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Cat Puzzle Box Time to escape

Actions associated with satisfaction are 
strengthened, while those associated 
with discomfort become weakened. 



Classical and Operant Conditioning
Classical Condition (Pavlov, 1927) 
Learning as the passive coupling of 
stimulus (bell ringing) and response 
(salivation), anticipating future rewards 

Operant Condition (Skinner, 1938) 
Skinner (1938): Learning as the active 
shaping of behavior in response to 
rewards or punishments
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Sutton and Barto (2018 [1998])

The Environment:


• governs the transition 
between states


• provides rewards


The Agent:


• Learns a value function 
mapping actions onto onto 
rewards


• Implements a policy, 
selecting actions based on 
their value
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Schultz et al. (1997)

Dopamine Reward Prediction Error

Temporal Difference 

Learning

Silver et al. (2016)

AlphaGo

Monte Carlo  

Tree Search
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Outline
Part 1. Overview of Reinforcement Learning  

• Value functions and policies 

• Tabular methods vs. value-function approximation 

• Multi-armed Bandit problem 

• Models of human learners

~~~~~~~~~~~~ Break ~~~~~~~~~~~~

Part 2. Generalization guided learning 

• Search in vast spaces (Wu et al., NHB 2018) 

• Learning like a child (Schulz et al., PsychSci 2019; Meder et al., DevSci 2021; Giron et al., in prep) 

• Connecting spatial and conceptual search (Wu et al., PLoS CompBio 2020) 

• Graph-structured generalization (Wu et al., CBB 2020)
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Partially Observable MDP (POMDP)

Markov Decision Process (MDP)
•  Simplifying assumption that the system is fully defined by only the previous state 

(i.e., Markov Principle): P(st+1 |st, at)
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Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1 • Learns a Policy

•  defines how to act, where  is the probability of selecting action 
 in state 

π π(a |s)
a s

• sample trajectories from the policy τ ∼ π
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• Bellman equations are a concept from dynamic programming that provide a 
recursive method for optimization:


• Theoretically, we can define an optimal value function:


• Optimal policy:
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V*(s) = max
a ∑
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π* = arg max
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 converges on  as , and perhaps sooner, but with many costly 
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Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy Iteration
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Alternate between evaluating a policy and then improving the policy.

Start with  (typically a random policy), and then iterate for all  in each step π0 s ∈ 𝒮

• Policy Evaluation

• Policy Improvement

Policy can converge faster than value function, but still requires visiting all states  
times and lacks convergence guarantees

2n

Policy Iteration

15

πk+1 = arg max
a ∑

s′ 

P(s′ |s, a)[R(s, a) + γVπk]

Vπk
(s) = 𝔼πk [R(s′ , a) + γVπk

(s′ )]
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Instead of learning the value for each state independently, learn a value 
function mapping each state to some value:


… a variety of methods are available including:


• linear function approximation (e.g,. regression)


• Neural networks


• Gaussian process regression (non-parametric) 

Value function approximation

17
Silver et al. (2016)

f : s ∈ 𝒮 → Vθ(s)
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Instead of learning the value for each state independently, learn a value 
function mapping each state to some value:


… a variety of methods are available including:


• linear function approximation (e.g,. regression)


• Neural networks


• Gaussian process regression (non-parametric) 

Value function approximation

17
Silver et al. (2016)

f : s ∈ 𝒮 → Vθ(s)

Function Approximators′ Vθ(s′ )
Δθ ∝

∂Vθ(s′ )
∂θ (R(s′ ) − Vθ(s′ ))
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Quick recap
• RL framework defines interactions 

between an agent and the 
environment 

• The environment defines the 
transitions between states and 
provides rewards


• The agent learns a value function 
and then turns this into a policy  

• Traditional solutions to RL problems 
can be broadly classified into either 
tabular methods or value function 
approximation

Agent

Environment

ActionState Reward
at

R(at, st)

st

st+1
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Brief aside: State-Value function vs. Action-value function

So far, I’ve focused on describing state-value functions: 

However, you can also describe a RL model using the action-value function: 

Both are equivalent under: 

21

Vπ(s) = 𝔼τ∼π[R(τ) |s0 = s]

Qπ(s, a) = 𝔼τ∼π[R(τ) |s0 = s, a0 = a]

Vπ(s) = ∑
a∈A

π(a |s) * Qπ(s, a)
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Rescorla-Wagner and Q-learning: the Delta Rule
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For simplicity, I’m omitting the temporal difference (TD) error, which looks like:

23

V(s) ← V(s) + η (r + γV(s′ ) − V(s))

Schultz et al. (1997)

Dopamine Reward Prediction Error
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Goal of Human RL?

Predict behavior using a model. This tells us we have understood some aspect of human 
learning.

We want to make probabilistic predictions, since people don’t behave deterministically.

Epsilon greedy:

Softmax:
{maxa Q(a) p(1 − ϵ)

p(ϵ)action = random action
with
with

 and  model forms of 
exploration, but don’t distinguish 

between experienced vs. 
inexperienced options

ϵ τ1.3
5.1
0.7
1.1

→
exp(Q(ai)/τ)

∑n
j exp(Q(aj)/τ)

→

0.002
0.90
0.05
0.02

Q-values Probabilities
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Bayesian reinforcement learning
We can describe a Bayesian variant of the RW model using a Kalman filter:

25

p(ri,t |𝒟t−1) = 𝒩(Qi,t, σ2
i,t)

Normally distributed posterior over rewards, where the mean is  :Qi,t

where  collect previous 
choices and rewards

𝒟t = [a0, r0, a1, r1, …]

Qi,t+1 = Qi,t + ki,t [ri,t − Qi,t]
σ2

i,t+1 = [1 − ki,t] σ2
i,t

Bayesian updates:

Mean:

Variance:
ki,t =

σ2
i,t

σ2
i,t + σ2

ϵ
 if at = i

0  otherwise 

Error variance  is a free parameterσ2
ϵ

Kalman Gain (learning rate):

Strictly, this is a KF variant known as a Bayesian 
mean tracker (BMT), assuming stationary rewards

…
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Policies for Bayesian models

26

We can now use uncertainty estimates to inform our policy and explore more 
efficiently.

Thompson Sampling:

Upper Confidence Bound Sampling:

UCB(ai) = Qi + β σ2
i  models exploration directed 

towards uncertain choices
β

P(ai) = P(ri > rj≠i)

Monte Carlo Samples



Function approximation?

27Griffiths et al., (2008)
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Summary
RL framework for learning value functions and policies

• Tabular methods vs. value function approximation
• Exhaustive iteration over states vs. predictions about novel states

Modeling human learners with RL models
• Can we understand something about the efficiency of human learning?

• How humans navigate the exploration-exploitation dilemma
• RW and Q-learning resemble tabular methods that have access to random or 

noisey exploration
• Kalman filter is a Bayesian model, which can use uncertainty-informed exploration
• But what about function approximation?

28
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Real life problems
Finding a place to live Choosing a research topic

31

Picking what to eat



32Herzfeld & Shadmehr (Nat Neuro 2014)

Exploration-Exploitation Dilemma
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explore!

But where?
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Let’s 
explore!

But where?

How do people navigate vast 
environments when we cannot 

explore all possibilities? 
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Smooth Rough

Wu et al., (Nature Human Behaviour 2018)

Spatially Correlated Bandit
• click tiles on the grid


•  maximize reward


•  each tile has normally distributed 
rewards


• nearby tiles have similar rewards 


•  limited search horizon privileges good 
generalization & efficient exploration
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on new or previously revealed tiles 

Wu et al., (Nature Human Behaviour 2018)



35

Participants acquired rewards by clicking 
on new or previously revealed tiles 

Wu et al., (Nature Human Behaviour 2018)



Modeling Human Search



• Exploration is not performed blindly

Modeling Human Search



• Exploration is not performed blindly

• Search is guided by generalization

Modeling Human Search



• Exploration is not performed blindly

• Search is guided by generalization

• Generalization as Bayesian inference about novel options:


• Expected reward


• Uncertainty

Modeling Human Search



• Exploration is not performed blindly

• Search is guided by generalization

• Generalization as Bayesian inference about novel options:


• Expected reward


• Uncertainty

• Human search is directed towards both ingredients

Modeling Human Search
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• We performed a large-scale 
comparison of  27 different 
models using cross-validated 
(out-of-sample) predictions


• Some heuristic models but 
mostly reinforcement learning 
models * sampling strategies


• … here, I focus on the best 
model, which consistently 
outperformed all others 
across a variety of 
manipulation checks

Model comparison
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• Traditional RL model: 

• Learns the value of each option independently 


• e.g., Rescorla-Wagner, Q-learning, Kalman Filter, Bayesian Mean 
Tracker (BMT), etc… 


• Can balance explore-exploit dilemma using a variety of sampling 
strategies, but offers limited guidance about where to explore


• Function learning model:


• Uses function approximation to generalize about novel option


• e.g., Neural Network function approximators,  Gaussian Process (GP) 
model, etc…


• Balances explore-exploit using the same sampling strategies as option 
learning models, but also makes predictions about where to explore 
through generalization
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How to learn like a child 

Part 2



• Josh Tenenbaum (MIT): Children are the only known information processing 
system that demonstrably and reproducibly develop into intelligent systems


• Turing (1950) suggested we should build AI that learns like a child


• How do children learn differently from adults?

44

What AI can learn from Children

video by Francis Vachon
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What AI can learn from Children

• One robust finding is they are highly variable!

video by Francis Vachon



What explains the extensive variability found in 
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• High temperature sampling hypothesis:  

• Children initially perform high-temperature search, which gradually “cool offs” 
as they grow older (Gopnik et al., Curr Dir Psych Sci 2017)
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Schulz, Wu, Ruggeri, & Meder (PsychSci 2019)
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Meder, Wu, Schulz, & Ruggeri (DevSci 2021)

Unpublished data

Schulz, Wu, Ruggeri, & Meder (PsychSci 2019)

n = 79

n = 52

n = 150

Filtered to use the same sets of environments, same grid size, and same 
number of trials per round
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• Younger children have decaying learning 
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• Categorized decisions as either:


• Repeat (same as last choice)


• Near (neighboring option)


• Far (any other choice)

• P(near) > P(repeat) for younger children, but 
reaches parity in adults

Random



Behavioral results

49

• Categorized decisions as either:


• Repeat (same as last choice)


• Near (neighboring option)


• Far (any other choice)

• P(near) > P(repeat) for younger children, but 
reaches parity in adults

• Younger children are also less responsive in 
adapting search distance to reward 
outcomes


• Over the lifespan, this develops into a 
linear relationship, resembling a gradual 
form of win-stay lose-shift 

Random



Model results
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Parameter estimates
• Small uptick in generalization λ 

• Large decrease in both uncertainty-directed exploration β and temperature τ

51

Generalization λ Exploration β Temperature τ 
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Summary and Future Directions
• The strategic use of uncertainty-directed exploration and predictive generalization 

comes online already at a very young age (5-7 year olds)


• Simultaneous reduction in both directed and random exploration in early childhood 


• Children are not just more random, but also hungrier for information


• While there is an uptick in random exploration during adolescence, this is relatively 
minor compared to changes in childhood


• Consistent with theories that increased exploration in adolescence is largely driven 
by social rather than cognitive factors


• Future work can use model simulations to examine which is the best normative 
developmental trajectory through model space

53



54

Part 3
Expanding the horizon



54

Part 3
Expanding the horizon

Generalization in Conceptual and 
Structured domains



Cognitive Maps for Navigation

55

… “in the course of learning something like a field map 
of the environment gets established in the rat's brain”

Tolman (Psych Rev, 1948)

Cognitive Maps



Cognitive Maps for Navigation
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… “in the course of learning something like a field map 
of the environment gets established in the rat's brain”

Tolman (Psych Rev, 1948)

Cognitive Maps Grid Cells

Hafting et al., (2005) 
Moser, Rowland, & Moser (2015) 

Trajectory
Peaks
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Doeller, Barry, & Burgess (Nature, 2010)


Movement Direction

BO
LD

We can measure trajectories in human navigation
Spatial trajectory (Birds eye)

Participant perspective

Constantinescu, O’Reilly, & Behrens (Science, 2016)

Also in non-spatial domains!

θ

θ



Spatial Rewards Influence Semantic Foraging
• Search in external and internal spaces follow similar principles 

of optimal foraging  
Charnov (1976); Pirolli & Card (1999)


• The distribution of resources in a spatial foraging task can 
influence semantic search patterns in a word generation task 
Hills, Todd, & Goldstone (2008) 

• “Exaptation” of spatial cognition to other domains  
Hills (2006); Hills, Todd, & Goldstone (2008)

57

Clustered Diffuse
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• Since there is evidence for a common neural representation for both spatial and conceptual navigation, 
what are the downstream implications for behavior? 


• Are there domain general principles for generalization (about novel stimuli) and exploration (in new 
environments)?


• Within-subject experiment, where participants used either spatial or conceptual features to guide the 
search for rewards
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Behavioral Results

• Correlated performance, but generally 
better in the spatial task


• This difference can largely be explained by 
a one-directional transfer effect:


• Experience with spatial search boosted 
performance on conceptual search, but 
not vice versa
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Modeling Results
• Using group-level Bayesian estimation, we find that GP-

UCB is the best model of choice behavior 


• P(bestModel) estimates the most prevelant model 
(corrected for chance); also known as protected 
exceedance probability


• GP-UCB also predicts bonus round judgments about 
expected reward and confidence


• using parameters estimated from rounds 1-9, we can use 
model simulations to predict participant judgments for 
unobserved stimuli in round 10 


• BMT makes invariant predictions for novel options, but 
the GP predictions correspond to participant judgments, 
where uncertainty is the opposite of confidence

P(
be

st
M

od
el

)
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Modeling Results

• GP-UCB simulated learning 
curves resemble human 
performance


• Parameter estimates show similar 
levels of generalization but 
change in exploration


• Directed exploration vanishes in 
the conceptual task, replaced by 
higher temperature (i.e., random) 
sampling

Generalization Exploration Temperature

Model



Summary

63

a bSpatial Conceptuala b

1 day

gap

• Similar mechanisms of generalization-
guided search in both domains


• But also diagnostic differences:


• One-directional transfer effect suggest 
something fundamental about spatial 
reasoning


• Switch from directed to random 
exploration


• Bonus round suggests participants have a 
good sense of uncertainty (confidence 
ratings) in both domains, but aren’t able to 
leverage it to direct their exploration in the 
conceptual task 

Wu, Schulz, Meder & Schuck (PLOS Comp Bio 2020) 
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From continuous to structured spaces
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Machado et al. (ICLR 2018)

Generalization based on transition dynamics

• A indicates a reward


• Even though C is closer than B, the transition dynamics of the environment 
make it easier for B to reach A



Diffusion Kernel
• Rather than similarity between 

features, we use the connectivity 
structure of the graph to define 
similarity


• Where L is the graph Laplacian


• α is a free parameter (diffusion level)


• The diffusion kernel assumes 
function values diffuse across the 
graph according to a random walk
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b) Diffusion Kernel Generalization a) Graph Structure
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Experiment 1 Experiment 2

Bandit Task Bonus Round

Wu, Schulz, Gershman (CBB 2020)
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Experiment 1 Experiment 2

Bandit Task Bonus Round

Wu, Schulz, Gershman (CBB 2020)
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Behavioral Results

Participant
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a  Fully revealed environment b  Screenshot of search task c  Bonus roundValidation on judgments
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Conclusions
• How do we navigate vast problem spaces?


• Generalization and directed exploration provide a powerful model for efficient 
learning across many domains


• By modeling generalization as functional inference, we can:


• Predict search decisions


• Simulate human-like performance


• Predict judgments of expected reward and confidence


• Underlying mechanisms of Bayesian inference, kernel similarity, and episodic RL have 
deep theoretical connections to other models in Neuroscience and Computer Science
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Future directions
• How is the structure of similarity learned?


• Successor Representation: online prediction error about future states? (Dayan, NeurComp1993; 
Stachenfeld et al., Nat Neuro 2017) 


• Tolman Eichenbaum Machine: associative learning mechanisms (Whittington et al., Cell 2020)


• Structure induction: Bayesian inference about hypothesized structure? (Kemp & Tenenbaum, PNAS 
2008) 


• How do humans keep functional inference tractable as we gain more experience?


• GPs scale cubically with the size of the data 


• A large part of this complexity is in computing the underlying uncertainty


• Perhaps population codes can support flexible generalization with uncertainty (Tano, Dayan, & 
Pouget, NeurIPS 2020)

𝒪(n3)
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