g ~ @ FBERHARD KARLS

s w o UNIVERSITAT
+¢®  TUBINGEN

Generalization in Reinforcement
Learning

Charley Wu
Human and Machine Cognition Lab
hmc-lab.com



http://hmc-lab.com

Brains control behavior

»



Brains control behavior




Brains control behavior

’ Learning

through
expenence

@ 1/




Brains control behavior

’ Learning

through
expenence

But how?

& A
@ o L3




Thorndike’s (1898) Law of Effect




Thorndike’s (1898) Law of Effect




Thorndike’s (1898) Law of Effect

‘:‘. L -

‘..

- 3 —
= B a

NN 1 H

el | — p — 4

-Y“'

x —H »—J -4

PUzzle Box Time to escape




Thorndike’s (1898) Law of Effect
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Classical and Operant Conditioning

Classical Condition (Pavlov, 1927)

L eaming as the passive coupling of
stimulus (bell ringing) and response
(salivation), anticipating future rewards

Operant Condition (Skinner, 1938)

Skinner (1938): Leaming as the active
shaping of behavior In response to
rewards or punisnments



https://www.youtube.com/watch?v=_qLs2K4UXXk
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Reinforcement Learning

The Environment:

e governs the transition
between states

>

Reward Action

* provides rewards

The Agent: s,

e | earns a value function

mapping actions onto onto | K@, s) |
rewards - Environment
P O]

* |Implements a policy,
selecting actions based on

their value

Sutton and Barto (2018 [1998])
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Neuroscience Al and Machine Learning

Reinforcement Learning
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Neuroscience

Reinforcement Learning
—

State

Dopamine Reward Prediction Error

No prediction
Reward occurs

Reward predicted  [23 %1,
Reward occurs

Reward predicted |7 '} *.° 0",
No reward occurs [ , =" ™

CS (No R)

Schultz et al. (1997)

>
Agent

Reward

R(a, s,)

<
PSSt

Environment

Al and Machine Learning

Action
a,

AlphaGo

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

Silver et al. (2016)
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Part 1. Overview of Reinforcement Learning

e \/alue functions and policies

e [abular methods vs. value-function approximation
e Nult-armed Bandit problem

e Nodels of human leamers
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Part 1. Overview of Reinforcement Learning

e \/alue functions and policies

e [abular methods vs. value-function approximation
e Nult-armed Bandit problem

e Nodels of human leamers

Part 2. Generalization guided learning
® Scarch in vast spaces (Wu et al., NHB 2018)
® | caming like a child (schulz et al., PsychSci 2019; Meder et al., DevSci 20271, Giron et al., in prep)
® Connecting spatial and conceptual search (Wu et al., PLoS CompBio 2020)
® (Graph-structured generalization (Wu et al., CBB 2020)



Reinforcement Learning

The Environment:

e governs the transition
between states

>

Reward Action

* provides rewards

The Agent: s,

e | earns a value function

mapping actions onto onto | K@, s) |
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e SiMplifying assumption that the system is fully defined by only the previous state
(.e., Markov Principle): P(s,, 1| S, a,)
VWhat are the states”/
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 Learns a Policy
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 Experiences Rewards

» How good is a given state? r, = R(s,)

 Learns a Policy
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Agent

 Experiences Rewards
» How good is a given state? r, = R(s,)

« How good is a state-action pair? r, = R(s,, a,)

 Learns a Policy
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Agent

 Experiences Rewards
» How good is a given state? r, = R(s,)
« How good is a state-action pair? r, = R(s,, a,)

¢ How good is a trajectory T = (Sq, dg, S1, Ay ---):

R(7) = Z y'r, where y € [0,1] is the temporal discount
=0
 Learns a Policy
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Agent

 Experiences Rewards

» How good is a given state? r, = R(s,)

+ How good is a state-action pair? r, = R(s,, a,)

» How good is a trajectory T = (S, G, S, A1 - - - )
0

R(7) = 2 ykrt where y € [0,1] is the temporal discount
=0
 Learns a Policy

» 1 defines how to act, where z(a | s) is the probability of selecting action
a in state s

o sample trajectories from the policy 7 ~ 7 ”

Grid World 10
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* The expectation over a policy is equivalent to summing up all actions and their new state
transitions, weighted by their probability

 Then we sum up the (discounted) future expected rewards
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Finding an optimal policy via Bellman Equations

* Bellman equations are a concept from dynamic programming that provide a
recursive method for optimization:

Vi(s)= ) m(als) ) P(s'|s,a)[R(s",a) + yVy(s")

* Theoretically, we can define an optimal value function:

V.(s) = max Z P(s’|s, a) [R(s, a) + ;/V*(s’)]
* Optimal policy: ’

7. = arg max V.(s)
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Finding an optimal policy via Bellman Equations

* Bellman equations are a concept from dynamic programming that provide a

recursive method for optimization:
RN N\

V_(s) = Z n(als) Z P(s’|s, a) [R(S’, a) + }/Vﬂ(s’)] ’ ;
el Lol il @ —@ —@

ccursive @

* Theoretically, we can define an optimal value function:
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Tabular methods

 Based on methods from Dynamic
programming (Bellman, 1957),
Tabular methods were first proposed
as solutions for RL problems by

Minsky (1961)

* Think of a giant lookup table, where
we store a value representation

» Value iteration and policy iteration
are examples

e Caveat: solutions require repeat
visits to each state, which is
Infeasible In most real-world
problems

Action

State
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Value iteration

lteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as V,(s) = 0 for all states

2. Forall sin &
Vier(s) = max ) P(s'| s, @)[R(s, @) + yVi(s")]

acA

until max |V, (s) = V,_;(s)| < @ Bellman residual
SES
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Value iteration

lteratively visit all states and update the value function until a “good enough”
solution has been reached.

1. Initialize the value function as V,(s) = 0 for all states

2. Forall sin &
Vier(s) = max ) P(s'| s, @)[R(s, @) + yVi(s")]

acA

until max |V, (s) = V,_;(s)| < @ Bellman residual
SES

V) converges on V. as k — o0, and perhaps sooner, but with many costly
sweeps through the state space
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Policy Iteration

Alternate between evaluating a policy and then improving the policy.

Start with 7, (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = B, [RG% @) + 7,9

 Policy Improvement

T, | = arg max z P(s’| s, a) lR(S, a) + ;/Vﬂk]
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Start with 7, (typically a random policy), and then iterate for all s € & in each step

 Policy Evaluation

Vo) = B, [RG% @) + 7,9

 Policy Improvement

T, | = arg max z P(s’| s, a) lR(S, a) + ;/Vﬂk]

Policy can converge faster than value function, but still requires visiting all states 2n
times and lacks convergence guarantees
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Value function approximation

Instead of learning the value for each state independently, learn a value Value network
function mapping each state to some value:
Vv, (8)
f:s€ S = Vys) -
... a variety of methods are available including:
 linear function approximation (e.g,. regression) 3
* Neural networks ~
T

» (Gaussian process regression (nhon-parametric)

Silver et al. (2016)
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» (Gaussian process regression (nhon-parametric)

g —

OVy(s')
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Quick recap

e RL framework defines interactions
between an agent and the
environment

>

Reward Action

| §<R(a,t, S;)
Environment
P —
S|

e The environment defines the
transitions between states and
provides rewards

° The agent |earns a Value functicn Tabular Value Function Value Function Approximation
and then turns this into a policy

* [raditional solutions to RL problems
can be broadly classified into either

tabular methods or value function I
approximation

A~
—
—
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Modeling Human Learners



Multi-armed bandit
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Multi-armed bandit

® (Colorful metaphor for a row of slot machines

e One of the simplest KRL problems for studying the exploration-exploitation dilemma.

e exploring untried options to acquire iNnformation

e exploiting known options to acquire Immediate rewards
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e No need to discount future states 4 - 9
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e |nstead of state-value function V(s) we can represent the value of an action V(a) or
more properly, using a action-value function Q(s, a)
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Brief aside: State-Value function vs. Action-value function

SO far, I've focused on describing state-value functions:
V(is)=E__[R(7)|sy=s]
However, you can also describe a BRL model using the action-value function:

Q. (s,a)=FE__ [R(z)|sy=s,ay=al

Soth are equivalent under:

Vi(s) = ) nals)* s, a)

acA

21
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Rescorla-Wagner and Q-learning: the Delta Rule

Rescorla-Wagner (1972) model

* |Learning as an active process of making predictions about the world

» Predict the value of stimulus X, with a linear combination of weights W :
V(x,) = W;rXt

* Weights are updated based on prediction error (aka Delta rule)

W, < W, +7 [rt — V(Xt)]
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» Predict the value of stimulus X, with a linear combination of weights W :
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Rescorla-Wagner and Q-learning: the Delta Rule

Rescorla-Wagner (1972) model

* |Learning as an active process of making predictions about the world

 Predict the value of stimulus X, with a linear combination of weights w.:
V(x,) = W, X,
* Weights are updated based on prediction error (aka Delta rule)
W, < W, +7 [rt — V(Xt)]
Q-Learning (Watkins, 1989) uses the same update rule - —
5t
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Rescorla-Wagner and Q-learning: the Delta Rule

Rescorla-Wagner (1972) model

* |Learning as an active process of making predictions about the world

» Predict the value of stimulus X, with a linear combination of weights W :
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Temporal Difference Learning

—or simplicity, I'm omitting the temporal difference (1D) error, which looks like:

V(s) < V(s) +n (r+yV(s") — V(s))




Temporal Difference Learning

—or simplicity, I'm omitting the temporal difference (1D) error, which looks like:

V(s) < V(s) +n (r + yV(s") — V(s))

Dopamine Reward Prediction Error

Baseline Stimulus Reward

No prediction
Reward occurs

No stimulus
Reward occurs

Reward predicted  [':5%4,.5"
Reward occurs

Stimulus present
Reward occurs

Stimulus present
No reward occurs

Reward predicted
No reward occurs

Schultz et al. (1997)
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learning.

We want to make probabilistic predictions, since people don’t behave deterministically.

Epsilon greedy:
| {maxa Q(a) with p(1 —€)
action =

random action with p(e)
Softmax:

exp(Q(a;)/7)

P(@) =
ZJ eXp(Q(Cl])/T)
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Policy aka choice function

Goal of Human RL?

Predict behavior using a model. This tells us we have understood some aspect of human
learning.

We want to make probabilistic predictions, since people don’t behave deterministically.

Epsilon greedy:
| max, Q(a) with p(1 —¢€)
action = . .
random action with p(e)

Softmax:
Q-values Probabilities
1.3 0.002 ¢ and 7 model forms of
51 exp(Q(a,)/7) 0.90 | ¢€xploration, but don’t distinguish
' - ‘ between experienced vs.
0.7 Zj exp(Q(a;)/7) 0.05 inexperienced options

1.1 0.02
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Value

Bayesian reinforcement learning

VWe can describe a Bayesian variant of the RW model using a Kalman filter:

Normally distributed posterior over rewards, where the mean'is (; , -

p(r t‘ @t—l) — /V(Ql »O where 9, = [ao, Yo, A15 17, ] collect previous
choices and rewards

Kalman Gain (learming rate):

Sayesian updates:
2

Mean: Qi 1 T Qi { T kit [riz Il Qi,t] i If a, =1

— 2 2
ki,t — Gl,f + 66'

Variance: G i+l [1 — kz t] 0 otherwise

—[ror variance 062 S a free parameter

Strictly, this is a KF variant known as a Bayesian
mean tracker (BMT), assuming stationary rewards
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Policies for Bayesian models

We can now use uncertainty estimates to inform our policy and explore more
efficiently.
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Policies for Bayesian models

We can now use uncertainty estimates to inform our policy and explore more
efficiently.

Monte Carlo~Samples

Thompson Sampling:

P(a;) = P(r; > r;4)

Upper Confidence Bound Sampling:

UCB(a;) = Q; + py/ 0,-2 f# models exploration directed

towards uncertain choices

26
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Summary

AL framework for leaming value functions and policies

® [apular methods vs. value function approximation

® xhaustive iteration over states vs. predictions about novel states

\Vodeling human learners with RL models
e Can we understand something about the efficiency of human leaming’
® How humans navigate the exploration-exploitation dilemma

o RVV and Q-learning resembple tabular methods that have access to random or
NoIsey exploration

o Kalman filter is a Bayesian model, which can use uncertainty-informed exploration

e But what apbout function approximation”/

28
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Exploration-Exploitation Dilemma

Herzfeld & Shadmehr (Nat Neuro 2014) Exploration Exploit
xploitation
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How do people nawgate vast
enwronments when we. cannot
explore aII possmllltles’? 3

e But where? ]
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Spatially Correlated Bandit
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¥ N maximize reward
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I ‘l limited search horizon privileges good
generalization & efficient exploration

nearby tiles have similar rewards
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Experiment 1

30-Armed Bandit (Univariate)
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Experiment 3
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Experiment 3
121-Armed Bandit (Natural)
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Modeli.ng Human Search

* Exploration is not performed bl|'

e Search is guided by generalization

* (Generalization as Bayesian inference about novel options: : ,_
e EXxpected reward
 Uncertainty

* Human search Is directed towards both ingredients



Model comparison

 \We performed a large-scale
comparison of 27 different
models using cross-validated
(out-of-sample) predictions

e Some heuristic models but
mostly reinforcement learning
models * sampling strategies

e _.. here, | focus on the best
model, which consistently
outperformed all others
across a variety of
manipulation checks
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Model Comparison

e Traditional RL model: _ Bayesian
Mean Tracker
 Learns the value of each option independently 5
®©
. . . =
* e.g., Rescorla-Wagner, Q-learning, Kalman Filter, Bayesian Mean ks T
Tracker (BMT), etc...
e Can balance explore-exploit dilemma using a variety of sampling Option

strategies, but offers limited guidance about where to explore

 Function learning model:

Gaussian Process

e Uses function approximation to generalize about novel option + o(bs)ewaﬂons
By
e e.g., Neural Network function approximators, Gaussian Process (GP) g [\
model, etc... Tl

e Balances explore-exploit using the same sampling strategies as option
learning models, but also makes predictions about where to explore
through generalization
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Model Comparison

Exp. 2 from Wu et al., (Nature Human Behaviour 2018)

R* =

log L( M)

Bayesian
Mean Tracker

Ii--i,

4

log L(Mand)

Option

Gaussian Process
+ Observations /

= H(X)
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Model Comparison
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Exp. 2 from Wu et al., (Nature Human Behaviour 2018)
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Model Comparison
u(x) + po(x)

A Bayesian
— Mean Tracker
@,

O
o)) 0.2- &J _
H
N
s
> Option
O
©
| -
0
< 0.1-
<q§ ' Gaussian Process
> + Observations
"6 R2 — 1 IOgE(Mk) S = H(X) 2 ;,*'
8 logL(M rand) ‘§ AV
g T
0.0 Option

Explore Exploit UCB (Both)

Exp. 2 from Wu et al., (Nature Human Behaviour 2018)
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Model Comparison
pu(x)  p(x) + fo(x)

Bayesian
Mean Tracker

A

=
N
Reward

Option

Predictive Accuracy (R2) + 95% CI

0.1 Gaussian Process
+ Observations /'
R2 _ 1 lOg L(Mk) = | - U(X) o J,f;
10gﬁ(‘/\/irand) %5 AY
D
Ay

0.0 -

Explore Exploit UCB (Both)

Exp. 2 from Wu et al., (Nature Human Behaviour 2018)
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Model Comparison

o(X) u(x)  p(x)+ fo(x) |
A Bayesian

_ Mean Tracker
O

O
X S
3 0.2 in; -
+
N
@ ,
> Option
O
®
S
O
g 0.1
<q§ ' Gaussian Process
> + Observations
_-I(:) R2 _ 1 IOgE(Mk) e - U(X) A ;,f"‘
) T |

0.0 Option
Explore Exploit UCB (Both)

Exp. 2 from Wu et al., (Nature Human Behaviour 2018)
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Model Comparison
o(X) pu(x)  pu(x)+ po(x)

Bayesian
Mean Tracker

Ii--i

Option

A

O
N

O
—h

Gaussian Process

”.
¢

+ Observations
lOgE(Mk) - px) A ;,"

R*=1
logL(Mrand)

Predictive Accuracy (R2) + 95% CI

0| IEmITTT

Explore Exploit UCB (Both)

Exp. 2 from Wu et al., (Nature Human Behaviour 2018)



Establishing a new paradigm

Generalization guides exploration

Wu, Schulz, Nelson, Speekenbrink & Meder (Cogsci 2017)
Wu, Schulz, Nelson, Speekenbrink & Meder (Nature Human Behaviour 2018)

Learning like a child

Schulz, Wu, Ruggeri & Meder (PsychSci 2019)
Meder, Wu, Schulz & Ruggeri (Dev Sci in press)

Graph-structured Generalization

Wu, Schulz & Gershman (Cogsci 2019)
Wu, Schulz & Gershman (CCN 2019)
Wu, Schulz & Gershman (Comput Brain Behav 2020)

Search in abstract conceptual spaces

Wu, Schulz, Garvert, Meder & Schuck (Cogsci 2018)
Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020)

Safe exploration

Schulz, Wu, Huys, Krause & Speekenbrink (Cognitive Science 2018)

Clinically depressed populations

Schefft, Wu, Meder, Kéhler & Schulz (in prep)

Social search in VR

Wu, Ho, Kahl, Leuker, Meder & Kurvers (bioRxiv 2021)
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O https://github.com/charleywu/gridsearch
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O https://github.com/charleywu/gridsearch

Establishing a new paradigm
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2. Learning like a child

Schulz, Wu, Ruggeri & Meder (PsychSci 2019)
Meder, Wu, Schulz & Ruggeri (Dev Sci in press)

57, (59)
5362
3. Graph-structured Generalization s &

Wu, Schulz & Gershman (Cogsci 2019) . .
Wu, Schulz & Gershman (CCN 2019) Schulz, Wu, Ruggeri & Meder (PsychSci 2019) Wu, Schulz & Gershman (CBB 2020)

Wu, Schulz & Gershman (Comput Brain Behav 2020)

4. Search in abstract conceptual spaces , I |
Wu, Schulz, Garvert, Meder & Schuck (Cogsci 2018) S| bt LS Y
Wu, Schulz, Garvert, Meder & Schuck (PLOS Comp Bio 2020) , 3o
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How to learn like a child
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What Al can learn from Children

e Josh Tenenbaum (MIT): Children are the only known information processing
system that demonstrably and reproducibly develop into intelligent systems

e Turing (1950) suggested we should build Al that learns like a child

 How do children learn differently from adults?
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What Al can learn from Children

e Josh Tenenbaum (MIT): Children are the only known information processing
system that demonstrably and reproducibly develop into intelligent systems

e Turing (1950) suggested we should build Al that learns like a child

 How do children learn differently from adults?

* One robust finding is they are highly variable!




What explains the extensive variability found in
children’s search behavior?

e High temperature sampling hypothesis:

e Children initially perform I

as they grow older (Gopn

igh-temperature search, which gradually “cool offs”

k et al., Curr Dir Psych Sci 2017)
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Sources of Developmental Differences

o Higher temperature sampling that cools off over
age”? (Gopnik et al., 2017)

46



Sources of Developmental Differences

o Higher temperature sampling that cools off over
age”? (Gopnik et al., 2017)

46



Sources of Developmental Differences

s

Higher temperature sampling that cools off over "k
age”? (Gopnik et al., 2017)

less random

sampling

46



al Differences

s

Sources of Development

less random

.

sampling

Higher temperature sampling that cools off over
age”? (Gopnik et al., 2017)

Iess directed

Changes in directed exploration ratqer than
random exploration”? (Wilson et al., 2014

explorahon




Sources of Development

Higher temperature sampling that cools off over

age”? (Gopnik et al
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al Differences

less random
ﬁ
sampling

Sources of Development

o Higher temperature sampling that cools off over
age”? (Gopnik et al., 2017)

p

less directed

exploration

e (Changes in directed exploration rather than
random exploration”? (Wilson et al., 2014

A

e Reflnement of cognitive representations ano hroader

processes supporting generalization” Q —
(3|aﬂCO et a\,, 20 6) generalization
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Schulz, Wu, Ruggeri, & Meder (PsychSci 2019)
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Count
S

Meder, Wu, Schulz, & Ruggeri (DevSci 2021)
n=>52

Schulz, Wu, Ruggeri, & Meder (PsychSci 2019)
n="7T9

l—ll_ll_ll:l:r"ll—l:lr =i = e B

n = 150 Unpublished data
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Filtered to use the same sets of environments, same grid size, and same
number of trials per round

Meder, Wu, Schulz, & Ruggeri (DevSci 2021)
n=>52

20 - Schulz, Wu, Ruggeri, & Meder (PsychSci 2019)
15 n="179

Count
S

0 - B e B I:l:l"'l [T1 [ i s [ e ) = i B
20 - J— 71 = 150 Unpublished data
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Behavioral results

e Performance increases over age

Normalized Mean Reward
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0.61
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30

n=47
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0,11)

(11,14)
Age Group
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[25,55]
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Behavioral results

e Performance increases over age

* Age-related differences are already evident in the
first few trials

* Older subjects have steeper learning curves

* Younger children have decaying learning
curves, consistent with over-exploration, I.e.,
more unique options and higher entropy of
choices

Normalized Mean Reward
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e Performance increases over age

* Age-related differences are already evident in the
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* Older subjects have steeper learning curves
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Behavioral results

» Categorized decisions as either:
 Repeat (same as last choice)
* Near (heighboring option)
* Far (any other choice)

* P(near) > P(repeat) for younger children, but
reaches parity in adults

0.75-

P(Search Decision Type)

0.00+

Repeat

Néar
Search Decision Type

Far

Age Group
[25,55]
[18,25)
[14,18)
[11,14)
[9,11)
[7.9)
[5.7)

bhde

-®- Random
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Behavioral results

» Categorized decisions as either:
 Repeat (same as last choice)
* Near (heighboring option)
* Far (any other choice)

* P(near) > P(repeat) for younger children, but
reaches parity in adults

* Younger children are also less responsive In
adapting search distance to reward
outcomes

* QOver the lifespan, this develops into a
linear relationship, resembling a gradual
form of win-stay lose-shift
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Parameter estimates

e Small uptick iIn generalization A

® | arge decrease In both uncertainty-directed exploration 3 and temperature T
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Summary and Future Directions

* The strategic use of uncertainty-directed exploration and predictive generalization
comes online already at a very young age (5-7 year olds)

e Simultaneous reduction in both directed and random exploration in early childhood
* Children are not just more random, but also hungrier for information

 While there is an uptick in random exploration during adolescence, this is relatively
minor compared to changes in childhood

» Consistent with theories that increased exploration in adolescence is largely driven
by social rather than cognitive factors

e Future work can use model simulations to examine which is the best normative
developmental trajectory through model space
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Part 3

Expanding the horizon

Generalization in Conceptual and
Structured domains
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Cognitive Maps for Navigation

Cognitive Maps

" Tolman (Psych Rev, 1948)

“eo o CURTAIN

Plan of mazg
14-Unit T-Alley Maze

Fie, !

{(From M. H, Elliott, The cficct of change of mward on the maze per-
formance of rats. Univ, Calif. Publ. Prychol., 1928, 4, p, 20.)

... “In the course of learning something like a field map
of the environment gets established in the rat's brain”
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Cognitive Maps for Navigation

Cognitive Maps Grid Cells

~ Tolman (Psych Rev, 1948)

¥ Trajectory
® Peaks

“pCoRTAIN

Plan of mazg
14-Unit T-Alley Maze

Fie, !

{(From M. H, Elliott, The cficct of change of mward on the maze per-
formance of rats. Univ, Calif. Publ. Prychol., 1928, 4, p, 20.)

... “In the course of learning something like a field map
of the environment gets established in the rat's brain”

Hafting et al., (2005)
Moser, Rowland, & Moser (2015)
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We can measure trajectories in human navigation

Spatial trajectory (Birds eye)

0+240 & +300

Misalignea
Participant perspegtive |

¢ ¢+60 o¢+120 ¢+180 @+240 @+300

Movement Direction

Doeller, Barry, & Burgess (Nature, 2010)
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We can measure trajectories in human navigation

Spatial trajectory (Birds eye)

= p+300

0+240

Misalignea

¢ ¢+60 o¢+120 ¢+180 @+240 @+300

Movement Direction

Doeller, Barry, & Burgess (Nature, 2010)
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We can measure trajectories in human navigation

Also in non-spatial domains!
Spatial trajeCtory (BirdS eye) Stretchy birds Stretchy bhirds

Trajectories
60°

/s

¢+60 ¢+120 @+180 @+240 @+300

Movement Direction

(hidden from the participants)

Doeller, Barry, & Burgess (Nature, 2010) Constantinescu, O’Reilly, & Behrens (Science, 2016)
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Spatial Rewards Influence Semantlc Foraglng

o Search in external and internal spaces follow similar principles

of optimal foraging
Charnov (1976); Pirolli & Card (1999)

* The distribution of resources in a spatial foraging task can
iInfluence semantic search patterns in a word generation task

Hills, Todd, & Goldstone (2008)

“Exaptation” of spatial cognition to other domains

Hills (2006); Hills, Todd, & Goldstone (2008)
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Connecting Spatial and Conceptual Search

e Since there is evidence for a common neural representation for both spatial and conceptual navigation,
what are the downstream implications for behavior?

* Are there domain general principles for generalization (about novel stimuli) and exploration (in new
environments)?

* Within-subject experiment, where participants used either spatial or conceptual features to guide the
search for rewards

Spatial Conceptual
oslus £3E2
[ Spacebar ] ,
1 day
______ M
gap
Current Score: 141
Current Score: 260 Trials Remaining: 14
Trials Remaining: 12 Rounds Remaining: 10
Rounds Remaining: 10
Change selection using arrow keys («— — 1 ) and onece vou think you've
Change selection using arrow keys +— — 1 |) and once you think you've matched the target, pross spacebar to make a scleotion,
matched the target, prass spacebar to make & selection, « and — change tw lilt whie | and | change the density of stripes.
You starnt from a random location after each choice. You startfrcm ar item afar each choice.
History: History:

|\ \
79 84 23 61 62 67 25 34 19 23 17 23

Wu, Schulz, Garvet, Meder & Schuck (PLOS Comp Bio 2020)
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Questions
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Target

/
7

At least 32 trials AND a run of 9 out of 10 correct
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Behavioral Results

r=.53, BF > 100 \
T Mo A At T
% 80- “ia 4 AAAA“A‘?*AL‘;‘iL
- Ax’* A,
T AAA A‘,,,
T 60- .7
» Correlated performance, but generally 2 A b T4 Environment
. . ,,” A Rough
better in the spatial task w] .- coudn
40 60 80 100
_ _ _ Conceptual Reward
* This difference can largely be explained by
a one-directional transfer effect: o
c1_|,_)| 100 B
» Experience with spatial search boosted é .
80 -
performance on conceptual search, but 3
not vice versa S 60-
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Behavioral Results -

r = .53, BF > 100 \
i AL L At 4
% 80- “ia 4 AAAA“A‘?*AL‘;‘iL
- Ax’* A,
= A A A Ve
8 60- 4 e
» Correlated performance, but generally 2 af.-t Environment
. . 7 A Rough
better in the spatial task w] .- qouT
40 60 80 100
_ _ _ Conceptual Reward
* This difference can largely be explained by
a one-directional transfer effect: 120- Conceptual First Spatial First
BF=0.67
| | | (Ligl saad . BF=6.4 | |
* Experience with spatial search boosted o bt 238
performance on conceptual search, but g 8 ? TR®E $
not vice versa § . . |
P : _-------, ------- - ------- J
Conceptual Spatial Conceptual Spatial
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Conceptual Task Spatial Task

Modeling Results

» Using group-level Bayesian estimation, we find that GP-

P(bestModel)
<

UCB Is the best model of choice behavior v o - L
 P(bestModel) estimates the most prevelant model
(corrected for chance); also known as protected

751

exceedance probability

50 1

Model Estimate

257

« GP-UCB also predicts bonus round judgments about
expected reward and confidence

i . . éartici;i?\t Igstimatztia5 ° - o
* using parameters estimated from rounds 1-9, we can use
model simulations to predict participant judgments for

unobserved stimuli in round 10

-J
i

GP Uncertainty (rank order)
Oé
%
s 4 E]
%

w REN
+
el

« BMT makes invariant predictions for novel options, but

the GP predictions correspond to participant judgments, .
Where uncertainty iS the Opposite Of Confidence Participant Confidence (rank order)



Modeling Results

Conceptual Task Spatial Task
90 p—

. _ i ' B 801 — - 2 Model
GP-UCB simulated learning Enl o —— P Frese
curves resemble human & 50] oo < o

@ 90 8
performance @ 80 = 2
2 28 / / é Human

« Parameter estimates show similar e T

levels of generalization but
: : Generalization Exploration Temperature
change in exploration | | Fooem T
. ' " " > 27 ZaS ,',1 o= o 4—4 : b o _AV/ ’

* Directed exploration vanishes in s | st Lz |Son a2

the conceptual task, replaced by 2 %‘ s oHE R LR AL
: : A Oj'; ! P 0051 4 A A Smooth
higher temperature (i.e., random) 1 \ A .
Sampling 0 1 2 00 01 02 03 " 0.000.050.100.15
Conceptual A Conceptual f3 Conceptual ©
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Summary

e Similar mechanisms of generalization-

Spatial Conceptual guided search in both domains
* But also diagnostic differences:
1 da . .
Y ) * One-directional transfer effect suggest
> something fundamental about spatial
gap F 4 reasoning
. e Switch from directed to random
Current Score: 260 Current Score: 141 explcrahcn
Trials Remaining: 12 Trials Remaining: 14
Rounds Remaining: 10 Rounds Remaining: 10
Change selection using ;;:nb;e:z a[:ah—; : 1) and make a choice by Use your arrow keys Tﬂpﬂrf;::aag t::aiaii::fm and make a choice by (] BO n u S ro u n d S u g g eStS pal’t | Cl pantS h ave a
You start from a random tile after each :::hﬂice.and crossing over the edge +« and — change the tilt while T and | change the number of stripes. gOOd sense Of U ncertal nty (CO nfldence
of the grid brings you to the opposite side. You start from a random item after each choice.

ratings) in both domains, but aren’t able to
leverage it to direct their exploration in the
conceptual task

Wu, Schulz, Meder & Schuck (PLOS Comp Bio 2020) 63
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From continuous to structured spaces
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Continuous

Discrete

Feature 2

Similarity

Feature 1

\\\‘_> -
L0
—

Pearson Correlation

Pearson Correlation
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Generalization based on transition dynamics

 Even though C is closer than B, the transition dynamics of the environment
make it easier for B to reach A

e A Indicates a reward
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Diffusion Kernel

Rather than similarity between

features, we use the connectivity Observations Predictions (with uncertainty)
structure of the graph to define
similarity \ 49\
40\ 40\
kDF(S, S/) — 6Xp(— CIL) J \22/ /37 /8 \22/ /37
. . 1 T30 1 / B
Where L Is the graph Laplacian ~~_ / \10
a is a free parameter (diffusion level) \ \9

The diffusion kernel assumes
function values diffuse across the
graph according to a random walk
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Experiment 1

Prediction Task

Current Network: 4/30
Current Weighted Error: 10.19

How many passengers do you think will be observed at the selected station?

Few

=

Many

How confident are you?

Not very confident

Submit

Highly confident

Bandit Task

Current Score: 1296
Clicks remaining: 1
Current round: 1/10

Wu, Schulz, Gershman (CBB 2020)

Experiment 2

Bonus Round

g
S NV3.

How many points do you think will be observed at the selected node?

\ )

Many

How confident are you?

|\
N

[east confident Mast confide
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Wu, Schulz, Gershman (CBB 2020)

Experiment 2

Bandit Task Bonus Round

Current Score: 1296
Clicks remaining: 1
Current round: 1/10

w,

ﬁ\ ‘J ‘ CC:

How many points do you think will be observed at the selected node?

\ )

Few Many

How confident are you?

l\/l

[east confident Mast confide
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Mean Performance

100

80

40

Behavioral Results

r =.93, BF10=4.5X 107
bprevReward = _01 1, 950/0 HPD [_012, _010]

10

Distance Between Selections

== Participant Aggregate mean
== Aggregate 01 == Group-level effect

10 15 20 25 0 25 50 75 100
Trial Previous Reward Value
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Wu, Schulz & Gershman (CCN 2019)

Model Results

Generalization No generalization
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Model Results

Generalization No generalization
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Successor
Representation

V*(s,a) = Z M(s, s’, a)R(s")
s'eS

v

random exploration

[a



Generalization

Gaussian Process
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Model Results

No generalization
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Mean Tracker
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k-Nearest Neighbors
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Generalization

Gaussian Process
+ Observations /

- H(X)

directed + random exploration

Successor
Representation

V*(s,a) = Z M(s, s’, a)R(s")
s'eS

! / l
o 7 N 77 wta N\
/7 et R .
o & N
‘“ / . I I

random exploration
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Model Results

No generalization
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Mean Tracker

A

Reward

I d = distance
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Model Results

S Generalization No generalization
2
cu - 1
5 Gaussian Process ., Bayesian .00
Q . Mean Tracker
> + Observations
GE, =) s IS
a’ i { CU
0O A p—
S % 3 0.75
c o0
© e
+ O
g
2 i =
o + (.50
o 'y
O Q
Q
Successor _ 0
Representation d-Nearest Neighbors 0.25

V*(s,a) = Z M(s, s’, a)R(s")

|

0.00

GP BMT SR dNN kNN
Model

random exploration

I d = distance
71



Validation on judgments

How many points do you think will be observed at the selected node?
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How confident are you?
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Validation on judgments
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Conclusions

« How do we navigate vast problem spaces?

o (Generalization and directed exploration provide a powerful model for efficient
learning across many domains

By modeling generalization as functional inference, we can:
* Predict search decisions
e Simulate human-like performance
* Predict judgments of expected reward and confidence

 Underlying mechanisms of Bayesian inference, kernel similarity, and episodic RL have
deep theoretical connections to other models in Neuroscience and Computer Science

73



Future directions

 How is the structure of similarity learned?

 Successor Representation: online prediction error about future states? (Dayan, NeurComp1993;
Stachenfeld et al., Nat Neuro 2017)

 Tolman Eichenbaum Machine: associative learning mechanisms (Whittington et al., Cell 2020)

» Structure induction: Bayesian inference about hypothesized structure? (Kemp & Tenenbaum, PNAS
2008)

« How do humans keep functional inference tractable as we gain more experience”?

 GPs scale cubically with the size of the data @(n3)
* A large part of this complexity is in computing the underlying uncertainty

* Perhaps population codes can support flexible generalization with uncertainty (Tano, Dayan, &
Pouget, NeurlPS 2020)
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