General Principles of Human and Machine Learning

Tutorial 3: Introduction to RL

RL Framework

- In RL, problems can be described using the MDP formality
 - MDP is a 4-tuple (S, A, P, R)
 - S: state space
 - A: action space
 - P: state transition probability
 - $P(S_{t+1}=s_{t+1}|S_t=s_t,A_t=a_t)$
 - R: state transition returns

•
$$R(s_{t},s_{t+1}) = r_{t}$$

- Markov Decision Process because of the Markov property
 - $P(S_{t+1}|S_{t},...,S_{1},A_{t}) = P(S_{t+1}|S_{t},A_{t})$

Andrey Markov

Devise three example tasks of your own that fit into the reinforcement learning framework, identifying for each its states, actions, and rewards. Make the three examples as different from each other as possible. The framework is abstract and flexible and can be applied in many different ways. Stretch its limits in some way in at least one of your examples.

- S: board position of the pieces
- S₀ = {Black rook: a8, Black knight: b8, ..., White rook: h1}

- A: all the legal moves (whites) given the current board configuration
 - For example, on the board to the right:
 - White pawn: $e2 \rightarrow e4$

- P: the probability of each board configuration given player's move and the current configuration.
 - For example, on the board to the right:
 - Given White pawn: e2 →e4
 - Black pawn: e7 →e5
 - But could have also played:
 - Black pawn: d7 \rightarrow d5
 - Black pawn: $e7 \rightarrow e6$
 - Black knight: b8 \rightarrow c6
 - Etc
- P(S₁ = {Black rook: a8, Black knight: b8,, Black pawn: e5, White pawn: e6, ..., White rook: h1} | S₀ = {Black rook: a8, Black knight: b8,, White rook: h1}, A₀ = White pawn: e2 →e4) ∈ [0,1]
- Note that the Markov property is preserved:
 - Previous board configurations don't affect the transitions:
 - All the necessary information is incorporated into the current board configuration

- R:
 - Endgame:
 - Win: +1

- R:
 - Endgame:
 - Win: +1
 - Loss: -1

• R:

- Endgame:
 - Win: +1
 - Loss: -1
 - Draw: 0

• R:

- Endgame:
 - Win: +1
 - Loss: -1
 - Draw: 0
- Otherwise:
 - If a move doesn't lead to an endgame situation: 0
 - This is a major problem in RL called sparsity of reward
 - It leads to the credit assignment problem

- S: The state space consists of positional values of different body parts of the Humanoid, followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities.
 - 1: z-coordinate of the torso (centre)
 - 2: x-orientation of the torso (centre)
 - Ο.
 - 45: angular velocity of the angle between left upper arm and left_lower_arm

- A: The agent take a 17-element vector for actions representing the numerical torques applied at the hinge joints.
 - 0: Torque applied on the hinge in the y-coordinate of the abdomen
 - 1: Torque applied on the hinge in the z-coordinate of the abdomen
 - o ...
 - 16: Torque applied on the rotor between the left upper arm and left lower arm

- P: the probability of the next positional values of different body parts given their velocities and applied torques at the joints
 - The environment is inherently noisy which makes the transitions non-deterministic

- R: a reward for moving upward
 - Technically there are other rewards as well, but it's irrelevant for our purposes

https://www.youtube.com/shorts/K-pzg5nw7us

- S: Number of each stock in the portfolio and their current value
 - Full Stock FB (Number: 100, Price: 235.79)
 - Full Stock AMZN (Number: 50, 112.18)

0 ...

Single stock selection behaviour

- A: Buy #stocks available in the market, Sell #stocks in your portfolio:
 - Sell Full Stock FB (Number: 10)
 - Buy Full Stock BABA (Number: 20) 112.18)
 - etc

- P: the probability of the next time step values of the stocks in the market and the number of stocks the agent has in the portfolio
 - The values are inherently stochastic because they depend on market forces that aren't fully predictable by the agent

• R: the change in portfolio valuation

Describe/program a 2, 3 or 4-armed bandit, where each option has a different reward distribution

- Programmers: describe each bandit based on a Gaussian distribution, with its own mean and variance
- If not a programmer: describe the rewards of each bandit based on coin flips or dice rolls
 - E.g., Rolling a D6 + 2, flipping a coin: heads = 1, tails = 3, etc...

	A	+3 $\eta = .9$ +3 $\tau = .25$					
	Q(A)	Q(B)	а	r	δ		
t=1	0	0					
t=2							
t=3							
t=4							

Describe/program a 2, 3 or 4-armed bandit, where each option has a different reward distribution

Python	R
import numpy as np import pandas as pd	<pre>K = 2 #number of options meanVec <- runif(n=K, min = -10, max = 10) #Payoff means, which we sample from uniform</pre>
# Parameters	distribution between -10 to 10
<pre>K = 2 # number of options meanVec = np.random.uniform(-10, 10, K) # Payoff means, sampled from uniform distribution between -10 and 10</pre>	sigmaVec <- rep(1, K) #Variability of payoffs (as a standard deviation), which we assume is the same for all options and is set to 1.
<pre>sigmaVec = np.ones(K) # Variability of</pre>	<pre>banditGenerator <- function(k) {#k is an</pre>
payoffs (standard deviation), set to 1 for all options	integer or a length k vector of integers, selecting one of the 1:K arms of the bandit
# Bandit generator function	meanVec[k], sd = sigmaVec[k])
<pre>def bandit_generator(k): # k can be an integer or a list of</pre>	return (payoff)
integers representing arms to pull	# generate 25 random actions
np.random.normal(loc=meanVec[k],	actionSequence <- sample(1:K, size = 25,
<pre>scale=sigmaVec[k], size=len(k) if</pre>	replace = TRUE)
<pre>hasattr(k, 'len') else 1)</pre>	# generate payoffs
return payoff	<pre>payoffs <- banditGenerator(actionSequence)</pre>
# Generate 25 random actions action_sequence =	<pre># create a dataframe of the actions and payoffs df <- data.frame(action = actionSequence,</pre>
np.random.choice(range(K), size= <mark>25</mark> , replace=True)	<pre>payoff = payoffs)</pre>
# Generate payoffs	
payoffs =	
<pre>replace=True) # Generate payoffs payoffs = bandit_generator(action_sequence) # Create a dataframe of the actions and</pre>	
.DataFrame({ 'action':	
action sequence, 'payoff': payoffs})	

print(df)

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$				
	+3			25		
	Q(A)	Q(B)	а	r	δ	
t=1	0	0	A			
t=2						
t=3						
t=4						

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	Α	Β	assume: $\eta = .9$				
1	* +3	* +		= .25			
	Q(A)	Q(B)	а	r	δ		
t=1	0	0	А	4			
t=2							
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

		B assume: $\eta = .9$ $\tau = .25$						
v	O(A)			r	δ			
	2(1)	£(D)	u	'				
t=1	0	0	A	4	4			
t=2								
t=3								
t=4								

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
13	Q(A)		a	r	δ		
t=1	0	0	A	4	4		
t=2	3.6						
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
	Q(A)	Q(B)	a	r	δ		
t=1	0	0	A	4	4		
t=2	3.6	0					
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
	+3 Q(A)	Q(B)	a	r	δ		
t=1	0	0	A	4	4		
t=2	3.6	0	A				
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
, and a second se	Q(A)	Q(B)	a	r	δ		
t=1	0	0	А	4	4		
t=2	3.6	0	А	8			
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A A	B assume: $\eta = .9$ $\tau = .25$					
	O(4)			r	8		
	$\mathcal{Q}(\Lambda)$	$\mathcal{Q}(D)$	u	/	0		
t=1	0	0	A	4	4		
t=2	3.6	0	А	8	4.4		
t=3							
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
	Q(A)	Q(B)	а	r	δ		
t=1	0	0	А	4	4		
t=2	3.6	0	A	8	4.4		
t=3	7.56						
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B assume: $\eta = .9$ $\tau = .25$					
	Q(A)	Q(B)	а	r	δ		
t=1	0	0	A	4	4		
t=2	3.6	0	A	8	4.4		
t=3	7.56	0					
t=4							

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	₿	as η	sume = .9 = .25	:
	Q(A)	Q(B)	a	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	A	8	4.4
t=3	7.56	0	А		
t=4					

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

1	A	B	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	
t=4					

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

1	A	B	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	-2.56
t=4					

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B ₽+₽	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	-2.56
t=4	5.256				

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

1	A	B	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	-2.56
t=4	5.256	0			

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

1	A	B	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	А	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	-2.56
t=4	5.256	0	A		

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	A	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	А	5	-2.56
t=4	5.256	0	A	6	

Implement a Q-learning model

Value learning

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta \left[r - Q_t(a) \right]$$

Policy temperature $P(a) \propto \exp(Q_t(a)/\tau) = \frac{\exp(Q_t(a)/\tau)}{\sum_i \exp(Q_t(a_i)/\tau)}$

	A	B ₽+₽	as η	sume = .9 = .25	:
	Q(A)	Q(B)	а	r	δ
t=1	0	0	A	4	4
t=2	3.6	0	А	8	4.4
t=3	7.56	0	A	5	-2.56
t=4	5.256	0	A	6	0.744

Implement a Q-learning model

Python	R
<pre># ModeL parameters K = 2 # number of arms alpha = 0.9 # Learning rate tau = 1 # Softmax temperature</pre>	<pre>#Model parameters k <- 2 #number of arms alpha <9 #Learning rate tau <- 1 #Softmax temperature</pre>
<pre>Qvec = np.zeros(K) # Prior initialization of Q-values</pre>	<pre>Qvec <- rep(0,k) #prior initialization of Q-values</pre>
# Softmax policy function	#Softmax policy
<pre>def softmax(Qvec, tau):</pre>	<pre>softmax <- function(Qvec, tau){</pre>
p /= np.sum(p) # Normalize to sum to	p <- exp(Qvec/tau)
1 potupp p	<pre>p <- p/sum(p) #normalize to sum to 1</pre>
	return(p)
# Simulate data	
sim_data = []	}
for t in range(1, 51): # Loop through 50	#Now simulate data
trials	<pre>simDF <- data.frame()</pre>
<pre>p = softmax(Qvec, tau) # Compute softmax policy</pre>	<pre>for (t in 1:50){ #loop through trials</pre>
<pre>action = np.random.choice(K, p=p) # Sample action based on probabilities reward = bandit generator([action])[0]</pre>	<pre>p <- softmax(Qvec,tau) #compute softmax policy</pre>
<pre># Generate reward from bandit Qvec[action] += alpha * (reward - Qvec[action] += dipha * (reward + Qvec[action] += dipha * (reward + Qvec[action] += dipha * (reward + Qvec[action] += dipha * (reward</pre>	<pre>action <- sample(1:k,size = 1, prob=p) #sample action</pre>
# Record trial data	<pre>reward <- banditGenerator(action)</pre>
chosen = np.zeros(K)	#generate reward
$chosen[action] = 1 \# 1 = chosen, \theta = not$	<pre>Qvec[action] <- Qvec[action] +</pre>
trial_data = {	<pre>alpha*(reward - Qvec[action]) #update q-value</pre>
'trial': t,	chosen <- rep(0, k) #create an index fo
'Q_values': Qvec.copy(),	the chosen option
'action': action,	$chosen[action] < -1 #1 = chosen. \theta = not$
'reward': reward	the local data frame/thicl - t 0
}	Ovec. action = 1:k. chosen = chosen, reward =

Let's consider a situation in which a robot is placed inside a building that has a floorplan like that shown in the following image.

We can characterize this space as an MDP, where each state represents one room in the building (or outside, e.g., room 5) and where the agent can transition between rooms by moving either north, south, east, or west. The agent cannot stay in the same state from time step to time step, except once it is outside

Let's consider a situation in which a robot is placed inside a building that has a floorplan like that shown in the following image.

Draw a graph with nodes corresponding to states and edges to - state transitions.

Let's consider a situation in which a robot is placed inside a building that has a floorplan like that shown in the following image.

Draw a graph with nodes corresponding to states and edges to - state transitions.

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4. Additionally, the agent continues reaping rewards once it's already outside every time step.

The agent receives a reward of 100 when it transitions outside from either room 1 or room 4. Additionally, the agent continues reaping rewards once it's already outside every time step.

Our robot's goal in this world is to get outside (room 5) from its starting position in room 2.

Make the necessary changes to the previously drawn graph

Our robot's goal in this world is to get outside (room 5) from its starting position in room 2.

Build a table / matrix to represent Q(s_t,a_t)

- rows represent the world states (rooms)
- columns represent actions that the robot can take.
- all valid state-action pairs are initialized to 0
- invalid state-action pairs are initialized to -1

Your goal in this exercise is to update $Q(s_t,a_t)$ according to the Q-learning algorithm. In this exercise we will make the following assumptions:

- α = 1
- γ =0.8
- Transitions are always successful
- $Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	0	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	0	0	-1
rm5	0	0	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 1: west, west, south, north

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	0	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	0	0	-1
rm5	0	0	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 1: west, west, south, north

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	0	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	100	0	-1
rm5	100	0	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 2: west, north, north, south

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	0	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	100	0	-1
rm5	100	0	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 2: west, north, north, south

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	180	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	100	0	-1
rm5	100	180	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 3: west, west, north, south, south

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	0	-1	-1
rm1	180	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	0
rm4	0	100	0	-1
rm5	100	180	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 3: west, west, north, south, south

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	80	-1	-1
rm1	180	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	80
rm4	0	244	0	-1
rm5	100	180	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 4: west, west, east, north, north

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	80	-1	-1
rm1	180	0	-1	-1
rm2	-1	-1	-1	0
rm3	0	-1	0	80
rm4	0	244	0	-1
rm5	100	180	0	0

For each action within each trajectory, update according to the Q-learning algorithm after each trajectory (assume that your agent always starts in room 2 at the beginning of each trajectory).

• Trajectory 4: west, west, east, north, north

$$Q(s_{t},a_{t}) \leftarrow \alpha (r_{t} + \gamma \max_{a} Q(s_{t+1},a)) = r_{t} + 0.8 \max_{a} Q(s_{t+1},a)$$

	North	South	East	West
rm0	-1	80	-1	-1
rm1	244	0	-1	-1
rm2	-1	-1	-1	64
rm3	144	-1	0	195.2
rm4	0	244	156.16	-1
rm5	100	180	0	0

