1| 0 o |A |4 4
Policy temperature

\ exp(Qa)/7)
P(a) & exp(Q[a)/7) -5, 36 | 0 A |8 | 4a

Softmax policy
T

— 02 t=3| 7.56 0 A 5 -2.56

— 0.25

-

o

S
.

N
(8]
L

— 033
0.5

1 t=4| 5.256 0

N
(8]
1 L

Probability of action A
© o o o

(2]

o

o
o
1

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

= .25
Implement a Q-learning model ﬁ"'s ﬁ"'ﬁ ’
Value learning Q(A) Q(B) a r 5
Qt+1(a) <« Qt(a) + n [7‘ _ Qt(a)]
t=1| 0 o |A |4 4
Policy temperature\
exp(Qy(a)/7)
P(a) < exp(Q(a)/1) =5 ougiss 12| 26 | O |A |8 | 44
y Softmax policy
i o =3 756 | 0 |A |5 | -256
L 3 t=4| 5256| 0 |A

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

= .25
Implement a Q-learning model ﬁ"'s ﬁ"'ﬁ ’
Value learning Q(A) Q(B) a r 5
Qt+1(a) <« Qt(a) + n [7‘ _ Qt(a)]
t=1| 0 o |A |4 4
Policy temperature\
exp(Qy(a)/7)
P(a) < exp(Q(a)/1) =5 ougiss 12| 26 | O |A |8 | 44
y Softmax policy
i o =3 756 | 0 |A |5 | -256
L) t=4| 5256| 0 |A |6

Giilg

Exercise 2: Sample actions from policy

Tutorial Questions E a;szumge:

=.25
Implement a Q-learning model ﬁ"'s ﬁ"'ﬁ ’
Value learning Q(A) Q(B) a r 5
Qt+1(a) <« Qt(a) + n [7‘ _ Qt(a)]
—1 0 0 A 4 4
Policy temperature\
exp(Q(a)/7)
P(a) < exp(Q(a)/1) =5 ougiss 12| 26 | O |A |8 | 44
y Softmax policy
i o =3 756 | 0 |A |5 | -256
§ Zzz (1).5 t=4| 5256 0 A 6 0.744

Tutorial Questions

Implement a Q-learning model

Python R

Model parameters #Model parameters

K = 2 # number of arms k <- 2 #number of arms

alpha = 0.9 # learning rate alpha <- .9 #learning rate
tau = 1 # Softmax temperature tau <- 1 #Softmax temperature

Qvec = np.zeros(K) # Prior initialization
of Q-values
Softmax policy function

def softmax(Qvec, tau):
p = np.exp(Qvec / tau)
p /= np.sum(p) # Normalize to sum tc

return p

Simulate data
sim_data = []

for t in range(1, 51): # Loop through 5
trials
p = softmax(Qvec, tau) # Compute
softmax policy
action = np.random.choice(K, p=p) #
Sample action based on probabilities
reward = bandit_generator([action])[@]
Generate reward from bandit
Qvec[action] += alpha * (reward -
Qvec[action]) # Update Q-values
Record trial data
chosen = np.zeros(K)
chosen[action] = 1 # 1 = chosen, @
not
trial_data = {
Ytindad' oty
'Q_values': Qvec.copy(),
‘action': action,
‘chosen': list(chosen),
‘reward': reward

Qvec <- rep(0,k) #prior initialization of
Q-values

#Softmax policy

softmax <- function(Qvec, tau){
p <- exp(Qvec/tau)
p <- p/sum(p) #normalize to sum to 1
return(p)

}

#Now simulate data

simDF <- data.frame()

for (t in 1:50){ #Lloop through trials

p <- softmax(Qvec,tau) #compute softmax
policy

action <- sample(1l:k,size = 1, prob=p)
#sample action

reward <- banditGenerator(action)
#generate reward

Qvec[action] <- Qvec[action] +
alpha*(reward - Qvec[action]) #update g-values

chosen <- rep(@, k) #create an index for
the chosen option

chosen[action]<- 1 #1 = chosen, @ = not

trialDF <- data.frame(trial = t, Q =
Qvec, action = 1:k, chosen = chosen, reward =

Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan
like that shown in the following image.

We can characterize this space
as an MDP, where each state
represents one room in the
building (or outside, e.g., room
5) and where the agent can
transition between rooms by
moving either north, south,
east, or west. The agent cannot
stay in the same state from
time step to time step, except
once it is outside.

Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan
like that shown in the following image.

Draw a graph with nodes
corresponding to states and
edges to - state transitions.

Tutorial Questions

Let's consider a situation in which a robot is placed inside a building that has a floorplan
like that shown in the following image.

Draw a graph with nodes <@ —
corresponding to states and a?t”iZn \
edges to - state transitions. @ @

west
north south| |[north
east

east
—_—
—
west @

south south

‘E

Tutorial Questions

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4.
Additionally, the agent continues reaping rewards once it's already outside every time step.

Add the rewards to the <@
north
transitions any \ : :
action

west
north south| |[north
east

east
—_—
—
west @

south south

‘E

Tutorial Questions

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4.
Additionally, the agent continues reaping rewards once it's already outside every time step.

+100

@
ny
©

Add the rewards to the <
transitions +100

(mo)

+100

I —

0 ;
0

Tutorial Questions

Our robot's goal in this world is to get outside (room 5) from its starting position in room
2.

Make the necessary changes
to the previously drawn
graph

Tutorial Questions

Our robot's goal in this world is to get outside (room 5) from its starting position in room
2.

|
Make the necessary changes <‘G°a =1l
to the previously drawn \ Start State
()

——
aa

Tutorial Questions

Build a table / matrix to
represent Q(s,.a,)

e rows represent the world
states (rooms)

e columns represent actions
that the robot can take.

e all valid state-action pairs
are initialized to 0

e invalid state-action pairs
are initialized to -1

Tutorial Questions

Your goal in this exercise is to update Q(s,,a,) according to the
Q-learning algorithm. In this exercise we will make the following
assumptions:

a=1
y =0.8

Transitions are always successful

Q(s,a,) < a (r,+y max, Q(s

t+1’

a)) =r,+ 0.8 max, Q(s,,,,a)

North | South | East | West
rmoO -1 0 -1 -1
rm1 0 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 0 0 -1
rmS 0 0 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each

trajectory).

e Trajectory 1: west, west, south, north

Q(s.a,) < a(r,+ymax_ Q(s,,,,

a)) =r + 0.8 max, Q(s,,,,a)

M\ § Finish
0 ¥k
Starzt
North | South | East | West
rmO -1 0 -1 -1
rm1 0 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 0 0 -1
rmS 0 0 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 1: west, west, south, north

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ 5 Finish
0 x
\ 4 3 t1 Start
Al
North | South | East | West
rmoO -1 0 -1 -1
rm1 0 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 100 0 -1
rm5 100 0 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 2: west, north, north, south

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ § Finish
0 H b
Starzt
North | South | East | West
rmQO -1 0 -1 -1
rm1 0 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 100 0 -1
rm5 100 0 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 2: west, north, north, south

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ 5 Finish
0 x
\ 4 3 t1 Start
Al
North | South | East | West
rmoO -1 0 -1 -1
rm1 180 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 100 0 -1
rm5 100 180 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 3: west, west, north, south, south

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ 5 Finish
0 x
\ 4 3 t1 Start
Al
North | South | East | West
rmoO -1 0 -1 -1
rm1 180 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 0
rm4 0 100 0 -1
rm5 100 180 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 3: west, west, north, south, south

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ 5 Finish
0 x
\ 4 3 t1 Start
Al
North | South | East | West
rmoO -1 80 -1 -1
rm1 180 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 80
rm4 0 244 0 -1
rm5 100 180 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each
trajectory).

e Trajectory 4: west, west, east, north, north

Q(s,a,) < a (r,+y max, Q(s,,,.a)) =r,+ 0.8 max, Q(s,,,,a)

t+1’

M\ 5 Finish
0 x
\ 4 3 t1 Start
Al
North | South | East | West
rmoO -1 80 -1 -1
rm1 180 0 -1 -1
rm2 -1 -1 -1 0
rm3 0 -1 0 80
rm4 0 244 0 -1
rm5 100 180 0 0

Tutorial Questions

For each action within each trajectory, update according to
the Q-learning algorithm after each trajectory (assume that
your agent always starts in room 2 at the beginning of each

trajectory).

e Trajectory 4: west, west, east, north, north

Q(s.a,) < a(r,+ymax_ Q(s,,,,

a)) =r + 0.8 max, Q(s,,,,a)

M\ 5 Finish
0 - i
./L,J sﬂ:’e 2
(Start
4 3
~ 7 |
North | South | East West
rmQO -1 80 -1 -1
rm1 244 0 -1 -1
rm2 -1 -1 -1 64
rm3 144 -1 0 195.2
rm4 0 244 156.16 | -1
rm5 100 180 0 0

